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A DC Optimization Algorithm for Clustering Problems 

with 𝑳𝟏-norm 
 

A.M. Bagirov1,*, S. Taheri2 
 

Clustering problems with the similarity measure defined by the 𝐿1-norm are studied. 

Characterizations of different stationary points of these problems are given using their difference 

of convex representations. An algorithm for finding the Clarke stationary points of the clustering 

problems is designed and a clustering algorithm is developed based on it. The clustering algorithm 

finds a center of a data set at the first iteration and gradually adds one cluster center at each 

consecutive iteration. The proposed algorithm is tested using large real world data sets and 

compared with other clustering algorithms. 
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1. Introduction 

 

Clustering is an unsupervised partitioning technique dealing with the problems of organization of 

a collection of patterns into groups based on similarity. It has applications in medicine, engineering 

and business, to name just a few. There are different types of clustering including fuzzy [12, 20] and 

hard clustering [17]. Most hard clustering algorithms are either hierarchical or partitional clustering 

algorithms. Hierarchical clustering algorithms generate a dendrogram representing the nested 

grouping of patterns and similarity levels at which groupings change [18, 20]. Partitional clustering 

algorithms find the partition that optimizes a clustering criterion [18]. Here, we are to develop a 

partitional clustering algorithm. 

 

The similarity measure is essential in clustering. It can particularly be defined using different 

norms. Clustering problems with the similarity measure defined by the squared Euclidean norm are 

known as the minimum sum-of-squares clustering problems. There are many algorithms for solving 

such problems including heuristics such as the 𝑘-means algorithm and its modifications, 

metaheuristics such as the simulated annealing, tabu search, variable neighborhood search, genetic 

algorithms and optimization algorithms such as the branch and bound, cutting plane and interior point 

(see [17, 24, 30] and references therein). 

 

Clustering problems with the 𝐿1-norm have attracted significantly less attention than those with 

the squared Euclidean norm. In some applications clustering algorithms with the 𝐿1-norm produce 
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easy interpreting results than those with the squared 𝐿2-norm. The former algorithms are more 

preferred in high dimensional data mining applications [1] and they are also more robust to outliers 

[34]. 

 

To the best of our knowledge, clustering problem with the 𝐿1-norm was first considered in [13] 

(see also [20]). The 𝑘-median algorithm was proposed in [28] and the ISODATA algorithm was 

introduced in [19]. The 𝑋-means algorithm, introduced in [25], allows one to use the 𝐿1-norm based 

similarity measure. The local search optimization based clustering algorithm is presented [27]. The 

optimization algorithm using smoothing techniques was introduced in [7] and the nonsmooth 

optimization clustering algorithm was proposed in [6]. 

 

Here, we propose a rather different approach for solving clustering problems with the 𝐿1-norm. 

This approach is based on a difference of convex (DC) representations of clustering functions. None 

of the above mentioned algorithms exploits this special structure of the clustering problem. Such a 

representation has been used to develop algorithms for the minimum sum-of-squares clustering 

problems. The authors of [2] present a modification of the DCA algorithm and the authors of [10] 

develop a nonsmooth optimization algorithm for such problems. 

 

We represent the clustering problem as an unconstrained DC programming problem and design 

an incremental algorithm using this representation. The main contributions of our work are: (i) 

development of optimality conditions for the clustering problem using the DC representation of its 

objective function, (ii) a partial smoothing technique for approximation of the clustering functions, 

(iii) development of a DC optimization algorithm for finding Clarke stationary points of the clustering 

problem with the 𝐿1-norm, and (iv) design and numerical evaluation of the DC optimization based 

incremental clustering algorithm and its comparison with other clustering algorithms using large data 

sets. 

 

The rest of our work is organized as follows. Clustering problems and their DC representations 

are given in Section 2. In Section 3, smoothing of cluster functions is discussed. Section 4 presents a 

DC optimization clustering algorithm. Numerical results are reported in Section 5 and Section 6 

contains some concluding remarks. 

 

The following notations are used throughout the paper: ℝ𝑛 is the 𝑛-dimensional Euclidean space 

with the inner product 〈𝑥, 𝑦〉 = ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1  and the associated norm ‖𝑥‖ = 〈𝑥, 𝑥〉1/2, 𝑥, 𝑦 ∈ ℝ𝑛, 

𝐵𝜀(𝑥) = {𝑦 ∈ ℝ𝑛 ∶  ‖𝑦 − 𝑥‖ < 𝜀} is the open ball centered at 𝑥 with the radius 𝜀 > 0, “conv” is the 

convex hull of a set. Throughout the paper, vectors are considered as one row and subscripts are used 

for their coordinates. 

 

We use the Clarke subdifferential as the main tool to design clustering algorithms. A function 

𝑓: ℝ𝑛 → ℝ is called locally Lipschitz on ℝ𝑛 if for any bounded subset 𝑋 ⊂ ℝ𝑛 there exists 𝐿 >  0 

such that |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿‖𝑥 − 𝑦‖, ∀ 𝑥, 𝑦 ∈ 𝑋. The generalized derivative of a locally Lipschitz 

function 𝑓 at a point 𝑥 with respect to a direction 𝑢 ∈ ℝ𝑛 is defined to be [15] 

 

𝑓0(𝑥, 𝑢) = limsup
𝑦→𝑥,   𝛼↓0

𝑓(𝑦 + 𝛼𝑢) − 𝑓(𝑦)

𝛼
. 

 

The set 𝜕𝑓(𝑥) = {𝜉 ∈ ℝ𝑛: 𝑓0(𝑥, 𝑢) ≥ 〈𝜉, 𝑢〉, ∀𝑢 ∈ ℝ𝑛} is called the Clarke subdifferential of the 

function 𝑓 at 𝑥. Each vector 𝜉 ∈ 𝜕𝑓(𝑥) is called a subgradient. For convex functions the set 𝜕𝑓(𝑥) 

coincides with the classical subdifferential [15]. 
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2. DC Programming Approach to Clustering Problems 

 

In this section, we formulate the clustering and auxiliary clustering problems and give their DC 

representations. 

 

A function 𝑓: ℝ𝑛 → ℝ is called DC if there exist convex functions 𝑔, ℎ: ℝ𝑛 → ℝ such that: 𝑓(𝑥) =
𝑔(𝑥) − ℎ(𝑥), 𝑥 ∈ ℝ𝑛. Here, 𝑔 − ℎ is called a DC decomposition of 𝑓 while 𝑔 and ℎ are DC 

components of 𝑓 (for more details on DC functions, see [3, 16, 29, 31]). 

 

An unconstrained DC programming problem is 

 

minimize 𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥)    subject to   𝑥 ∈ ℝ𝑛 (1) 

 

In general, 𝜕𝑓(𝑥) ⊆ 𝜕𝑔(𝑥) − 𝜕ℎ(𝑥). For a point 𝑥∗ to be a local minimizer of problem (1), it is 

necessary to have 0 ∈ 𝜕𝑓(𝑥∗) [26]. 

