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We consider a generalization of the classical quadratic assignment problem, where 
coordinates of locations are uncertain and only upper and lower bounds are known for 
each coordinate. We develop a mixed integer linear programming model as a robust 
counterpart of the proposed uncertain model. A key challenge is that, since the uncertain 
model involves nonlinear objective function of the uncertain data, classical robust 
optimization approaches cannot be applied directly to construct its robust counterpart. We 
exploit the problem structure to develop exact solution methods and present some 
computational results. 
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1.  Introduction 
 

     Koopmans and Beckmann [17] introduced quadratic assignment problem (QAP) in 1957 as a 
mathematical model for the location of a set of indivisible economical activities. Its standard version 
deals with choosing an optimal way to assign n facilities to n locations to minimize the total material 
handling cost, given all distances between locations and the amount of material flow between each 
pair of facilities. Numerous applications of the QAP are discussed in Burkard et al. [5]. Some 
applications are: minimizing the total amount of connections between the components in a 
backboard wiring (Steinberg [21]), assigning a new facility to serve a given set of clients (Francis 
and White [12]), scheduling problems (Geoffrion and Graves [13]), economic problems (Heffley 
[14, 15]), designing typewriter keyboards (Pollatschek et al. [18]) and many other applications. 
However, the most well-known and popular application of QAP is the facility layout problem. For 
example, Dickey and Hopkins [8] used QAP toassign buildings in a university campus, Elshafei [10] 
applied it in a hospital planning and Bos [4] used it in a forest parks problem. 
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     The QAP is one of the hardest problems in combinatorial optimization (see Burkard et al. [5] and 
Cela [6]). The famous NP-hard Traveling Salesman Problem (TSP) is a special case of QAP. Sahni 
and Gonzalez [19] showed that it is not possible to obtain in polynomial time even a constant-factor 
approximate solution for the QAP, unless P=NP. 
 
In deterministic optimization, it is assumed that input data (flows between facilities and distances 
between locations in QAP) are precisely known in advance. Although this assumption can be true in    
some applications, it is not realistic in many others. For example, we may know estimation of flows 
between facilities which will be possibly different from their realizations. As another example, in the 
problem of minimizing the amount of connections between components in a backboard wiring 
(Steinberg [21]), because of implementation errors in assigning electrical elements to exact 
locations, the coordinates of the locations can be uncertain. Another example of uncertain locations 
in QAP is the problem of assigning facilities to locations when the locations are not built yet and all 
we know is the (large) regions in which they are located. Here, we consider a generalization of the 
classical quadratic assignment problem, where coordinates of locations are uncertain and only upper 
and lower bounds are known for each coordinate. For coordinates of locations only an interval 
estimate (uncertainty interval) is available, and they can take on any value from the corresponding 
uncertainty interval, regardless of the values of other coordinates of locations. 

 
     Solving optimization problems with some nominal data may cause infeasible or suboptimal 
solutions, or both, in the presence of data uncertainty (Ben-Tal and Nemirovski [1]). Therefore, 
mathematical modelers are concerned with uncertainty in constraints or objective function 
coefficients. Note that in our problem, coordinates of locations and consequently distances between 
locations are uncertain, which just affects the objective function coefficients and optimality of 
solutions. Sensitivity analysis, stochastic programming (Dantzig [7]), fuzzy programming (Zadeh 
[25]) and recently robust optimization (Soyster [20], Ben-Tal and Nemirovski [1], Bertsimas and 
Sim [2, 3], and El-Ghaoui et al. [9]) are some different approaches to handle the data uncertainty in 
optimization models. 
 
     Here, we propose interval and budgeted data uncertainty for the coordinates of locations in QAP, 
and therefore nonlinearly correlated distances between locations. It is worth mentioning that, since 
the objective function of the original uncertain problem is not an affine function of uncertain data, 
classical robust optimization approaches cannot be applied directly to construct its robust 
counterpart. Here, we develop mixed integer programming models to address this type of 
uncertainty. 
 
