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We consider an approximation scheme using Haar wavelets for solving a class of infinite 

horizon optimal control problems of nonlinear interconnected large-scale dynamical 

systems. A computational method based on Haar wavelets in the time-domain is proposed 

for solving the optimal control problem. Haar wavelets integral operational matrix and 

direct collocation method are utilized to find an approximate optimal trajectory of the 

original problem. Numerical results are given to demonstrate the applicability and the 

effectiveness of the proposed method. 
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1. Introduction 
 

       In general, a large-scale system can be considered a dynamical system composed of some lower 

order interconnected subsystems. These systems are found in many practical applications, such as 

power systems and physical plants (Sahba [37]; Holland and Diamond [14]). Nevertheless, control of 

such a system is still challenging, because of the dimensionality problem and high complexity in 

calculations. 

        

       An efficient control strategy for large-scale systems is decentralized control (Huang et al. [16]), 

which is easier to implement than centralized control. Designing a decentralized controller, however, 

is more difficult than that of a centralized controller, owing to the interconnections among 

subsystems. To overcome the difficulties arising from the control of large-scale systems, neural 

networks have been recognized as a powerful tool, due to their collective computing and parallel 

processing capabilities (Chen and Li [9]; Padhi and Balakrishnan [29]). Nevertheless, the main 

drawback of the neural network model is that it can often be trapped at a local minimum. 

 

       Recently, some new control strategies have been introduced for large-scale systems. In Chen and 

Li [8], a decentralized adaptive backstepping neural network control approach was developed for a 

class of large-scale nonlinear output feedback systems. In this approach, neural networks were 

employed to approximate the interconnections and a backstepping technique was used to remove the 

matching condition requirement on interconnections. In Li et al. [23], the decentralized adaptive 

neural network output feedback stabilization problem was investigated for a class of large-scale 

stochastic nonlinear strict-feedback systems. In that work, the nonlinear interconnections were 

assumed to be bounded by some unknown nonlinear functions of the system outputs. Then, in each 
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subsystem, only one neural network was employed to compensate for all unknown upper bounding 

functions, which depended only on the output of the respective subsystem. Using only one neural 

network, however, may cause loss of precision. 

 

       A growing interest has appeared in the field of optimal control. Nevertheless, conventional 

methods of optimal control are generally impractical for many nonlinear large-scale systems because 

of the dimensionality problem and high complexity in calculations. One example is the state-

dependent Riccati equation (SDRE) method (Chang et al. [4]). Although this scheme has been widely 

used in many applications, its major limitation is that it needs to solve a sequence of matrix Riccati 

algebraic equations at each sample state along the trajectory. This may take a long computing time 

and extensive memory space. Therefore, developing new methods is necessary for solving nonlinear 

large-scale optimal control problems (OCPs). 

 

       A popular trend in handling nonlinear large-scale OCPs is decomposition and coordination, 

where a large problem is decomposed into small subproblems, based on the problem structure. Then, 

a proper coordination scheme is carried out to join the subproblems and insure the optimality of the 

overall solution (Jamshidi [18]). Based on this strategy, hierarchical methods have been proposed 

(Jamshidi [18]); nevertheless, these methods may take considerable computing time and memory 

space. 

 

       To solve nonlinear large-scale OCPs, in recent years, good results have been gained. For instance, 

a new successive approximation approach (SAA) was proposed by Tang and Sun [38]. In this 

approach, instead of directly solving the nonlinear large-scale two-point boundary value problem 

(TPBVP), derived from the maximum principle, a sequence of nonhomogeneous linear time-varying 

TPBVPs is solved iteratively. This method has been used in different applications (Tang and Zhang 

[39]; Zhang et al. [44]). Nevertheless, solving time-varying equations is much more difficult than 

solving time-invariant ones. Recently, a practical technique, called the extended modal series method, 

has also been proposed for solving the infinite horizon OCP of nonlinear interconnected large-scale 

dynamical systems (Jajarmi et al. [17]). This is an indirect method, where the optimal control law and 

the optimal trajectory are determined in the form of a uniformly convergent series. But, its 

shortcoming is the high computing complexity due to calculating the coefficients of series in each 

step where in theory, infinite iterations are required. 