 

2.1. The Clustering Problem with the 𝑳𝟏-norm 

 

Assume that a finite point set 𝐴 = {𝑎1, … , 𝑎𝑚} ⊂ ℝ𝑛 is given. The hard clustering problem is the 

distribution of the points of the set 𝐴 into a given number 𝑘 of disjoint subsets 𝐴𝑗, 𝑗 = 1, … , 𝑘, such that 

 

𝐴𝑗 ≠ ∅,   𝐴𝑗⋂𝐴𝑙 = ∅,   𝑗, 𝑙 = 1, … , 𝑘,   𝑗 ≠ 𝑙,   and   𝐴 = ⋃ 𝐴𝑗

𝑘

𝑗=1

 . 

 

The sets 𝐴𝑗 , 𝑗 = 1, … , 𝑘, are called clusters. The cluster 𝐴𝑗 is identified by its center 𝑥𝑗 ∈ ℝ𝑛, 𝑗 =
1, … , 𝑘. The problem of finding these centers is called the 𝑘-clustering (or 𝑘-partition) problem. The 

similarity (or dissimilarity) measure is essential to formulate the clustering problem. We define this 

measure between points 𝑢, 𝑣 ∈ ℝ𝑛 using the 𝐿1-norm: 

 

𝑑1(𝑢, 𝑣) = ∑ |𝑢𝑖 − 𝑣𝑖|

𝑛

𝑖=1

. 

 

A nonsmooth optimization formulation of the clustering problem is [9, 11]: 

 

minimize 𝑓𝑘(𝑥)   subject to   𝑥 = (𝑥1, … , 𝑥𝑘) ∈ ℝ𝑛,𝑘 , (2) 

 

where 

 

𝑓0(𝑥1, … , 𝑥𝑘) =
1

𝑚
∑ min

𝑗=1,…,𝑘
𝑑1(𝑥𝑗, 𝑎)

𝑎∈

. (3) 

 

The problem (2) is called the minimum sum-of-absolutes clustering (MSAC) problem and 𝑓𝑘 is called 

the 𝑘-th cluster function. 

 

The function 𝑓𝑘, defined in (3), can be expressed as a DC: 
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𝑓𝑘(𝑥) = 𝑔𝑘(𝑥) − ℎ𝑘(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑘) ∈ ℝ𝑛,𝑘 , (4) 

 

where 

 

𝑔𝑘(𝑥) =
1

𝑚
∑ ∑ 𝑑1(𝑥𝑗, 𝑎)

𝑘

𝑗=1𝑎∈𝐴

, ℎ𝑘(𝑥) =
1

𝑚
∑ max

𝑗=1,…,𝑘
∑ 𝑑1(𝑥𝑠, 𝑎)

𝑘

𝑠=1,𝑠≠𝑗𝑎∈𝐴

.  (5) 

 

Since the function 𝑑1 is nonsmooth in 𝑥, both 𝑔𝑘 and ℎ𝑘 are, in general, nonsmooth functions. 

 

Let 𝑦 ∈ ℝ𝑛. It is clear that 𝜕𝑑1(𝑦, 𝑎) = 𝐽1 ⊗ 𝐽2 ⊗ … ⊗ 𝐽𝑛, 𝑎 ∈ 𝐴 where for 𝑖 = 1, … , 𝑛, we have 

 

𝐽𝑖 = {

1,             if 𝑦𝑖 > 𝑎𝑖 ,
[−1,1],   if 𝑦𝑖 = 𝑎𝑖 ,
−1,         if 𝑦𝑖 < 𝑎𝑖 .

 (6) 

 

Let, for convenience, (𝐵, 𝐶) = 𝐵 ⊗ 𝐶, 𝐵, 𝐶 ⊂ ℝ𝑛. Then, the subdifferential of the function 𝑔𝑘, 

defined in (5), at 𝑥 = (𝑥1, … , 𝑥𝑘) ∈ ℝ𝑛,𝑘 is: 

 

𝜕𝑔𝑘(𝑥) =
1

𝑚
∑ (𝜕𝑑1(𝑥1, 𝑎), 𝜕𝑑1(𝑥2, 𝑎), … , 𝜕𝑑1(𝑥𝑘 , 𝑎))

𝑎∈𝐴

. (7) 

 

To compute the subdifferential of the function ℎ𝑘, defined in (5), for a given 𝑎 ∈ 𝐴, consider the 

function 

 

𝜑𝑎(𝑥) = max
𝑗=1,…,𝑘

∑ 𝑑1(𝑥𝑠, 𝑎)

𝑘

𝑠=1,𝑠≠𝑗

, 

 

and define the set 

 

𝑅𝑎(𝑥) = {𝑗 ∈ {1, … , 𝑘}: ∑ 𝑑1(𝑥𝑠, 𝑎) = 𝜑𝑎(𝑥) 

𝑘

𝑠=1,𝑠≠𝑗

}. 

 

The set 𝑅𝑎(𝑥) contains indices of clusters to which the point 𝑎 ∈ 𝐴 belongs. The subdifferential 𝜕𝜑𝑎(𝑥) 

of the function 𝜑𝑎 at 𝑥 is: 

 

𝜕𝜑𝑎(𝑥) = conv {(𝜉1, … , 𝜉 𝑗−1, 0𝑛, 𝜉𝑗+1, … , 𝜉𝑘), 𝑗 ∈ 𝑅𝑎(𝑥), 𝜉𝑡 ∈ 𝜕𝑑1(𝑥𝑡 , 𝑎), 𝑡 = 1, … , 𝑘, 𝑡 ≠  𝑗}. 
 

This subdifferential can be rewritten as: 

 

𝜕𝜑𝑎(𝑥) = conv {(𝜕𝑑1(𝑥1, 𝑎), … , 𝜕𝑑1(𝑥𝑗−1, 𝑎), 0𝑛, 𝜕𝑑1(𝑥𝑗+1, 𝑎), … , 𝜕𝑑1(𝑥𝑘, 𝑎)) ,   𝑗 ∈ 𝑅𝑎(𝑥)} . 

 

Then, the subdifferential 𝜕ℎ𝑘(𝑥)  is expressed as: 

 

 [
 D

O
I:

 1
0.

29
25

2/
io

rs
.8

.2
.2

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-0
7-

16
 ]

 

                             4 / 23

http://dx.doi.org/10.29252/iors.8.2.2
http://iors.ir/journal/article-1-537-en.html


6 Bagirov and Taheri 

 

 

𝜕ℎ𝑘(𝑥) =
1

𝑚
∑ 𝜕𝜑𝑎(𝑥)

𝑎∈𝐴

. (8) 

 

2.2. The Auxiliary Clustering Problem 

 

The problem (2) is a global optimization problem, its objective function 𝑓𝑘 has many local 

minimizers and only its global or deep local minimizers are of interest. The success of local search 

algorithms for solving problem (2) strongly depends on the choice of the starting cluster centers. 

Different approaches have been proposed to choose such centers. We apply an approach introduced 

in [24]. It involves the solution of the so-called auxiliary clustering problem. Next, we describe this 

problem and give its DC decomposition. 