     The remainder of our work is organized as follows. In Section 2, we present notations and the 
problem statement. In Section 3, we develop a method to find the worst-case scenario and robust 
value of the objective function for a given feasible solution. In Section 4, we present a robust 
counterpart of uncertain QAP and linearize it. This is followed by computational experiments in 
Section 5, to consider the quality of solutions. Finally, we present some concluding remarks in 
Section 6. 
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2.  Notation and Problem Statement 
 
     In this section, we first present notations and the problem statement of classical QAP. Then, we 
formulate the problem with uncertainty.  
 
 
2.1. Classical QAP 

 
     In the standard version of QAP, it is assumed that there are n  facilities to be assigned to n  

locations, in order to minimize the total material handling volume. Let {1, , }.N n   For any

, , ,i j r s N , 0ijf  , the amount of flow from facility i  to j  and 0,rsd   the distances between 

the locations r and s are given.  For each facility i  and location r, a decision variable irL  is as 

follows: 

                      
1, if  facility  is assigned to  location ,

0, otherwise. ir

i r
L


 


                                         (1) 

 

For any feasible solution {0,1}n nL  , each location must be assigned exactly to one facility, and 

similarly each facility must be located exactly in one location. Therefore, assignment constraints 
should be satisfied as follows: 

                          
1 1

1, ,  and  1, .
n n

ir ir
r i

L i N L r N
 

                                                 (2) 

 
Let P be the set of all feasible assignments. Thus, 

             
1 1

{0,1} : 1, ,  1, .
n n

n n
ir ir

r i

P L L i N L r N

 

         
 

                              (3) 

 

Given an n n  distance matrix ( )rsd d and an assignment ( )irL L P  , let ,d L   denote the 

corresponding cost of the assignment, 

1 1 1 1 1 1

, ,
n n n n n n

L
ij rs ir js rs rs

i j r s r s

d L f d L L d f
     

    
 

where, for each pair r and s of locations, we have 

                                                 
1 1

n n
L

rs ij rs ir js
i j

f f d L L
 

                                                            (4) 

as the flow between locations r and s  in the assignment L . For a given distance matrix d , the 
classical QAP is stated as follows. 
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Problem QAP(d).  Minimize ,  | d L L P   . 

 

Let ( )Opt d be an optimal solution to Problem QAP (d), and *( )F d be its optimal objective value. 

 
 
2.2. Uncertain QAP 

 
     Problem QAP (d) is valid as long as the values of flows and distances are known precisely. 
Otherwise, this model cannot be applied to obtain a precise solution. In fact, if only the estimation of 
data with most likely intervals is available, then the result is not reliable. 
 
In this section, we consider an uncertain QAP model with interval coordinates of location and 
develop a method to find the worst-case scenario and robust value of the objective function for a 
given feasible solution. Without loss of generality, we assume that the flows are deterministic. 

Suppose that rx  and ry (coordinates of location r  in the 2 dimensional plane) are independent 

uncertain parameters, where ˆ[ , ]r r r rx x x x  and ˆ[ , ]r r r ry y yy   . To normalize the uncertainty 

set, rx  and ry  can be written as ˆx
r r rx x and ˆy

r r ry y , respectively, where x
r  and y

r can take 

on any value from [0,1] independent of each other. The x and y  are called perturbation vectors. 

 
2.2.1. Uncertainty Sets 

 
     To address data uncertainty, in the robust optimization approach, it is assumed that uncertain 
parameters of the model (e.g., distances between locations) are (affine) functions of some 
perturbation factors (e.g., coordinates of locations). Contrary to stochastic programming, in robust 
optimization, no probability distribution is assigned to uncertain data. Depending on the set that 
perturbation factors belong to, various robust optimization approaches have been developed.  For 
example, Soyster [20] used box uncertainty set, which is the easiest but also the most pessimistic 
approach. In contrast, Ben-Tal and Nemirovski [1] and El-Gaoui et al. [9] used ellipsoidal 
uncertainty sets to reduce the conservativeness of Soyster’s model. Using ellipsoidal uncertainty sets 
results in conic quadratic programming models, when the original model is a linear programming 
model. Thus, this approach cannot be directly applied to mixed integer programming (MIP) or mixed 
integer non-linear programming (MINLP) models. 
 
Later, Bertsimas and Sim [2, 3] introduced a new robust optimization approach that uses budgeted 
uncertainty set, which has the same complexity of the original model and adjustable 
conservativeness. 
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Since QAP is an MINLP model (and its linear equivalents are MIP models), we consider box and 
budgeted uncertainty sets and develop robust counterparts of QAP considering these types of 
uncertainty sets. 
 