 

       Orthogonal functions such as Haar wavelets (Hsiao and Wang [13]; Karimi et al. [19]), Walsh 

functions (Chen and Hsiao [6]; Razzaghi and Nazarzadeh [32]), block pulse functions (Marzban and 

Razzaghi [24]; Mashayekhi et al. [27]; Rao [30]), Laguerre polynomials (Wang and Shin [42]), 

Legendre polynomials (Chang and Wang [5]), Chebyshev functions (Horng and Chou [15]) and 

Fourier series (Razzaghi [31]), which are often used to represent arbitrary time functions, have 

frequently been used to deal with various problems of dynamical systems. The main characteristic of 

this approach is that it reduces the difficulties involved in solving problems described by differential 

equations, such as in the analysis of linear time-invariant, time-varying systems, model reduction, 

optimal control, and system identification, to the solution of a system of algebraic equations. Thus, 

the solution, identification, and optimization procedures are either greatly reduced or much 

simplified. The available sets of orthogonal functions can be divided into three classes: piecewise 

constant basis functions such as Haar wavelets, Walsh functions, and block pulse functions; 

orthogonal polynomials such as Laguerre, Legendre, and Chebyshev polynomials; and sine-cosine 

functions in Fourier series (Marzban and Razzaghi [25]). Among them, wavelet theory is a relatively 

new area in mathematical research (Burrus et al. [3]). It has been applied to a wide range of 

engineering disciplines such as signal processing, pattern recognition, industrial chemical reactors, 

and computer graphics. Recently, attempts have been made to use wavelet theory to solve surface 
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integral equations, improve the finite-difference time-domain method, solve linear differential 

equations and nonlinear partial differential equations, optimal control problems, and model nonlinear 

semiconductor devices (Banks [1]; Banks and Burns [2]; Chen and Hsiao [7]; Dai and Cochran [10]; 

G�̈�llmann et al. [12]; Hsiao and Wang [13]; Karimi et al. [19]; Karimi et al. [20]; Karimi et al. [21]; 

Karimi [22]; Marzban and Razaghi [26]; Ohkita and Kobayashi [28]; Razzaghi and Ordokhani [33]; 

Razzaghi and Ordokhani [35]; Teo et al. [40]; Wong et al.[43]). 

 

       Motivated by the above discussions, here we consider a particular approximation scheme based 

on Haar wavelets to be used to solve a class of infinite horizon OCPs of nonlinear interconnected 

large-scale dynamical systems, where the cost function is assumed to be quadratic and decoupled. 

First, we transform the infinite horizon problem to a finite horizon one, that is, from the interval [0,∞) 

to [0, 1). Then, we will assume that the control variables and derivatives of the state variables in the 

optimal control problems may be expressed in the form of Haar wavelets and unknown coefficients. 

The state variables can be calculated by using the Haar operational integration matrix. Therefore, all 

variables in the nonlinear system of equations are expressed as series of the Haar family and its 

operational matrix. Finally, the task of finding the unknown parameters that optimize the designated 

performance while satisfying all the constraints is performed the nonlinear programming. The 

effectiveness of the proposed approach is verified by solving the optimal attitude control problem.  

 

2. Problem Statement and Transformation 
 

       Consider a nonlinear interconnected large-scale dynamical system which can be decomposed 

into 𝑁 interconnected subsystems. The 𝑖th subsystem, for 𝑖 = 1,2, … ,𝑁, is described by  

 

{
�̇�𝑖(𝑡) = 𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖𝑢𝑖(𝑡) + 𝐹𝑖(𝑥(𝑡)), 𝑡 > 0,
𝑥𝑖(0) = 𝑥𝑖0 ,

 (1) 

 

where 𝑥𝑖 ∈ ℝ
𝑛𝑖 and 𝑢𝑖 ∈ ℝ

𝑚𝑖 are the state vector and the control vector of the 𝑖th subsystem, 

respectively, 𝑥 = (𝑥1
𝑇 , 𝑥2

𝑇 , … , 𝑥𝑁
𝑇)𝑇 , ∑𝑁𝑖=1 𝑛𝑖 = 𝑛, 𝐹𝑖: ℝ

𝑛 → ℝ𝑛𝑖 , 𝑖 = 1,2, … ,𝑁,  is a nonlinear analytic 

vector function with 𝐹𝑖(0) = 0, and 𝑥𝑖0 ∈ ℝ
𝑛𝑖 is the initial state vector. Also, 𝐴𝑖 and 𝐵𝑖 are constant 

matrices of appropriate dimensions such that the pair (𝐴𝑖 , 𝐵𝑖) is completely controllable. Furthermore, 

the infinite horizon quadratic cost function to be minimized is given by 

 

𝐽 =
1

2
∑

𝑁

𝑖=1

{∫
∞

0

(𝑥𝑖
𝑇(𝑡)𝑄𝑖𝑥𝑖(𝑡) + 𝑢𝑖

𝑇(𝑡)𝑅𝑖𝑢𝑖(𝑡))𝑑𝑡}, (2) 

 

where 𝑄𝑖 ∈ ℝ
𝑛𝑖×𝑛𝑖 and 𝑅𝑖 ∈ ℝ

𝑚𝑖×𝑚𝑖 are respectively positive semi-definite and positive definite 

matrices. Note that the quadratic cost function (2) is assumed to be decoupled as a superposition of 

the cost functions of the subsystems. 