 

Given the solution 𝑥1, … , 𝑥𝑘−1, 𝑘 ≥ 2, to the (𝑘 − 1)-clustering problem, for a data point 𝑎 ∈ 𝐴, 

we define 𝑟𝑘−1
𝑎  = min{𝑑1(𝑥1, 𝑎), … , 𝑑1(𝑥𝑘−1, 𝑎)} . The function 

 

𝑓�̅�(𝑦) =
1

𝑚
∑ min{𝑟𝑘−1

𝑎 , 𝑑1(𝑦, 𝑎)}

𝑎∈𝐴

, 𝑦 ∈ ℝ𝑛 (9) 

 

is called the 𝑘-th auxiliary cluster function [4, 24]. This function is nonsmooth and as a sum of 

minimum of convex functions it is, in general, nonconvex. A problem 

 

minimize 𝑓�̅�(𝑦)    subject to   𝑦 ∈ ℝ𝑛 (10) 

 

is called the 𝑘-th auxiliary clustering problem. 

 

The function 𝑓�̅�, given in (9), is a DC, expressed by 

 

𝑓�̅�(𝑦) = �̅�𝑘(𝑦) − ℎ̅𝑘(𝑦) (11) 

 

where 

 

�̅�𝑘(𝑦) =
1

𝑚
∑(𝑟𝑘−1

𝑎 + 𝑑1(𝑦, 𝑎))

𝑎∈𝐴

, ℎ̅𝑘(𝑦) =
1

𝑚
∑ max{𝑟𝑘−1

𝑎 , 𝑑1(𝑦, 𝑎)}

𝑎∈𝐴

 (12) 

 

The subdifferential of the function �̅�𝑘(𝑦) at 𝑦 can be expressed as: 

 

𝜕�̅�𝑘(𝑦) =
1

𝑚
∑ 𝜕𝑑1(𝑦, 𝑎)

𝑎∈𝐴

. (13) 

 

To write the subdifferential 𝜕ℎ̅𝑘(𝑦), consider the following sets at 𝑦: 

 

�̅�1(𝑦) = {𝑎 ∈ 𝐴:  𝑟𝑘−1
𝑎 > 𝑑1(𝑦, 𝑎)}, �̅�2(𝑦) = {𝑎 ∈ 𝐴:  𝑟𝑘−1

𝑎 < 𝑑1(𝑦, 𝑎)}, 

�̅�3(𝑦) = {𝑎 ∈ 𝐴:  𝑟𝑘−1
𝑎 = 𝑑1(𝑦, 𝑎)}. 

 

The set �̅�1(𝑦) contains all the points 𝑎 ∈ 𝐴 attracted by the point 𝑦, the set �̅�2(𝑦) contains all the 

points which are closer to their own cluster center than the point 𝑦, and the set �̅�3(𝑦) contains the 
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points which are attracted by the point y and at least one cluster center. Using these sets, the function 

ℎ̅𝑘, defined in (12), can be rewritten as 

 

ℎ̅𝑘(𝑦) =
1

𝑚
( ∑ 𝑟𝑘−1

𝑎

𝑎∈�̅�1(𝑦)

+ ∑ 𝑑1(𝑦, 𝑎)

𝑎∈�̅�2(𝑦)

+ ∑ max{𝑟𝑘−1
𝑎 , 𝑑1(𝑦, 𝑎)}

𝑎∈�̅�3(𝑦)

). 

 

Then, 

 

𝜕ℎ̅𝑘(𝑦) =
1

𝑚
( ∑ 𝜕𝑑1(𝑦, 𝑎)

𝑎∈�̅�2(𝑦)

+ ∑ conv{0𝑛, 𝜕𝑑1(𝑦, 𝑎)}

𝑎∈�̅�3(𝑦)

). (14) 

 

3. Partial Smoothing of Cluster Functions 

 

Nonsmooth DC functions, in general, are not Clarke regular, that is, their directional and 

generalized directional derivatives do not always coincide (for the definition of regular functions, see 

[15]). For such functions, the subdifferential calculus exists in the form of inclusions and is not always 

applicable to calculate subgradients. 

 

Both the clustering and auxiliary clustering functions are nonsmooth DCs. Their first DC 

components are quite simple nonsmooth functions, but the second components in both functions are 

more complex. We propose smoothing their first DC components to allow one to get the full 

subdifferential calculus. 

 

Note that the direct smoothing of both the clustering and auxiliary clustering functions leads to 

more complex functions involving many smoothing parameters. However, the use of DC 

representations allows one to use only one smoothing parameter. 

 

We propose to use the hyperbolic smoothing technique to approximate the first DC components 

of the clustering functions. Details of this technique can be found in [5, 32, 33]. 

 

3.1. Partial Smoothing of the Auxiliary Clustering Function 

 

For given 𝑦 ∈ ℝ𝑛 and 𝑎 ∈ 𝐴, the function 𝑑1 can be rewritten as 

 

𝑑1(𝑦, 𝑎) = ∑[(𝑎𝑖 − 𝑦𝑖) + 2 max(0, 𝑦𝑖 − 𝑎𝑖)]

𝑛

𝑖=1

. 

 

Applying the hyperbolic smoothing, we get the following approximation of 𝑑1: 

 

𝑑1𝜏(𝑦, 𝑎) = ∑((𝑦𝑖 − 𝑎𝑖)2 + 𝜏2)1/2

𝑛

𝑖=1

. (15) 
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Here, 𝜏 > 0 is a smoothing parameter. It is obvious that 𝑑1𝜏(𝑦, 𝑎) ≥ 𝑑1(𝑦, 𝑎), for all 𝜏 > 0. The 

gradient of 𝑑1𝜏 at 𝑦 ∈ ℝ𝑛 is 

 

𝛻𝑑1𝜏(𝑦, 𝑎) = (
𝑦1 − 𝑎1

((𝑦1 − 𝑎1)2 + 𝜏2)1/2
, … ,

𝑦𝑛 − 𝑎𝑛

((𝑦𝑛 − 𝑎𝑛)2 + 𝜏2)1/2
) . (16) 

 

We have the following approximation of the function �̅�𝑘: 

 

𝑔𝑘(𝑦, 𝜏) =
1

𝑚
∑(𝑟𝑘−1

𝑎 + 𝑑1𝜏(𝑦, 𝑎))

𝑎∈𝐴

. (17) 

 

It is easy to see that 𝑔𝑘(𝑦, 𝜏) ≥ �̅�𝑘(𝑦), for all 𝜏 > 0. For a given 𝜏 > 0, the gradient of 𝑔𝑘(⋅, 𝜏) at 

𝑦 ∈ ℝ𝑛 is 

 

∇𝑔𝑘(𝑦, 𝜏) =
1

𝑚
∑ ∇𝑑1𝜏(𝑦, 𝑎)

𝑎∈𝐴

. (18) 

 

The function 𝑓�̅�, defined by (11), can be approximated by the following function: 

 

𝑓𝑘(𝑦, 𝜏) = 𝑔𝑘(𝑦, 𝜏) −  ℎ̅𝑘(𝑦), 𝑦 ∈ ℝ𝑛. 
 

Proposition 1. For any 𝑦 ∈ ℝ𝑛, we have 0 < 𝑓𝑘(𝑦, 𝜏) − 𝑓�̅�(𝑦) ≤ 𝑛𝜏.  