Box Uncertainty 
 
This type of uncertainty was considered by Soyster [20] for the first time to develop robust 
counterparts in linear programming. It is also referred as interval data. In this type of uncertainty, it 

is assumed that x
r  and y

r are independent uncertain variables in [0,1] . Let bU   be the box 

uncertainty set for . Then, 

                             {( , ) : , , 0 , 1, }.x y x y n x y
b r rU r N                                        (5) 

 
Box uncertainty is the most conservative model in the robust optimization literature and uses the 
worst case optimization approach. 
 
Here, we use rectilinear distances between locations. Therefore, for any perturbation vector

( , )x y   , a mapping 2( ) : n n nd  
   is defined as follows. For all , 1 ,r s n  , 

               ˆ ˆ ˆ ˆ( ) .x x y y
rs r s r r s s r s r r s sd x x x x y y y y                                                 (6) 

Thus, in the case of box uncertainty for , the uncertainty set for distance matrix d is 

                         :  such that ( ) ,d n n
b bU d U d d                                               (7) 

which is not a box uncertainty set. 
 

Budgeted Uncertainty 
 

Bertsimas and Sim [2, 3] introduced this type of uncertainty to construct robust counterparts for the 
LP and MILP models. Budgeted uncertainty is less conservative than box uncertainty and its 
conservativeness is adjustable. In this type of uncertainty, in addition to the box constraints (5), there 

is a budget  for the absolute sum of the perturbation elements x
r and y

r . LetU 
  be the budgeted 

uncertainty set for . Then, 

                                      
1

{ : ( ) },
n

x y
b r r

r

U U   


                                                        (8) 

where [0,2 ]n is a given protection level and the conservativeness of the model can be adjusted 

by changing it. While 0  gives the most optimistic solution (deterministic problem with nominal 

data), 2n   generates the most pessimistic one just like box uncertainty set. In fact, a budgeted 

uncertainty set with protection level 2n   equals the box uncertainty set. Since box uncertainty set 

is a special case of budgeted uncertainty with 2n  , in the remainder of our work it is assumed  
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that U  is a budgeted uncertainty set. In the case of budgeted uncertainty for , the uncertainty set 

for distance matrix d  is 

                                   :  such that ( ) .d n nU d U d d 
                                      (9) 

For any assignment L P , the value 

                                        ( ) max , max ( ),
dd U U

Z L d L d L



  

                                                (10) 

is called the worst-case or robust cost for L . A maximizer of (10) is called a worst-case scenario for 

L , which is denoted by Ld  . The Corresponding worst-case perturbation vector is presented by L
 , 

where ( )L Ld d   . The robust QAP is formulated as follows. 

 
 
 

Problem RQAP.  Minimize ( ) : .Z L L P  

Let *Z  and *L  be the optimal objective value and the optimal solution for Problem RQAP, 
respectively.  
 

Let (0)d d be the nominal value of distance matrix. The difference between ( )Z L and ,d L   

(i.e., the deterministic cost) is called robustness cost of assignment L  and represented by ( )RC L . 

Thus, 

                                                    ( ) ( ) , .RC L Z L d L                                                                 (11) 

 
Note that the uncertainty set is an approximation of the true uncertainty in the data.  Thus, for a 
given feasible solution L , it is possible that the realized total cost be greater than its robust value 
with respect to the approximated uncertainty set. The probability of this event is called violation 
probability of assignment L  and is given as follows: 

 

          Violation Probability of Assignment Pr , ( )L d L Z L    .                             (12) 

 
For example, suppose that the real uncertainty set is a box uncertainty set and we have modeled it by 

a budgeted uncertainty set. It is clear that if up to    of the j change within their bounds, and up to 

one j  changes by ( )    , then the realized reliability of solution x  will be greater than or 

equal to its robust reliability. Otherwise, realized reliability can be less than robust reliability of 
solution L . Bertsimas and Sim [3] discussed by details on violation probability and presented some 
analytical estimates of it. In Section 5, we calculate this probability empirically by the Monte Carlo 
simulation. 
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3. A Linear Programming (LP) Formulation to Find Worst-case Scenario  
 
     An important step in developing the robust counterpart models is finding the worst-case 
realization from uncertainty set for a given solution L P . In our problem, worst-case scenario can 

be obtained by solving (11), which is maximizing ( ),d L   over uncertainty set. Thus, let us first 

explore some properties of ( ),d L  , worst-case scenario and budgeted uncertainty set. 