 

       The following time transformation is introduced:  

 

𝑡 =
𝜏

1 − 𝜏
, 𝑡 ∈ [0,∞). (3) 

The above problem is transformed into the following finite horizon nonlinear optimal control 

problem:  
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐽 =
1

2
∑

𝑁

𝑖=1

{∫
[0,1)

(𝑥𝑖
𝑇(

𝜏

1 − 𝜏
)𝑄𝑖𝑥𝑖(

𝜏

1 − 𝜏
) + 𝑢𝑖

𝑇(
𝜏

1 − 𝜏
)𝑅𝑖𝑢𝑖(

𝜏

1 − 𝜏
))

𝑑𝜏

(1 − 𝜏)2
} (4) 

s. 𝑡.  

    �̇�𝑖(
𝜏

1 − 𝜏
) =

1

(1 − 𝜏)2
(𝐴𝑖𝑥𝑖(

𝜏

1 − 𝜏
) + 𝐵𝑖𝑢𝑖(

𝜏

1 − 𝜏
) + 𝐹𝑖(𝑥(

𝜏

1 − 𝜏
))), 𝜏 ∈ [0,1), (5) 

    𝑥𝑖(0) = 𝑥𝑖0 . (6) 

 

Now, assume  

 

{
𝑦𝑖(𝜏) = 𝑥𝑖(

𝜏

1 − 𝜏
), 𝑖 = 1,2,… ,𝑁,

𝑣𝑖(𝜏) = 𝑢𝑖(
𝜏

1 − 𝜏
), 𝑖 = 1,2,… ,𝑁.

 

 

Thus, the problem of nonlinear system (1) with the performance index (2) is replaced by  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐽 =
1

2
∑

𝑁

𝑖=1

{∫
[0,1)

(𝑦𝑖
𝑇(𝜏)𝑄𝑖𝑦𝑖(𝜏) + 𝑣𝑖

𝑇(𝜏)𝑅𝑖𝑣𝑖(𝜏))
𝑑𝜏

(1 − 𝜏)2
} (7) 

s. 𝑡.  

    �̇�𝑖(𝜏) =
1

(1 − 𝜏)2
(𝐴𝑖𝑦𝑖(𝜏) + 𝐵𝑖𝑣𝑖(𝜏) + 𝐹𝑖(𝑦(𝜏))), 𝑖 = 1,2, … ,𝑁, 𝜏 ∈ [0,1), (8) 

    𝑦𝑖(0) = 𝑦𝑖0 , 𝑖 = 1,2,… ,𝑁, (9) 

 

where 𝑦(𝜏) = (𝑦1
𝑇(𝜏), 𝑦2

𝑇(𝜏), … , 𝑦𝑁
𝑇(𝜏))𝑇 . In the next section, we will discuss the properties of a 

direct collocation method based on Haar functions and will use it for solving the finite time horizon 

problem (7) – (9). 

 

3. Haar Wavelets 
 

3.1. Rationalized Haar Functions 

 

       The rationalized Haar (RH) functions 𝑅𝐻(𝑟, 𝜏), 𝑟 = 1,2, . . ., can be defined on the interval [0,1) 
(e.g., see Marzban and Razzaghi [24]) as 
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𝑅𝐻(𝑟, 𝜏) = {

1            𝐽1 ≤  𝜏 < 𝐽1
2
,

−1         𝐽1
2
 ≤ 𝜏 < 𝐽0,

0           o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (10) 

 

where  

 

𝐽𝑢 =
𝑗 − 𝑢

2𝑖
, 𝑢 = 0,

1

2
, 1. 

 

The value of 𝑟 is defined by two parameters 𝑖 and 𝑗 via  

 

𝑟 = 2𝑖 + 𝑗 − 1, 𝑖 = 0,1,2,3, . . . , 𝑗 = 1,2,3, . . . , 2𝑖. 

 

𝑅𝐻(0, 𝜏) is defined for 𝑖 = 𝑗 = 0 and is given by  

 

𝑅𝐻(0, 𝜏) = 1,       0 ≤ 𝜏 < 1. 