 

Proof. It is clear that 𝑓𝑘(𝑦, 𝜏) − 𝑓�̅�(𝑦) > 0 for all 𝜏 > 0. From (12) and (17) we have 

 

𝑓𝑘(𝑦, 𝜏) − 𝑓�̅�(𝑦) =
1

𝑚
∑(𝑑1𝜏(𝑦, 𝑎) − 𝑑1(𝑦, 𝑎))

𝑎∈𝐴

 

                                                          =
1

𝑚
∑ ∑ (((𝑦𝑖 − 𝑎𝑖)2 + 𝜏2 )

1
2 − |𝑦𝑖 − 𝑎𝑖|)

𝑛

𝑖=1𝑎∈𝐴

 

≤ 𝑛𝜏.                 
∎  

 

Next, we study the relationship between gradients of the function 𝑔𝑘 and the subdifferential of the 

function �̅�𝑘. 

 

Proposition 2. Let {𝑦𝑗} ⊂ ℝ𝑛 and {𝜏𝑗} be sequences such that 𝑦𝑗 → �̅�, 𝜏𝑗 ↓ 0 as 𝑗 → ∞. Let also 

𝐷(�̅�) be a set of limit points of the sequence {∇𝑑1𝜏𝑗
(𝑦𝑗, 𝑎)}. Then, 

 

𝐷(�̅�) ⊆ 𝜕𝑑1(�̅�, 𝑎). (19) 

 

Proof. Let 𝜉 ∈ ℝ𝑛 be any limit point of the sequence {∇𝑑1𝜏𝑗
(𝑦𝑗, 𝑎)}. Then, there exists the 

subsequence {𝑗𝑝} such that 𝑗𝑝 → ∞ as 𝑝 → ∞ and 

 

𝜉 = lim
𝑝→∞

∇𝑑1𝜏𝑗𝑝
(𝑦𝑗𝑝 , 𝑎). 
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Let 𝐼 = {1, … , 𝑛}. Consider the following index sets at the point �̅� = (�̅�1, … , �̅�𝑛): 

 

𝑅1(�̅�, 𝑎) = {𝑖 ∈ 𝐼: �̅�𝑖 < 𝑎𝑖}, 𝑅2(�̅�, 𝑎) = {𝑖 ∈ 𝐼: �̅�𝑖 = 𝑎𝑖}, 𝑅3(�̅�, 𝑎) = {𝑖 ∈ 𝐼: �̅�𝑖 > 𝑎𝑖}. 

 

It is obvious that for any 𝜀 > 0 there exists 𝛿 > 0 such that 

 

𝑅1(�̅�, 𝑎) ⊆ 𝑅1(𝑦, 𝑎), 𝑅3(�̅�, 𝑎) ⊆ 𝑅3(𝑦, 𝑎), (20) 

 

for all 𝑦 ∈ 𝐵𝛿(�̅�). Take any 𝑖 ∈ 𝐼. If 𝑖 ∈ 𝑅1(�̅�, 𝑎), then according to (20) there exists 𝑝1 > 0 such that 

𝑖 ∈ 𝑅1(𝑦𝑗𝑝 , 𝑎) for all 𝑝 > 𝑝1. It follows from (16) that in this case, 

 

lim
𝑝→∞

𝜕𝑑1𝜏𝑗𝑝
(𝑦𝑗𝑝 , 𝑎)

𝜕𝑦𝑖
= −1. 

 

If 𝑖 ∈ 𝑅3(�̅�, 𝑎), then according to (20) there exists 𝑝2 > 0 such that 𝑖 ∈ 𝑅3(𝑦𝑗𝑝 , 𝑎), for all 𝑝 > 𝑝2. 

Then, (16) implies that 

 

lim
𝑝→∞

𝜕𝑑1𝜏𝑗𝑝
(𝑦𝑗𝑝 , 𝑎)

𝜕𝑦𝑖
= 1. 

 

Finally, assume that 𝑖 ∈ 𝑅2(�̅�, 𝑎). If there exists 𝑝3 > 0 such that 𝑖 ∈ 𝑅2(𝑦𝑗𝑝 , 𝑎) for all 𝑝 > 𝑝3, then 

 

lim
𝑝→∞

𝜕𝑑1𝜏𝑗𝑝
(𝑦𝑗𝑝 , 𝑎)

𝜕𝑦𝑖
= 0. 

 

Otherwise, there might exist three subsequences {𝑦𝑗𝑝𝑡 }, {𝑗𝑝𝑡
} ⊂ {𝑗𝑝}, 𝑡 = 1,2,3, such that {𝑗𝑝1

} ∩

{𝑗𝑝2
} = {𝑗𝑝1

} ∩ {𝑗𝑝3
} = {𝑗𝑝2

} ∩ {𝑗𝑝3
} = ∅ and 𝑖 ∈ 𝑅1(𝑦𝑗𝑝1 , 𝑎),  𝑖 ∈ 𝑅2(𝑦𝑗𝑝2 , 𝑎), 𝑖 ∈ 𝑅3(𝑦𝑗𝑝3 , 𝑎). It is 

obvious that 

 
𝜕𝑑1𝜏𝑞 (𝑦𝑞, 𝑎)

𝜕𝑦𝑖
= 0, ∀ 𝑞 ∈ {𝑗𝑝2

}. 

 

Therefore, we consider only two other subsequences. For any 𝑞 ∈ {𝑗𝑝1
} ∪ {𝑗𝑝3

}, we have 

 
𝜕𝑑1𝜏𝑞

(𝑦𝑞 , 𝑎)

𝜕𝑦𝑖
=

𝑦𝑖
𝑞

− 𝑎𝑖

((𝑦𝑖
𝑞

− 𝑎𝑖)
2

+ 𝜏𝑞
2)

1
2

=
𝑦𝑖

𝑞
− 𝑎𝑖

|𝑦𝑖
𝑞

− 𝑎𝑖| (1 +
𝜏𝑞

2

(𝑦𝑖
𝑞

− 𝑎𝑖)
2)

1
2

 . 

 

It is clear that any limit of the sequence {
𝜏𝑞

2  

(𝑦𝑖
𝑞

−𝑎𝑖)
2} belongs to [0, ∞) ∪ {∞}. Then, all limits of the 

sequence (1 +
𝜏𝑞

2

(𝑦𝑖
𝑞

−𝑎𝑖)
2)

−1/2

 are in [0,1], meaning that limits of the sequence 

 

 [
 D

O
I:

 1
0.

29
25

2/
io

rs
.8

.2
.2

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-0
7-

16
 ]

 

                             8 / 23

http://dx.doi.org/10.29252/iors.8.2.2
http://iors.ir/journal/article-1-537-en.html


10 Bagirov and Taheri 

 

 

{
𝜕𝑑1𝜏𝑞 (𝑦𝑞 , 𝑎)

𝜕𝑦𝑖
} , 𝑞 ∈ {𝑗𝑝1

} ∪ {𝑗𝑝3
} 

 

belong to [−1,1]. It follows from the expression (6) of the subdifferential 𝜕𝑑1(⋅, 𝑎) that 𝜉 ∈
𝜕𝑑1(�̅�, 𝑎). ∎ 

 

Corollary 1. Let 𝑎 ∈ 𝐴 and �̅� ∈ ℝ𝑛 be given. For any 𝜀 > 0, there exist 𝜏0 = 𝜏0(𝜀) > 0 and 𝛿 =
𝛿(𝜀) > 0 such that 

 

min
𝜉∈𝜕𝑑1(�̅�,𝑎)

‖𝜉 − ∇𝑑1𝜏(𝑦, 𝑎)‖ < 𝜀, 

 

for all 𝜏 ∈ (0, 𝜏0) and 𝑦 ∈ 𝐵𝛿(�̅�). 

