This paper proposes a robust model for optimizing collaborative reverse supply chains. The primary idea is to develop a collaborative framework that can achieve the best solutions in the uncertain environment. Firstly, we model the exact problem in the form of a mixed integer nonlinear programming. To regard uncertainty, the robust optimization is employed that searches for an optimum answer with nearly all possible deviations in mind. In order to allow the decision maker to vary the protection level, we used the "budget of uncertainty" approach. To solve the np-hard problem, we suggest a hybrid heuristic algorithm combining dynamic programming, ant colony optimization and tabu search. To confirm the performance of the algorithm, two validity tests are done firstly by comparing with the previously solved problems and next by solving a sample problem with more than 900 combinations of parameters and comparing the results with the nominal case. In conclusion, the results of different combinations and prices of robustness are compared and some directions for future researches are suggested finally.