 

The orthogonality property is given by  

 

∫
1

0

𝑅𝐻(𝑟, 𝜏)𝑅𝐻(𝜈, 𝜏)𝑑𝜏 = {
2−𝑖, 𝑟 = 𝜈,
0,             𝑟 ≠ 𝜈,

 (11) 

 

where  

 

𝜈 = 2𝑛 +𝑚 − 1, 𝑛 = 0,1,2,3, . . . , 𝑚 = 1,2,3, . . . , 2𝑛. 

 

       It should be noted that the set of RH functions is a complete orthogonal set in Hilbert space 

𝐿2[0,1]. Thus, we can expand any function in this space in terms of RH functions. 

 

3.2. Function Approximation 

 

       A function ℱ(𝜏) ∈ 𝐿2[0,1] may be expanded as an infinite series of RH functions as  

 

ℱ(𝜏) =∑

∞

𝑟=0

𝑎𝑟𝑅𝐻(𝑟, 𝜏), (12) 

 

where 𝑎𝑟 is given by  
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𝑎𝑟 = 2
𝑖∫

1

0

ℱ(𝜏)𝑅𝐻(𝑟, 𝜏)𝑑𝜏,    𝑟 = 0,1,2, . . ., (13) 

 

with 𝑟 = 2𝑖 + 𝑗 − 1, 𝑖 = 0,1,2,3, . . . , 𝑗 = 1,2,3, . . . , 2𝑖, and 𝑟 = 0 for 𝑖 = 𝑗 = 0. If we let 𝑖 =
0,1,2, . . . , 𝛼, then the infinite series in (12) is truncated up to its first 𝐾 terms as  

 

ℱ(𝜏) ≃ ∑

𝐾−1

𝑟=0

𝑎𝑟𝑅𝐻(𝑟, 𝜏) = 𝐴
𝑇Φ(𝜏), (14) 

 

where  

 

𝐾 = 2𝛼+1, 𝛼 = 0,1,2,3,…, 

 

𝐴 and Φ(𝜏) are defined by  

 

𝐴 = [𝑎0, 𝑎1, . . . , 𝑎𝐾−1]
𝑇 , (15) 

Φ(𝜏) = [𝜙0(𝜏), 𝜙1(𝜏), . . . , 𝜙𝐾−1(𝜏)]
𝑇 , (16) 

 

and  

 

𝜙𝑟(𝜏) = 𝑅𝐻(𝑟, 𝜏),    𝑟 = 0,1,2, . . . , 𝐾 − 1. 

 

If we set all the collocation points 𝜏𝑙 at the middle of each respective wavelet, then 𝜏𝑙 is defined by  

 

𝜏𝑙 =
𝑙 − 0.5

𝐾
,    𝑙 = 1,2, . . . , 𝐾. (17) 

 

With these collocation points, the function is discretized over a series of equally spaced nodes. The 

vector Φ(𝜏) can also be determined at these collocation points. Let the Haar matrix Φ̂𝐾×𝐾 be the 

combination of Φ(𝜏) at all the collocation points. Thus, we get  

 

Φ̂𝐾×𝐾 = [Φ(𝜏1), Φ(𝜏2), . . . , Φ(𝜏𝐾)]. (18) 

 

For example, if each waveform is divided into eight intervals, the magnitude of the waveform (see 

Ohkita and Kobayashi [28]) can be represented by  
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Φ̂8×8 = [Φ(𝜏1), Φ(𝜏2), . . . , Φ(𝜏8)] =

[
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1]

 
 
 
 
 
 
 

. (19) 

 

Using (14) and (18), we have  

 

[ℱ(𝜏1), ℱ(𝜏2), . . . , ℱ(𝜏𝐾)] = 𝐴
𝑇Φ̂𝐾×𝐾 . (20) 

 

From (20), we get  

 

𝐴𝑇 = [ℱ(𝜏1), ℱ(𝜏2), . . . , ℱ(𝜏𝐾)]Φ̂𝐾×𝐾
−1 , (21) 

 

where  

 

Φ̂𝐾×𝐾
−1 = (

1

𝐾
)Φ̂𝐾×𝐾

𝑇 𝑑𝑖𝑎𝑔(1,1,2,2, 22, . . . , 22⏟      
22

, 23, . . . , 23⏟      
23

, . . . ,
𝐾

2
, . . . ,

𝐾

2⏟    
𝐾
2

). 
(22) 

 

Therefore, the function ℱ(𝜏) is approximated by  

 

ℱ(𝜏𝑙) ≈ 𝐴1×𝐾
𝑇 Φ̂𝐾×𝐾 , 𝑙 = 1,2, . . . , 𝐾. (23) 

 

       It is also expected to approximate the function ℱ(𝜏) with minimum mean integral square error, 

𝜀, defined by  

 

𝜀 = ∫
1

0

(ℱ(𝜏) − 𝐴𝑇Φ(𝜏))2𝑑𝜏. 