 

Proof. Assume the contrary. Then, there exists 𝜀0 > 0 such that for any 𝜏0 > 0 and 𝛿 > 0, there can 

be found 𝜏 ∈ (0, 𝜏0) and 𝑦 ∈ 𝐵𝛿 (�̅�)  such that 

 

‖𝜉 − ∇𝑑1𝜏(𝑦, 𝑎)‖ ≥ 𝜀0, ∀ 𝜉 ∈ 𝜕𝑑1(�̅�, 𝑎). 
 

This means that there exist sequences {𝑦𝑗} and {𝜏𝑗 } such that 𝑦𝑗 → �̅�, 𝜏𝑗 ↓ 0, as 𝑗 → ∞ and 

 

‖𝜉 − ∇𝑑1𝜏𝑗
(𝑦𝑗, 𝑎)‖ ≥ 𝜀0  ∀𝜉 ∈ 𝜕𝑑1(�̅�, 𝑎)  and  𝑗 ≥ 1. 

 

This contradicts Proposition 2 and therefore, the proof is complete.  ∎ 

 

Corollary 2. Let {𝑦𝑗} ⊂ ℝ𝑛 and {𝜏𝑗 } be sequences such that 𝑦𝑗 → �̅�, 𝜏𝑗 ↓ 0, as 𝑗 → ∞. Let also 

𝐷0(�̅�) be a set of limit points of the sequence {∇�̂�𝑘(𝑦𝑗, 𝜏𝑗)}. Then, 

 

𝐷0(�̅�) ⊆ 𝜕�̅�𝑘(�̅�). 
 

Proof. The proof follows from Proposition 2, the expression (13) for the subdifferential 𝜕�̅�𝑘 and the 

expression (18) for the gradient ∇�̂�𝑘(⋅, 𝜏).  ∎ 

 

Corollary 3. Let �̅� ∈ ℝ𝑛. For any 𝜀 > 0, there exist 𝜏0 = 𝜏0(𝜀) > 0 and 𝛿 = 𝛿(𝜀) > 0 such that 

 

min
𝜉∈𝜕�̅�𝑘(�̅�)

‖𝜉 − ∇𝑔𝑘(𝑦, 𝜏)‖ < 𝜀, 

 

for all 𝜏 ∈ (0, 𝜏0) and 𝑦 ∈ 𝐵𝛿(�̅�). 

 

Proof. The proof follows from Corollary 1, the expression (13) for the subdifferential 𝜕�̅�𝑘 and the 

expression (18) for the gradient ∇�̂�𝑘(⋅, 𝜏).  ∎ 

 

Proposition 3. Let 𝜏 > 0. The generalized subdifferential 𝜕𝑓𝑘(𝑦, 𝜏) of the function 𝑓𝑘 at 𝑦 ∈ ℝ𝑛 is 

 

𝜕𝑓𝑘(𝑦, 𝜏) = ∇𝑔𝑘(𝑦, 𝜏) − 𝜕ℎ̅𝑘(𝑦). 
 

 

Proof. The proof is similar to that of Proposition 2 from [10] and therefore is omitted.  ∎ 

 [
 D

O
I:

 1
0.

29
25

2/
io

rs
.8

.2
.2

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-0
7-

16
 ]

 

                             9 / 23

http://dx.doi.org/10.29252/iors.8.2.2
http://iors.ir/journal/article-1-537-en.html


A DC Optimization Algorithm for Clustering Problems with 𝐿1-norm 11 

 

 

 

Let 𝑦 ∈ ℝ𝑛 be any given point. Consider the following set: 

 

𝑉(𝑦) = {𝑣 ∈ ℝ𝑛:  ∃ ({𝜏𝑗}, 𝜏𝑗 ↓ 0, {𝑦𝑗}, 𝑦𝑗 → 𝑦, 𝑗 → ∞, 𝑣𝑗 ∈ 𝜕𝑓𝑘(𝑦𝑗, 𝜏𝑗)) ,   𝑣 = lim
𝑗→∞

𝑣𝑗} . 

 

Proposition 4. For any �̅� ∈ ℝ𝑛, we have 

 

𝑉(�̅�) ⊆ 𝜕𝑓�̅�(�̅�). 
 

Proof. Let �̅� ∈ ℝ𝑛 be any point. The generalized derivative of the function 𝑓𝑘 at the point 𝑦 ∈ ℝ𝑛 

with respect to a direction 𝑢 ∈ ℝ𝑛 is 

 

𝑓𝑘
0((𝑦, 𝜏), 𝑢) = limsup

𝑧→𝑦,𝛼↓0

𝑓𝑘(𝑧 + 𝛼𝑢, 𝜏) − 𝑓𝑘(𝑧, 𝜏)

𝛼
                                     

                                           = limsup
𝑧→𝑦,𝛼↓0

(
�̂�𝑘(𝑧 + 𝛼𝑢, 𝜏) − 𝑔𝑘(𝑧, 𝜏)

𝛼
−

ℎ̅𝑘(𝑧 + 𝛼𝑢, 𝜏) − ℎ̅𝑘(𝑧)

𝛼
) . 

 

 

 

(21) 

 

Since for any 𝜏 > 0 the function 𝑔𝑘(⋅, 𝜏) is continuously differentiable, according to the mean value 

theorem there exists 𝜃 ≡ 𝜃(𝑧, 𝑢, 𝛼) ∈ (0,1) such that 

 
𝑔𝑘(𝑧 + 𝛼𝑢, 𝜏) − 𝑔𝑘(𝑧, 𝜏)

𝛼
 = 〈∇𝑔𝑘(𝑧 + 𝜃𝛼𝑢, 𝜏), 𝑢〉. 

 

It is obvious that if 𝑦 ∈ 𝐵𝛿/2(�̅�) for  𝛿 > 0, then for a given 𝑢 ∈ ℝ𝑛, 𝑢 ≠ 0𝑛, there exists 𝛼1 > 0 

such that 𝑧 + 𝜃𝛼𝑢 ∈ 𝐵𝛿(�̅�), for all 𝛼 ∈ (0, 𝛼1) and 𝑧 ∈ 𝐵𝛿/4(𝑦). It follows from Corollary 3 that for 

any 𝜀 > 0 there exist 𝜏0 > 0 and 𝛿1 > 0 such that 

 

∇𝑔𝑘(𝑧 + 𝜃𝛼𝑢, 𝜏) ∈ 𝜕�̅�𝑘(�̅�) + 𝐵𝜀(0𝑛), 
 

for all 𝜏 ∈ (0, 𝜏0), 𝑧 + 𝜃𝛼𝑢 ∈ 𝐵𝛿1
(�̅�) and 𝜃 ∈ (0,1). Then, the convexity of the function �̅�𝑘 implies 

that 

 

〈∇�̂�𝑘(𝑧 + 𝜃𝛼𝑢, 𝜏), 𝑢〉 < �̅�𝑘
′ (�̅�, 𝑢) + 𝜀‖𝑢‖. (22) 