 

Proposition 1. ( ),d L  is a piece-wise linear convex function of .                                                 

 

Proof. For each pair of locations r and s , it can be easily seen from (6) that ( )rsd   is a piecewise 

linear convex function of . Therefore, ( ),d L  , which is a nonnegative linear combination of 

( )rsd  , is also a piecewise linear convex function of  .        □ 

 
Proposition 2. For budgeted uncertainty set with integer  and box uncertainty set, there exists a 

worst-case scenario   with all entries equal to 0 or 1. 

 

Proof. From proposition (1), ( ),d L   is a convex function of  . On the other hand, budgeted and 

box uncertainty sets are convex (in fact, they are polytopes). Consequently, there exists an extreme 

point of the uncertainty set which maximizes (11). Since any extreme point   of the box 

uncertainty or budgeted uncertainty with integer   has all entries equal to 0 or 1, the result follows. 
□ 
 

So far, for a given assignment L P , we know that finding ( )Z L , the robust cost of L , requires to 

solve nonconvex optimization model (11). In the sequel, we propose a convex equivalent model to 
(11), by exploiting the structure of the model (11) and using the convex hull of hypergraph (i.e., the 

set of points lying on or below the graph) of ( ),d L  . 

 
     For a given assignment L P , it is known from proposition (2) that in the worst-case scenario, 

for each location r , the uncertain coordinates will be at extreme points rx or ˆr rx x , and ry  or

ˆr ry y . Therefore, it is enough to investigate the distance between locations r and s, when they are 

at their extreme coordinates. For each pair of locations r and ,s  the notations below express these 

extreme distances: 
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ˆ| |, | ( ) |, 

ˆ ˆ ˆ| ( ) |, | ( ) ( ) |,

ˆ| |, | ( ) |, 

ˆ ˆ ˆ| ( ) |, | ( ) ( ) | .

x x
rs r s rs r r s

x x
rs r s s rs r r s s

y y
rs r s rs r r s

y y
rs r s s rs r r s s

d x x d x x x

d x x x d x x x x

d y y d y y y

d y y y d y y y y

    

      

    

      

                      (13) 

 

Note that (13) requires 8 4 ( 1)
2

n
n n

 
   





  enumerations. Now, we are ready to define ( , )h L   as 

a concave counterpart of ( ), ,d L  which is equal to ( ),d L   at the extreme points of uncertainty 

set. In other words, we want to define ( , )h L  in such a way that its hypergraph is equal to the 

convex hull of hypergraph of  ( ),d L  . Let 

                            
1 1

( , ) ( ) ( ) ,
n n

x x y y L
rs rs rs

r s

h L h h f  
 

                                                      (14) 

where, 

                       

( ) 0.5(| 1| 1)

0.5( | 1| 1)

0.5( | 1| 1)

0.5(| 1| 1) ,

x x x x x x x
rs r s r s r s

x x x x x
r s r s rs
x x x x x
r s r s rs

x x x x x
r s r s rs

h d

d

d

d

    
   
   
   

     
      
      
     

                                       (15) 

and 

                           

( ) 0.5(| 1| 1)

0.5( | 1| 1)

0.5( | 1| 1)

0.5(| 1| 1) .

y y y y y y y
rs r s r s r s

y y y y y
r s r s rs
y y y y y

r s r s rs
y y y y y

r s r s rs

h d

d

d

d

    
   
   
   

     
      
      
     

                                  (16) 

 

For simplicity, we can represent ( )x x
rsh   and ( )y y

rsh  in a different way as follows: 

                         
( ) ( | 1| ),

( ) ( | 1| ),

x x x x x x x x x x
rs rs r s rs r sr s rs

y y y y y y y y y y
rs rs r s rs r sr s rs

h D B B C

h D B B C

    

    

      

      
                                (17) 

 
where the constant coefficients B , C  and D  are computed from extreme distances (13) as follows: 

      