 

Obviously, 𝜀 decreases when the level 𝐾 gets larger and it should converge to zero when 𝐾 approaches 

infinity. 

 

3.3. Operational Matrix for Integration  

 

       In the solution of optimal control problems, we always need to deal with equations involving 

differentiation and integration. If the system function is expressed in Haar wavelets, the integration 

or differentiation operation of Haar series cannot be avoided. The differentiation of step waves will 
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generate pulse signals which are difficult to handle, while the integration of step waves will result in 

constant slope functions which can be calculated by  

 

∫
𝜏

0

Φ(𝜏′)𝑑𝜏′ ≃ 𝑃Φ(𝜏), (24) 

 

where 𝑃 = 𝑃𝐾×𝐾 is a 𝐾 ×𝐾 operational matrix for integration and is given by in Razzaghi and 

Ordokhani [34] as  

 

𝑃𝐾×𝐾 =
1

2𝐾
[

2𝐾𝑃𝐾
2
×
𝐾
2

−Φ̂𝐾
2
×
𝐾
2

Φ̂𝐾
2
×
𝐾
2

−1        0
], (25) 

 

with Φ̂1×1 = [1], 𝑃1×1 = [
1

2
], Φ̂𝐾

2
×
𝐾

2

 and Φ̂𝐾

2
×
𝐾

2

−1  are respectively obtained from (18) and (22). The 

integration of the cross product of the two RH vector is  

  

∫
1

0

Φ(𝜏)Φ𝑇(𝜏)𝑑𝜏 = 𝐷, (26) 

 

where  

 

𝐷 = 𝑑𝑖𝑎𝑔(1,1,
1

2
,
1

2
,
1

22
, . . . ,

1

22⏟      
22

, . . . ,
1

2𝛼
, . . . ,

1

2𝛼⏟      
2𝛼

). (27) 

 

4. Direct Collocation 
 

4.1. Haar Discretization Method 

 

       In the discussion of Haar wavelets, we have already addressed how to approximate a function via 

Haar wavelets and its corresponding operational integration matrix. We are going to apply this 

methodology in optimal control problems so that Haar discretization is used in direct collocation (Dai 

and Cochran [10]). Thus, a continuous solution to a problem will be represented by state and control 

variables in terms of Haar series and its operational matrix to satisfy the differential equations. The 

standard interval considered here is denoted by 𝜏 ∈ [0,1) with the collocation points  

𝜏𝑙 =
𝑙 − 0.5

𝐾
,    𝑙 = 1,2, . . . , 𝐾, (28) 

where 𝐾 is the number of nodes used in the discretization and also the maximum wavelet index 

number. Note that the magnitude of 𝐾 is a power of 2, so that the number of collocation points is also 

increasing by the same power. All the collocation points are equally distributed over the entire time 

interval [0,1), with 
1

𝐾
 as the time distance between adjacent nodes. We assume that the derivative of 

the state variables �̇�𝑖(𝜏) and control variables 𝑣𝑖(𝜏), for 𝑖 = 1,2,… ,𝑁, can be approximated by Haar 

wavelets with 𝐾 collocation points, i.e.,  
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�̇�𝑖(𝜏) ≈ 𝐶𝑦𝑖
𝑇Φ(𝜏), (29) 

𝑣𝑖(𝜏) ≈ 𝐶𝑣𝑖
𝑇Φ(𝜏), (30) 

where  

𝐶𝑦𝑖 = [𝐶𝑦𝑖1, 𝐶𝑦𝑖2, . . . , 𝐶𝑦𝑖𝐾]
𝑇 ,    𝐶𝑣𝑖 = [𝐶𝑣𝑖1, 𝐶𝑣𝑖2, . . . , 𝐶𝑣𝑖𝐾]

𝑇,    𝑖 = 1,2, … ,𝑁. (31) 

 

Using the operational integration matrix 𝑃, as defined by (25), the state variables 𝑦𝑖(𝜏) can be 

expressed as  

𝑦𝑖(𝜏) = ∫
𝜏

0

�̇�𝑖(𝜏
′)𝑑𝜏′ + 𝑦𝑖0 = ∫

𝜏

0

𝐶𝑦𝑖
𝑇Φ(𝜏′)𝑑𝜏′ + 𝑦𝑖0 = 𝐶𝑦𝑖

𝑇 𝑃Φ(𝜏) + 𝑦𝑖0 , 𝑖 = 1,2,… ,𝑁. (32) 