 

Since the function ℎ̅𝑘 is convex, it is regular and ℎ̅𝑘
′ (𝑦, 𝑢) = ℎ̅𝑘

0(𝑦, 𝑢), 𝑦 ∈ ℝ𝑛. This means that for 

𝜀 > 0, there exist 𝛼2 > 0 and 𝛿2 > 0 such that 

 

|
ℎ̅𝑘(𝑧 + 𝛼𝑢) − ℎ̅𝑘(𝑧)

𝛼
−

ℎ̅𝑘(�̅� + 𝛼𝑢) − ℎ̅𝑘(�̅�)

𝛼
| < 𝜀, (23) 

 

for all 𝛼 ∈ (0, 𝛼2) and 𝑧 ∈ 𝐵𝛿2
(�̅�). Let 𝛿0 = min{𝛿1, 𝛿2}. Then, from (22) and (23) we get that for 

all 𝜏 ∈ (0, 𝜏0), 𝛼 ∈ (0, 𝛼2) and 𝑧 ∈ 𝐵𝛿0
(�̅�), 

 

𝑔𝑘(𝑧 + 𝛼𝑢, 𝜏) − 𝑔𝑘(𝑧, 𝜏)

𝛼
 −

ℎ̅𝑘(𝑧 + 𝛼𝑢) − ℎ̅𝑘(𝑧)

𝛼
<                                                                                        
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                                                                                            �̅�𝑘
′ (�̅�, 𝑢) −

ℎ̅𝑘(�̅� + 𝛼𝑢) − ℎ̅𝑘(�̅�)

𝛼
 + 𝜀 (‖𝑢‖ + 1). 

 

This with (21) imply that for any 𝑦 ∈ 𝐵𝛿0
(�̅�) and 𝜏 ∈ (0, 𝜏0), 

 

𝑓𝑘
0((𝑦, 𝜏), 𝑢) ≤ limsup

 𝛼↓0
(�̅�𝑘

′ (�̅�, 𝑢) −
ℎ̅𝑘(�̅� + 𝛼𝑢) − ℎ̅𝑘(�̅�)

𝛼
 + 𝜀 (‖𝑢‖ + 1))  

≤ �̅�𝑘
′ (�̅�, 𝑢) − ℎ̅𝑘

′ (�̅�, 𝑢) + 𝜀 (‖𝑢‖ + 1)                    

= 𝑓�̅�
′(�̅�, 𝑢) + 𝜀 (‖𝑢‖ + 1)                                          

≤ 𝑓�̅�
0(�̅�, 𝑢) + 𝜀 (‖𝑢‖ + 1)                                        (24) 

 

Take any 𝑣 ∈ 𝑉(�̅�). This means that 𝑣𝑗 → 𝑣, for some 𝑣𝑗 ∈ 𝜕𝑓𝑘(𝑦𝑗, 𝜏𝑗), 𝜏𝑗 ↓ 0, 𝑦𝑗 → �̅�, 𝑗 → ∞. There 

exists sufficiently large 𝑗0 > 0 such that 𝜏𝑗 ∈ (0, 𝜏0) and 𝑦𝑗 ∈ 𝐵𝛿0
(�̅�), for all 𝑗 > 𝑗0. Then, it follows 

from (24) that for all 𝑢 ∈ ℝ𝑛 and 𝑗 > 𝑗0, 

 

〈𝑣𝑗, 𝑢〉 ≤ 𝑓𝑘
0 ((𝑦𝑗, 𝜏𝑗), 𝑢) ≤ 𝑓�̅�

0(�̅�, 𝑢) + 𝜀(‖𝑢‖ + 1), 

 

or 

 

〈𝑣𝑗, 𝑢〉 ≤ 𝑓�̅�
0(�̅�, 𝑢) + 𝜀(‖𝑢‖ + 1). 

 

Since 𝜀 > 0 is arbitrary, we have that 〈𝑣, 𝑢〉 ≤ 𝑓�̅�
0(�̅�, 𝑢), for all 𝑢 ∈ ℝ𝑛. The convexity of the set 

𝜕𝑓�̅�(�̅�) implies that 𝑣 ∈ 𝜕𝑓�̅�(�̅�). This completes the proof. ∎ 

 

Corollary 4. Let �̅� ∈ ℝ𝑛 be any point. For any 𝜀 > 0, there exist 𝜏0 > 0 and 𝛿 > 0 such that 

 

𝜕𝑓𝑘(𝑦, 𝜏) ⊂ 𝜕𝑓�̅�(�̅�) + 𝐵𝜀(0𝑛), 
 

for all 𝜏 ∈ (0, 𝜏0) and 𝑦 ∈ 𝐵𝛿(�̅�). 

 

Proof. Assume the contrary. Then, there exists 𝜀0 > 0 such that for any 𝜏0 > 0 and 𝛿 > 0, there can 

be found 𝜏 ∈ (0, 𝜏0) and 𝑦 ∈ 𝐵𝛿(�̅�) so that 𝜕𝑓𝑘(𝑦, 𝜏) ⊄ 𝜕𝑓�̅�(�̅�) + 𝐵𝜀0
(0𝑛). This means there exist 

sequences {𝜏𝑗} and {𝑦𝑗} such that 𝜏𝑗 ↓ 0 and 𝑦𝑗 → 𝑦 ̅, as 𝑗 → ∞, and 𝜕𝑓𝑘(𝑦𝑗 , 𝜏𝑗) ⊄ 𝜕𝑓�̅�(�̅�) +

𝐵𝜀0
(0𝑛). In turn, this implies that there exists a sequence {𝑣𝑗} such that 𝑣𝑗 ∈ 𝜕𝑓𝑘(𝑦𝑗, 𝜏𝑗) and 𝑣𝑗 ∉

𝜕𝑓�̅�(�̅�) + 𝐵𝜀0
(0𝑛), for all 𝑗 > 0. As a bounded sequence {𝑣𝑗} has at least one limit point, without 

loss of generality, assume that 𝑣𝑗 → 𝑣 as 𝑗 → ∞. Then, 𝑣 ∈ 𝑉(𝑦) and 𝑣 ∉ 𝜕𝑓�̅�(�̅�) + 𝐵𝜀0
(0𝑛). This 

contradicts Proposition 4.  ∎ 

 

3.2. Partial Smoothing of the Clustering Function 

 

Applying (15) to 𝑑1(𝑥𝑠, 𝑎), 𝑠 = 1, … , 𝑘, 𝑎 ∈ 𝐴, we get the following approximation of the first 

DC component 𝑔𝑘 of the clustering function (4) 
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�̃�𝑘(𝑥, 𝜏) =
1

𝑚
∑ ∑ 𝑑1𝜏(𝑥𝑠, 𝑎)

𝑘

𝑠=1𝑎∈𝐴

. (25) 

 

The gradient of the function �̃�𝑘 at 𝑥 ∈ ℝ𝑛,𝑘 is 

 

∇�̃�𝑘(𝑥, 𝜏) =
1

𝑚
∑ (𝜂𝑎(𝑥1, 𝜏), … , 𝜂𝑎(𝑥𝑘 , 𝜏))

𝑎∈𝐴

, (26) 

 

where 

 

𝜂𝑎(𝑥𝑠, 𝜏) = (
𝑥1

𝑠 − 𝑎1

((𝑥1
𝑠 − 𝑎1)2 + 𝜏2)1/2

, … ,
𝑥𝑛

𝑠 − 𝑎𝑛

((𝑥𝑛
𝑠 − 𝑎𝑛)2 + 𝜏2)1/2

) , 𝑠 = 1, … , 𝑘, 𝑎 ∈ 𝐴. 