0.5( ), 0.5( ),

0.5( ), 0.5( ),

0.5( ), 0.25( ).

x x x x x y y y y y
rs rs rs rs rs rs rs rs rs rs

x x x x x y y y y y
rs rs rs rs rs rs rs rs rs rs

x x x x x y y y y y
rs rs rs rs rs rs rs rs rs rs

C d d d d C d d d d

B d d d d B d d d d

D d d d d D d d d d

       

       

       

                          (18) 

 
Note that 
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1 1 1 1 1 1 1 1

,  and .
n n n n n n n n

x x L x x L y y L y y L
sr s rs rs r sr sr s rs rs r sr

r s r s r s r s

B f B f B f B f   
       

                              

(19) 
 

Thus, by using coefficients B , C  and D , and identities (14), (17) and (19),  ( , )h L  can be 

rewritten as follows: 

                  

1 1 1

1 1

1 1

( , ) ( ) ( )

( )

( | 1| | |) .1

n n n
x L L x y L L y
rs rs sr r rs rs sr r

r s s

n n
x y L
rs rs rs

r s

n n
x x x y y y L
rs r s rs r s rs

r s

h L B f f B f f

C C f

D D f

  

   

  

 

 

           
    

 

     

  





                   (20) 

 

Proposition 3. For any assignment L P , ( , )h L   is a piecewise linear concave function of . 

Furthermore, in the case of integral  , for any extreme scenario U   ,  where all entries of   are 

0 or 1, ( , ) ( ),h L d L    . 

 

Proof. For each pair of locations r and s , from (17) the coefficient of | 1 |x x
r s   in ( )x x

rsh   is

x
rsD , which is nonpositive. (All possible cases for x

rsD  are evaluated in Table 1.) Similarly, the 

coefficient of | 1|y y
r s   in ( )y y

rsh  is y
rsD , which is similarly nonpositive. Using these facts, it 

is concluded that ( )x x
rsh  and ( )y y

rsh   are concave functions of the x and the y . Consequently,

( , )h L  , being a positive linear combination of them, is also a concave function of  . 

 
To prove the second part of the proposition, it is enough to show that for each pair of locations r  

and s , when their coordinates are at their extreme values, it holds that ( ) ( ) ( )x x y y
rs rs rsh h d    . 

This can be verified by evaluating ( )x x
rsh  and ( )y y

rsh   in (15) and (16) for extreme values of x
r  

and y
r  for each pair of locations r and s .         □ 
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Table 1. Evaluating x
rsD in all possible cases 

Possible cases  x
rsD

 

r s sx x x  
 

0 

s r rx x x  
 

0 

 and r r s s s r s sx x x x x x x x       
 rx



 and r r s s s r s sx x x x x x x x       
 s s rx x x  

 and s s r r r s r rx x x x x x x x       
 sx



 and s s r r r s r rx x x x x x x x       
 r r sx x x 

 

Proposition 4. For any feasible assignment L P and integer  , ( ), ( , )L Ld L h L     , where L
 is 

the worst-case scenario for assignment L . 
 

Proof. From proposition (3), for any assignment L P and integer  , the maximum of ( , )h L   

can be found by solving an LP model. Then, there exists an extreme point L
 of the uncertainty set, 

which maximizes ( , )h L  . On the other hand, by proposition (3), there exists an extreme point of the 

uncertainty set which maximizes ( ),d L  . Since ( ),d L  and ( , )h L  are equal at extreme 

points of the uncertainty set (as proved in proposition 3), it holds that ( ), ( , )L Ld L h L     .          □ 

 

4.  Formulations of Problem RQAP 
 

     In the robust optimization approach to solve Problem RQAP, it is desired to minimize the robust 
value (worst case on the uncertainty set) of the objective function (i.e., total material handling 
volume) over all feasible assignments L P . Thus, Problem RQAP will be 

                                                 min max ( ), .
L P U

d L



 
                                                          (21) 

 
     The model (21) is not tractable, since the inner maximization problem is not a convex 

optimization problem. It is worth mentioning that, since ( ),d L   is not an affine function of 

uncertain data,  , classical robust optimization approaches cannot be applied directly to construct 

robust counterpart of the problem. Here, we develop a mixed integer linear programming (MILP) 
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model to find a robust solution for this problem. Let us replace the inner maximization problem in 
model (21) by the LP model (22): 