As stated in (18), the expansion of the matrix Φ(𝜏) at the 𝐾 collocation points will yield the 𝐾 × 𝐾 

Haar matrix Φ̂. It follows that  

�̇�𝑖(𝜏𝑙) = 𝐶𝑦𝑖
𝑇Φ(𝜏𝑙),    𝑣𝑖(𝜏𝑙) = 𝐶𝑣𝑖

𝑇Φ(𝜏𝑙),    𝑦𝑖(𝜏𝑙) = 𝐶𝑦𝑖
𝑇 𝑃Φ(𝜏𝑙) + 𝑦𝑖0 ,    

 𝑙 = 1, . . . , 𝐾, 𝑖 = 1, . . . , 𝑁. 
(33) 

From the above expression, we can evaluate the variables at any collocation point using the product 

of its coefficient vectors and the corresponding column vector in the Haar matrix. 

 

4.2. Nonlinear Programming 

 

       When the Haar collocation method is applied to optimal control problems, the nonlinear 

programming variables can be set as the unknown coefficient vectors of the derivatives of the state 

variables and control variables  

 

𝑦𝑖 = [𝐶𝑦𝑖1, 𝐶𝑦𝑖2, . . . , 𝐶𝑦𝑖𝐾 , 𝐶𝑣𝑖1, 𝐶𝑣𝑖2, . . . , 𝐶𝑣𝑖𝐾]
𝑇 , 𝑖 = 1,2,… ,𝑁. (34) 

 

The performance index (7) is then restated by  

 

𝐽 =
1

2
∑

𝑁

𝑖=1

{∫
[0,1)

((𝐶𝑦𝑖
𝑇 𝑃Φ(𝜏) + 𝑦𝑖0)

𝑇𝑄𝑖(𝐶𝑦𝑖
𝑇 𝑃Φ(𝜏) + 𝑦𝑖0)                   

+ (𝐶𝑣𝑖
𝑇Φ(𝜏))𝑇𝑅𝑖(𝐶𝑣𝑖

𝑇Φ(𝜏)))
𝑑𝜏

(1 − 𝜏)2
}. 

(35) 

 

Since the Haar wavelets are expected to be constant steps at each time interval, the above equation 

can be simplified as  
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𝐽 =
1

2𝐾
∑

𝑁

𝑖=1

∑

𝐾

𝑙=1

((𝐶𝑦𝑖
𝑇 𝑃Φ(𝜏𝑙) + 𝑦𝑖0)

𝑇𝑄𝑖(𝐶𝑦𝑖
𝑇 𝑃Φ(𝜏𝑙) + 𝑦𝑖0)                    

+ (𝐶𝑣𝑖
𝑇Φ(𝜏𝑙))

𝑇𝑅𝑖(𝐶𝑣𝑖
𝑇Φ(𝜏𝑙)))

1

(1 − 𝜏𝑙)
2
. 

(36) 

 

Substituting �̇�𝑖 , 𝑣𝑖 and 𝑦𝑖 , for 𝑖 = 1,2,… ,𝑁, in (8) with the Haar wavelet expressions in (33), we get  

 

𝐶𝑦𝑖
𝑇Φ(𝜏𝑙) =

1

(1 − 𝜏𝑙)
2
(𝐴𝑖(𝐶𝑦𝑖

𝑇 𝑃Φ(𝜏𝑙) + 𝑦𝑖0) + 𝐵𝑖 (𝐶𝑣𝑖
𝑇Φ(𝜏𝑙)) + 𝐹𝑖(𝐶𝑦

𝑇𝑃Φ(𝜏𝑙) + 𝑦0)),   

𝑙 = 1,… , 𝐾. 

(37) 

 

The system equation constraints are all treated as nonlinear constraints in a nonlinear programming 

solver. The boundary constraints need more attention. Since the first and last collocation points are 

not set as the initial and final time, respectively, the initial and final state variables are calculated 

according to  

 

𝑦𝑖0 = 𝑦𝑖(𝜏1) −
�̇�𝑖(𝜏1)

2𝐾
, 𝑦𝑖1 = 𝑦𝑖(𝜏𝐾) +

�̇�𝑖(𝜏𝐾)

2𝐾
, 𝑖 = 1,2, … ,𝑁. (38) 

 

This way, the optimal control problems are transformed into nonlinear programming problems in a 

structured form which is solved by GAMS software (Rosenthal and Brooke [36]). 

 

5. An Illustrative Example 
 

       The development of control laws to regulate the attitude of spacecraft and aircraft has been the 

focus of many research projects (Chang et al. [4] and Tsiotras [41]). From among this class of 

problems, the optimal attitude control problem has proven to be challenging due to its cascade nature. 