 

Using the function �̃�𝑘, we get the following approximation for the function 𝑓𝑘, defined in (3): 

 

𝑓𝑘(𝑥, 𝜏) = �̃�𝑘(𝑥, 𝜏) − ℎ𝑘(𝑥). 
 

Proposition 5. For any 𝑥 ∈ ℝ𝑛, 

 

0 < 𝑓𝑘(𝑥, 𝜏) − 𝑓𝑘(𝑥) ≤ 𝑘𝑛𝜏. 
 

Proof. The proof is similar to that of Proposition 1.  ∎ 

 

Proposition 6. Let �̅� ∈ ℝ𝑛,𝑘 and {𝑥𝑗} ⊂ ℝ𝑛,𝑘, {𝜏𝑗} be sequences such that 𝑥𝑗 → �̅�, 𝜏𝑗 ↓ 0, as 𝑗 → ∞. 

Let also 𝑈0(�̅�) be a set of limit points of the sequence {∇�̃�𝑘(𝑥𝑗, 𝜏𝑗)}. Then, 

 

𝑈0(�̅�) ⊆ 𝜕𝑔𝑘(�̅�). (27) 

 

Proof. The proof follows from Proposition 2, the expression (7) for the subdifferential 𝜕𝑔𝑘 and the 

expression (26) for the gradient ∇�̃�𝑘(⋅, 𝜏). ∎ 

 

Corollary 5. Let �̅� ∈ ℝ𝑛𝑘. For any 𝜀 > 0, there exist 𝜏0 = 𝜏0(𝜀) > 0 and 𝛿 = 𝛿(𝜀) >  0 such that 

 

min
𝜉∈𝜕𝑔𝑘(�̅�)

‖∇�̃�𝑘(𝑥, 𝜏) − 𝜉‖ < 𝜀, (28) 

 

for all 𝜏 ∈ (0, 𝜏0) and 𝑥 ∈ 𝐵𝛿(�̅�). 

 

Proof. The proof follows from Proposition 6, the expression (7) for the subdifferential 𝜕𝑔𝑘 and the 

expression (26) for the gradient ∇�̃�𝑘(⋅, 𝜏).  ∎ 

 

Proposition 7. Let 𝜏 > 0. The generalized subdifferential of the function 𝑓𝑘 at 𝑥 ∈ ℝ𝑛,𝑘 is: 

 

𝜕𝑓𝑘(𝑥, 𝜏) = ∇�̃�𝑘(𝑥, 𝜏) − 𝜕ℎ𝑘(𝑥). 
 

For a given point 𝑥 ∈ ℝ𝑛,𝑘 consider the following set: 
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�̃�(𝑥) = {𝑣 ∈ ℝ𝑛,𝑘: ∃ ({𝜏𝑗}, 𝜏𝑗 ↓ 0, {𝑥𝑗}, 𝑥𝑗 → 𝑥, 𝑗 → ∞, 𝑣𝑗 ∈ 𝜕𝑓𝑘(𝑥𝑗, 𝜏𝑗)) , 𝑣 = lim
𝑗→∞

𝑣𝑗}. 

 

Proposition 8. Let �̅� ∈ ℝ𝑛,𝑘 be a given point. Then �̃�(�̅�) ⊆ 𝜕𝑓𝑘(�̅�). 

 

Proof. The proof is similar to that of Proposition 4 and is therefore omitted.  ∎ 

 

Corollary 6. At a point �̅� ∈ ℝ𝑛,𝑘 for any 𝜀 > 0 there exist 𝜏0 > 0 and 𝛿 > 0 such that 

 

𝜕𝑓𝑘(𝑥, 𝜏) ⊂ 𝜕𝑓𝑘(�̅�) + 𝐵𝜀(0𝑛,𝑘), 
 

for all 𝜏 ∈ (0, 𝜏0) and 𝑥 ∈ 𝐵𝛿(�̅�). 

 

4. A Clustering Algorithm 

 

Here, we first design an algorithm for solving optimization problems (2) and (10). Then, using 

this algorithm we introduce an incremental algorithm for solving the clustering problems. 

 

4.1. An Algorithm for Solving Optimization Problems 

 

First, let us consider problem (10). Take a sequence {𝜏𝑗} such that 𝜏𝑗 ↓ 0 as 𝑗 → ∞. This problem 

is replaced by the following sequence of problems: 

 

minimize 𝑓𝑘(𝑦, 𝜏𝑗)   subject to   𝑦 ∈ ℝ𝑛, (29) 

 

For each 𝜏𝑗 > 0, the objective function in problem (29) is represented as a difference of smooth 

and nonsmooth convex functions. An algorithm for solving such problems is proposed in [10] 

(Algorithm 3). This algorithm generates a sequence whose all limit points are Clarke stationary points 

of Problem (29). Applying this algorithm one can design the following algorithm for solving Problem 

(10). 

 

Algorithm 1. An algorithm for solving problem (10). 

1:   (Initialization). Select any starting point 𝑦1 ∈ ℝ𝑛, a sequence {𝜏𝑗} such that 𝜏𝑗 ↓ 0 as 𝑗 → ∞ 

and an optimality tolerance 𝜎 > 0. Set 𝑗 ≔ 1. 

2:   Apply Algorithm 3 of [10] starting from the point 𝑦𝑗 to find the Clarke stationary point 𝑦𝑗+1 

of Problem (29). 

3:   Set 𝑗 ≔ 𝑗 + 1. If  𝜏𝑗 < 𝜎 then stop, else go to Step 2. 

 

The convergence of Algorithm 1 is studied in the next proposition. 

 

Proposition 9. Assume that the level set 𝒥(𝑦1) = {𝑦 ∈ ℝ𝑛: 𝑓�̅�(𝑦) ≤ 𝑓�̅�(𝑦1)} is bounded and 𝜎 = 0. 

Then, all the limit points of the sequence {𝑦𝑗} generated by Algorithm 1are Clarke stationary points 

of problem (10). 

 

Proof. First, we show that there exists 𝜏0 > 0 such that the level sets 

𝒯(𝑦1, 𝜏) = {𝑦 ∈ ℝ𝑛: 𝑓𝑘(𝑦, 𝜏) ≤ 𝑓𝑘(𝑦1, 𝜏)} 
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are bounded for all 𝜏 ∈ (0, 𝜏0). Assume the contrary. Then, for any 𝜏0 > 0 there exists 𝜏 ∈ (0, 𝜏0) 

such that the set 𝒯(𝑦1, 𝜏) is not bounded. This means that there exists a sequence {𝜏̅𝑝} such that �̅�𝑝 ↓

0 as 𝑝 → ∞ and all sets 𝒯(𝑦1, �̅�𝑝) are not bounded. It follows from Proposition 1 that for any 𝑦 ∈

𝒯(𝑦1, �̅�𝑝), 

 

𝑓�̅�(𝑦) < 𝑓𝑘(𝑦, �̅�𝑝) ≤ 𝑓𝑘(𝑦1, �̅�𝑝) ≤ 𝑓�̅�(𝑦1) + 𝑛�̅�𝑝. (30) 

 

Consider the set  𝒯1(𝑦1, �̅�𝑝) = {𝑦 ∈ ℝ𝑛: 𝑓�̅�(𝑦) ≤ 𝑓�̅�(𝑦1) + 𝑛�̅�𝑝}. It follows from (30) that 

 

𝒯(𝑦1, �̅�𝑝) ⊆ 𝒯1(𝑦1, �̅�𝑝),   for all   𝑝 ≥ 1. 