                          
1 1

max ( ), ( ) ( ) ,
n n

x y L
rs rs rs

U r s

d L L C C f


 




  

                                      (22) 

 

where ( )L  is the optimal value of the model (25) below. This replacement is valid, since from 

Proposition 3, for any feasible solution L P  and integer  , we have 
 

              ( ), max ( ), max ( , ) ( , ).L L
U U

d L d L h L h L
  

   
 

 

 
                               (23) 

 

On the other hand, from (20), ( , )Lh L   can be written as 

                            
1 1

( , ) ( ) ( ),
n n

x y L
L rs rs rs

r s

h L C C f L  

 

                                             (24) 

 
where, 

1

1

1 1

( )

( ) max 

( ) ( )

. . ( 1) , ,

( 1) , ,

n
x L L x
rs rs sr rn

s

n nU r y L L y x y
rs rs sr r rs sr

s s

x x L x x x
rs rs rs r s rs

y y L y y y
rs rs rs r s rs

B f f

L

B f f t t

s t t D f t r s N

t D f t r s N








 

 





 

 

   
    

                 
      

      




 

0 , ,

0 , , .

x y
rs rs

y x
r r

t t r s N

r N 

  

  

                                   (25) 

 

Clearly, * * *| 1 |x x L x x
rs rs rs r st D f     and * * *| 1 |y y L y y

rs rs rs r st D f      at the optimal solution. 

 

Note that, for a given assignment L P , model (25) is an LP with 22 2n n  continuous variables 

and 24n linear constraints. In this section, we propose a robust counterpart for (21), which is a MILP 
model. First, we develop the quadratic MIP model to be given as (26a)-(26g). Then, we use an 
available linearization technique to make a MILP equivalent of the model (26a)-(26g). Recall from 

equation (4) that L
rsf is a quadratic function of decision variables L . 

 
Proposition 4. The model (21) is equivalent to  
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1 1 1

min ( ) ( )
n n n

x y L x y x y
rs rs rs rs rs r r

L P
r s r

C C f u u z p p


  

                                       (26a) 

             
1 1

. . ( ), ,
n n

x x x L L
rs r rs rs sr

s s

s t u p z B f f r N
 

                                        (26b) 

                     
1 1

( ), ,
n n

y y y L L
rs r rs rs sr

s s

u p z B f f r N
 

                                            (26c) 

                             , , , ,x L x x L
rs rs rs rs rsD f u D f i r s N                                                 (26d) 

                             , , , ,y L y y L
rs rs rs rs rsD f u D f i r s N                                                 (26e) 

                                   , , , 0, , .x y
r rz p p r s N                                                          (26f) 

 
Proof. For a given assignment L P , the dual model of (25) can be written as 

                    

   
1 1 1

( ) ( ) ( )

. . 26  6 .2

n n n
x y x y
r r rs rs

r r s

L Min z p p u u

s t b g

 

  

     



 
                        (27) 

Since the uncertainty set is a polytope, from strong duality theorem it is concluded that 

( ) ( )L L   . Then, 

                        
1 1

( ), ( , ) ( ) ( ).
n n

x y L
L L rs rs rs

r s

d L h L C C f L    

 

                         (28) 

 
Consequently, from proposition (4) and equation (28), robust counterpart of the model (21) can be 
written as model (26a)-(26g) and the proof is complete.                                                                      □ 
 
Various MIP models were proposed by researchers to linearize the classical QAP (see Kaufmann 
and Broeckx [16], Frieze and Yadegar [11], Xia and Yuan [22], Xia [23, 24], and Zhang et al. [26]).   

Kaufmann and Broeckx [16] linearized QAP by adding 2n  continuous nonnegative variables and 2n  
linear constraints. Although this approach has the smallest number of variables and constraints, LP 
relaxation of the Kaufman-Broeckx linearization gives a poor QAP bound and Yuan [22], Xia [23, 
24] tightened Kaufman and Broeckx’s formulation. 
 