In this section, the effectiveness and high accuracy of our proposed approach are verified by solving 

the optimal attitude control problem. To this end, consider the Euler dynamics and kinematics of a 

rigid body as follows (Tsiotras [41]):  

 

{
�̇�(𝑡) = 𝐻(𝜌(𝑡))𝜔(𝑡),

�̇�(𝑡) = 𝐽−1𝑆(𝜔(𝑡))𝐽𝜔(𝑡) + 𝐽−1𝑢(𝑡),
 (39) 

 

where 𝐽 = 𝑑𝑖𝑎𝑔(10,6.3,8.5), 𝜌 = (𝜌1, 𝜌2, 𝜌3)
𝑇 ∈ ℝ3 is the vector of Rodrigues parameters, 𝜔 =

(𝜔1, 𝜔2, 𝜔3)
𝑇 ∈ ℝ3 is the angular velocity, and 𝑢 = (𝑢1, 𝑢2, 𝑢3)

𝑇 ∈ ℝ3 is the control torque. The 

symbol 𝑆(⋅) is a skew symmetric matrix of the form 𝑆(𝜔) = [

0    𝜔3 −𝜔2
−𝜔3    0    𝜔1
𝜔2 −𝜔1    0

], and the matrix 

valued function 𝐻(𝜌) is given by 𝐻(𝜌) =
1

2
(𝐼 − 𝑆(𝜌) + 𝜌𝜌𝑇). In addition, the initial conditions are 

𝜌(0) = (0.3735,0.4115,0.2521)𝑇 and 𝜔(0) = (0,0,0)𝑇 . 
 

       Let us define the state vector 𝑥𝑖(𝑡) ≜ (𝜌𝑖(𝑡), 𝜔𝑖(𝑡))
𝑇 , for 𝑖 = 1, 2, 3. Therefore, the 6th-order 

nonlinear interconnected dynamical system (39) is decomposed into three interconnected subsystems 

as (1), where 
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𝐴1 = 𝐴2 = 𝐴3 = [
0

1

2
0 0

],    𝐵1 = [
0
1

10
],    𝐵2 = [

0
10

63
],    𝐵3 = [

0
2

17
], 

𝐹1(𝑥(𝑡)) = [

1

2
(𝑥1,2𝑥1,1

2 − 𝑥2,2𝑥3,1 + 𝑥2,2𝑥1,1𝑥2,1 + 𝑥3,2𝑥2,1 + 𝑥3,2𝑥1,1𝑥3,1)

−
11

50
𝑥3,2𝑥2,2

], 

𝐹2(𝑥(𝑡)) = [

1

2
(𝑥1,2𝑥3,1 + 𝑥1,2𝑥1,1𝑥2,1 + 𝑥2,2𝑥2,1

2 − 𝑥3,2𝑥1,1 + 𝑥3,2𝑥2,1𝑥3,1)

−
5

21
𝑥3,2𝑥1,2

], 

𝐹3(𝑥(𝑡)) = [

1

2
(−𝑥1,2𝑥2,1 + 𝑥1,2𝑥1,1𝑥3,1 + 𝑥2,2𝑥1,1 + 𝑥2,2𝑥2,1𝑥3,1 + 𝑥3,2𝑥3,1

2 )

37

85
𝑥2,2𝑥1,2

], 

𝑥1(0) = (0.3735,0)
𝑇 , 𝑥2(0) = (0.4115,0)

𝑇 , 𝑥3(0) = (0.2521,0)
𝑇 , 

 

with 𝑥𝑖,𝑗 being the 𝑗th element of vector 𝑥𝑖. The infinite horizon quadratic cost function to be 

minimized is given by (2), where 𝑁 = 3,𝑄𝑖 = 𝐼2×2, and 𝑅𝑖 = 1 for 𝑖 = 1, 2, 3. Now, by change of 

variable (3), the above problem is transformed into the following problem:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐽 =
1

2
∑

3

𝑖=1

{∫
[0,1)

(𝑦𝑖
𝑇(𝜏)𝑄𝑖𝑦𝑖(𝜏) + 𝑣𝑖

𝑇(𝜏)𝑅𝑖𝑣𝑖(𝜏))
𝑑𝜏

(1 − 𝜏)2
} 

s. 𝑡. 