To linearize the model (26a)-(26g), we use the same ideas in the Kaufmann-Broeckx linearization of 
the classical QAP.  Therefore, we develop the MILP model (29) as a robust linear counterpart of 
uncertain QAP: 
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1 1 1 1 1

1 1

1 1

min ( ) ( ) ( )

. . ( ),

( ),

,

n n n n n
x y x y x y
rs rs rs r r rs rs

L P
r s r r s

n n
x x x
rs r rs rs sr

s s

n n
y y y
rs r rs rs sr

s s

x x x y y y
rs rs rs rs rs rs rs rs rs r

C C w z p p u u

s t u p z B w w r N

u p z B w w r N

D w u D w D w u D w


    

 

 

        
 

     

     

     

  

 

 

1

1

1

, ,

(1 ) , , ,

,

,

, , , 0, , ,

s

n
max

ij js i ir rs
j

n
min

i ir rs
i

n

ii ir rr
r

x y
r r rs

r s N

f L f L w i r s N

f L w r s N

f L w r N

z p p w r s N







 

    

   

  

  







          (29)     

 

where { }max
i j N ijf max f  and { }min

i j N ijf min f , for all i N . This model has 2n binary, 

2 2 1n n  nonnegative continuous and 22n  unrestricted continuous variables. Also, it has 
3 25 3n n n   linear constraints. 

 

Since we use rectilinear distances between locations we obviously have ( ) ( ).rs srd d  Therefore, 

we can exploit symmetry property of distances to reduce the number of variables and constraints in 

the model (29). Due to symmetric distances, without loss of generality, we can assume that .ij jif f

Let ij ij jif f f   , { }max
i j N ijf max f 

 and { },min
i j N ijf min f 

  for all i N . Then, an improved 

version of (29) is given below: 



 

Robust Quadratic Assignment Problem                                                                                 59 

 

 
 

1

1 1 1 1 1,
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1, 1 1

1

1, 1 1

min ( ) ( ) ( )

. . ,
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  
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, , , 0, , .

x x x y y y
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x x x y y y
rs sr rs rs sr rs sr rs rs sr
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ij js i ir rs
j

n
min

i ir rs
i

x y
r r rs

w u D w D w u D w r s r N

D w u D w D w u D w r s r N

f L f L w i r s r N

f L w r s r N

z p p w r s r N

 







       

        

     

   

   





(30) 

 

The MIP model (30) which is equivalent to (29) has 2n binary, 20.5 1.5 1n n   nonnegative 

continuous and 22 2n n  unrestricted continuous variables. Also, it has 3 20.5 4 0.5n n n   linear 
constraints. In the next section, we experimentally examine the proposed approach and the model 
(30) on some random instances. 
 

5.  Experimental Results 
 
     We generated 20 uncertain QAPs of size 8, and solved model (30) for each instance by tuning   
from 0 to 12 (totally 260 models were solved). Although   can potentially vary from 0 to 2 8 16   

in these instances, but since the results for 12   were the same as the ones for 12   we just 

considered the values from  0   to 12  . In randomly generated instances, ijf , ˆr rx x  and 

ˆr ry y  were integer values in [0,10000]. Also, rx  and ry  were random integers in ˆ[0, ]r rx x  and 

ˆ[0, ]r ry y , respectively. The experiments were conducted on a PC with a processor Intel Core Duo 

2.66 GHz and with 2.99 GB of RAM by using CPLEX 12.2, (default parameters) interfaced with 
C++. After solving these 260 instances, we used the homogeneous Monte Carlo simulation to 
generate coordinates of locations (100,000 simulation runs for each instance) to analyze the quality 
and robustness of solutions in the presence of uncertainty.  The results are summarized in Table 2.  
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Table 2. Summary of experimental results 

 time Z  averageZ 
0.05Z maxZ P 

0 19.6 1,076 1,395 1,624 1,849 0.91155 

1 27.8 1,335 1,378 1,580 1,786 0.51717 

2 30.5 1,523 1,379 1,573 1,774 0.12409 

3 34 1,675 1,378 1,568 1,765 0.00543 

4 34 1,796 1,376 1,567 1,766 0.00004 

5 34.9 1,890 1,374 1,565 1,763 0 

6 37.6 1,960 1,376 1,565 1,762 0 

7 36.8 2,010 1,374 1,564 1,768 0 

8 38.4 2,041 1,373 1,563 1,766 0 

9 38.7 2,061 1,373 1,562 1,764 0 

10 38.9 2,071 1,374 1,564 1,768 0 

11 40.2 2,076 1,374 1,564 1,767 0 

12 38.3 2,077 1,373 1,563 1,766 0 

 