    �̇�𝑖(𝜏) =
1

(1 − 𝜏)2
(𝐴𝑖𝑦𝑖(𝜏) + 𝐵𝑖𝑣𝑖(𝜏) + 𝐹𝑖(𝑦(𝜏))), 𝜏 ∈ [0,1), 𝑖 = 1,2,3, 

    𝑦1(0) = (0.3735,0)
𝑇 , 𝑦2(0) = (0.4115,0)

𝑇 , 𝑦3(0) = (0.2521,0)
𝑇, 

 

where  

 

𝐹1(𝑦(𝜏)) = [

1

2
(𝑦1,2𝑦1,1

2 − 𝑦2,2𝑦3,1 + 𝑦2,2𝑦1,1𝑦2,1 + 𝑦3,2𝑦2,1 + 𝑦3,2𝑦1,1𝑦3,1)

−
11

50
𝑦3,2𝑦2,2

], 

𝐹2(𝑦(𝜏)) = [

1

2
(𝑦1,2𝑦3,1 + 𝑦1,2𝑦1,1𝑦2,1 + 𝑦2,2𝑦2,1

2 − 𝑦3,2𝑦1,1 + 𝑦3,2𝑦2,1𝑦3,1)

−
5

21
𝑦3,2𝑦1,2

], 

𝐹3(𝑦(𝜏)) = [

1

2
(−𝑦1,2𝑥2,1 + 𝑦1,2𝑥1,1𝑦3,1 + 𝑦2,2𝑥1,1 + 𝑦2,2𝑦2,1𝑦3,1 + 𝑦3,2𝑦3,1

2 )

37

85
𝑦2,2𝑦1,2

], 

 

with 𝑦𝑖,𝑗 being the 𝑗th element of vector 𝑦𝑖. In order to obtain an accurate enough suboptimal 

trajectory-control pair, we applied the proposed method for 𝐾 = 1024. The results are depicted in 

Figures 1-6.  
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Figure 1. Approximate optimal trajectory obtained of 𝑦1(𝜏).  

 

 

 
Figure 2. Approximate optimal trajectory obtained of 𝑦2(𝜏).  
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Figure 3. Approximate optimal trajectory obtained of 𝑦3(𝜏).  

 

 
Figure 4. Approximate optimal control obtained of 𝑣1(𝜏).  

 

 
Figure 5. Approximate optimal control obtained of 𝑣2(𝜏).  
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Figure 6. Approximate optimal control obtained of 𝑣3(𝜏).  

 

       Finally, a natural question arises: are there advantages of the proposed collocation method as 

compared to the existing ones? To answer this, we summarize what we have observed from numerical 

experiments and theoretical results as follows. 

       • A main advantage of using Haar wavelets is that the matrices Φ̂𝐾×𝐾 , Φ̂𝐾×𝐾
−1  and 𝐷 introduced 

in (18), (22) and (27), have large numbers of zero elements, i.e., they are sparse; hence, the proposed 

method is very attractive to reduce the CPU time and computer memory while preserving the accuracy 

of the solution. 

       • The simple implementation of Haar wavelet-based optimal control in real applications is 

interesting. 

       • Haar functions are also noted for their rapid convergence of the expansion of functions. 

       • The proposed method also produces results similar to other collocation methods for continuous 

optimal control problems and shows advantages in discrete optimal control problems when the 

switching time is unknown. 

       • The proposed orthogonal collocation method leads to rapid convergence as the number of 

collocation points increases. 

       • With 𝜏𝑙 =
𝑙−0.5

𝐾
≠ 1, 𝑙 = 1,2, . . . , 𝐾, there is no numerical difficulties. In fact, we do not apply 

numerical integration methods such as Simpson’s rule for calculation of the integral (7), since it leads 

to some problems at the right end-point. We use the formula (36) to calculate the integral in (7) which 

does not require 𝜏 = 1. Thus, the integration on the finite-time interval will be convergent. 

       • As real-time applications of the developed control, three example problems can be solved to 

illustrate various elements of the main points of the proposed ideas: first is a standard linear–quadratic 

regulator problem. The second example is a nonlinear control problem of stabilizing NPSAT1, an 

experimental spacecraft designed. The inverted pendulum problem, with all its nonlinearities and 

saturation constraints, can be considered as the third real-time application of the infinite-horizon 

control (see Fahroo and Ross [11]). 

 

6. Conclusion 
 

       Some nonlinear large-scale optimal control problems (OCPs), were approximately solved by a 

combined parameter and function optimization algorithm. To this end and on the basis of the 
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approximation of dynamical systems and performance index into Haar series, an efficient and 

accurate method was then applied to solve a class of infinite horizon OCPs of nonlinear 

interconnected large-scale dynamical systems. An illustrative example was worked through to 

demonstrate the validity and applicability of the proposed method. 
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