 
Figure 1. Diagram of Z with respect to  
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In Table 2, time, Z  , averageZ and  maxZ  are respectively time in seconds spend to solve the model, 

optimal robust objective value, average objective value in simulation and maximum objective value 

in simulation. Also, 0.05Z   is the value for which frequency of greater objective value than this is 

5%, and P is the violation probability (the percentage of instances in simulation with objective 

values greater than robust cost Z  ), calculated empirically. The values in Table 2 are the average of 

20 instances. In the Figures 1-4, diagrams of Z  , averageZ ,  0.05Z  and maxZ  with respect to the 

protection level,  , are depicted. 
 
Since solving the classical deterministic QAP is  NP-hard (see Sahni  and Gonzalez [19]), our 
proposed formulations for Problem RQAP are also NP-hard. Although, for small size instances, we 
can hope to find the exact solution of Problem RQAP (as seen in Table 2, takes less than 1 minute to 
solve the MILP equivalent of RQAP with n=8), but for large instances, heuristics may be needed. 

 

 
Figure 2. Diagram of averageZ with respect to  

 
 

Figure 3. Diagram of 0.05Z with respect to  
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Table 2 and Fig. 1 show that Z   increases by increasing the protection level  , as expected, since 
increasing   results in conservative solutions. In the worst case scenario for the robust solution, all 
coordinates of locations are at their extreme (lower or upper) values. Although in the worst case 
scenario of solution for 0  , all coordinates of locations are at their lower  values, for 0  ,    
coordinates of locations are not necessarily at their upper  values. Therefore, after some value, 
increasing   does not change the solution. In our instances, this value turned to be12. 
 

averageZ , 0.05Z  and maxZ in figures 1-3 and violation probability P in Table 2 have similar trends. In 

general, they decrease by increasing the protection level  . 
 
The numerical results in Table 2 and Figures 1 and 4 suggest that the model builder can use our 
proposed robust counterpart of Problem RQAP to find more reliable solutions by trading off between 
optimal robust objective value and violation probability. For example, to find a solution with zero 

violation probability, we can set 5   which causes 76% increase in Z  . On the other hand, it 

results in  1.5%, 3.6% and 4.7% reductions in averageZ ,  0.05Z  and maxZ , respectively. Note that Z   

does not provide useful information, because it is just the optimal robust value in the case of 
assumed protection level   for budgeted uncertainty. Therefore, if the underlying uncertainty is the 
same (for example, box uncertainty),  to compare the quality of optimal solutions for different 

protection levels  , it makes sense to use averageZ ,  0.05Z or maxZ  as the judging criteria. 

 

 
Figure 3. Diagram of maxZ with respect to  
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6.  Conclusions 

     We considered quadratic assignment problem with interval and budgeted uncertainty in 
coordinates of locations and developed robust counterpart of the problem. It is worth mentioning 
that, since the objective function of the original uncertain problem is not an affine function of 
uncertain data, classical robust optimization approaches cannot be applied directly to construct its 
robust counterpart. We developed a linear mixed integer programming model to find the robust its 
solution of this problem. The main contributions of our work are: 
 
(1) A linear programming model to find the worst-case scenario and robust cost of a given feasible 
assignment. 
 
(2) A mathematical programming formulation of the robust QAP. 
 
(3) Line arizations of the robust QAP to allow for the use of CPLEX or other solvers.  
 
(4) Illustrative experimental results. 
 
The main conclusions are: 
 
(1) The robust QAP is as hard as the classical QAP. Although for small size instances (for example, 
n = 8), exact solution can be obtained by MIP solvers like CPLEX, heuristics should be developed to 
find good solutions for moderately large instances. 
 
(2) Modelers can make trade-off between violation probability, robustness cost, average cost, 
maximum cost or desired quantiles (in the simulation) to get a solution with acceptable risk. 
 
(3) For moderately small values of protection levels, we can expect to have favorable solutions. 
There is no need to make the most conservative decisions (with the largest protection level) to obtain 
robust solutions. 
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