 

Since the set  𝒯(𝑦1, �̅�𝑝) is not bounded, the set 𝒯1(𝑦1, �̅�𝑝) is also not bounded for all 𝑝 ≥ 1. This 

implies that the set 𝒥(𝑦1) is not bounded which contradicts the assumption of the proposition. 

Therefore, there exists 𝑗0 > 0 such that the sets  𝒯(𝑦1, 𝜏𝑗) are bounded, for all 𝜏𝑗, 𝑗 > 𝑗0, and the 

algorithm finds the Clarke stationary point 𝑦𝑗+1 of Problem (29) in Step 2. Then, 

 

0𝑛 ∈ 𝜕𝑓(𝑦𝑗+1, 𝜏𝑗). (31) 

 

Since 𝑦𝑗 ∈ 𝒯(𝑦1, 𝜏𝑗) for all 𝑗 > 𝑗0, and the sets  𝒯(𝑦1, 𝜏𝑗) are bounded, then the sequence {𝑦𝑗} has 

at least one limit point. Let �̅� be a limit point of the sequence {𝑦𝑗}. This means that there exists a 

subsequence {𝑦𝑗𝑖} of the sequence {𝑦𝑗} such that {𝑦𝑗𝑖} → �̅�, as 𝑖 → ∞. It is obvious that 𝜏𝑗𝑖
→ 0, as 

𝑖 → ∞. Then, it follows from Corollary 4 that for any 𝜀 > 0, there exists 𝑖0 > 0, 𝑗𝑖0
> 𝑗0 + 1, such 

that 

 

𝜕𝑓𝑘(𝑦𝑗𝑖 , 𝜏𝑗𝑖−1 ⊂ 𝜕𝑓�̅�(�̅�) +  𝐵𝜀(0𝑛)  ∀𝑖 > 𝑖0. 

 

Taking into account (31), we have 0𝑛 ∈ 𝜕𝑓�̅�(�̅�) + 𝐵𝜀(0𝑛). Since 𝜀 is arbitrary, we get that 0𝑛 ∈
𝜕𝑓�̅�(�̅�) and therefore, �̅� is the Clarke stationary point of Problem (10). ∎ 

 

Algorithm 1 can be modified to solve problem (2). In this modification we replace the starting 𝑦1 

in Step 1 by 𝑥1 ∈ ℝ𝑛,𝑘, the sequence {𝑦𝑗} by the sequence 𝑥𝑗 ⊂ ℝ𝑛,𝑘 and problem (29) in Step 2 by 

the following problem: 

 

minimize 𝑓𝑘(𝑥, 𝜏𝑗)   subject to   𝑥 ∈ ℝ𝑛,𝑘. 

 

The convergence of this modified algorithm is given in the next proposition. 

 

Proposition 10. Assume that the level set �̅�(𝑥1) = {𝑥 ∈ ℝ𝑛,𝑘: 𝑓𝑘(𝑥) ≤ 𝑓𝑘(𝑥1)} is bounded for a 

starting point 𝑥1 ∈ ℝ𝑛,𝑘 and 𝜎 = 0. Then, all the limit points of the sequence {𝑥𝑗} generated by the 

modified Algorithm 1 are Clarke stationary points of problem (2). 

 

Proof. The proof can be easily obtained form the proof of Proposition 9 by applying Proposition 5 

and Corollary 6 instead of Proposition 1 and Corollary 4, respectively. ∎ 
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4.2. Incremental Clustering Algorithm 

 

Algorithm 1 is a local search algorithm and its success in finding global or near global minimizers 

of problem (2) strongly depends on the choice of the starting cluster centers. Different algorithms 

have been developed to generate starting cluster centers [11, 14, 21, 23, 32]. One such algorithm is 

based on an incremental approach which has been extensively used to design clustering algorithms 

[4, 7, 8, 24]. In these incremental algorithms, a data set is static and clusters are computed 

incrementally. Next, we briefly describe the incremental algorithm (for more details, see [7, 8, 24]). 

 

The incremental clustering algorithm starts with the calculation of the center for the whole data 

set. Assume that the solution (𝑥1, … , 𝑥𝑘−1) to the (𝑘 − 1)-partition problem is at hand. In order to 

solve the 𝑘-partition problem we apply the special procedure introduced in [24] to generate a set 𝑆𝑘
1 

of starting points for the 𝑘-th cluster center. Then, Algorithm 1 is applied to solve problem (10) 

starting from each point of 𝑆𝑘
1. As a result, we obtain a new set 𝑆𝑘

2 of points which are stationary for 

problem (10). These points provide more decrease of the clustering function value than their starting 

points from the set 𝑆𝑘
1. In the next step of the incremental algorithm, each point from the set 𝑆𝑘

2 is 

added to the set of 𝑘 − 1 cluster centers from the previous iteration to obtain a starting point for 

solving the 𝑘-partition problem (2). This means that we will get a set of stationary points of the 𝑘-

partition problem. The best solution among these stationary points is chosen to be a solution of the 𝑘-

partition problem. The incremental algorithm terminates when the required number of clusters are 

computed. 

 

The incremental algorithm, in addition to the 𝑘-partition problem, solves also all the intermediate 

𝑙-partition problems, where 𝑙 = 1, … , 𝑘 − 1. Such an algorithm allows one to find a good quality 

solution to the nonconvex clustering problem. However, there is no guarantee that this algorithm will 

always find global solutions of these problems. Since an optimization algorithm based on DC 

representations of the clustering and auxiliary clustering functions is used within the incremental 

algorithm, we call the proposed algorithm as IDCClust (Incremental DC Clustering). 

 

5. Numerical Results 

 

To test the IDCClust algorithm and to compare it with other clustering algorithms, numerical 

experiments with a number of real-world data sets were carried out. We used the following two 

algorithms for comparison: 

 

1. An algorithm for clustering with the 𝐿1-norm based on smoothing techniques (SMOOTH), as 

proposed in [7]. 

2. The multi-start 𝑘-medians algorithm (MS-KMD). 

 

The IDCClust algorithm contains a special procedure to generate the starting cluster centers and the 

implementation of this procedure is discussed in [24]. This algorithm also uses a minimization algorithm 

from [10], where details of its implementation are given. The implementation of the SMOOTH 

algorithm is described in [7]. In MS-KMD, the initial cluster centers are randomly generated among 

data points. In each data set, this algorithm is allowed to use CPU time and the distance function 

evaluations more than those used by the IDCClust algorithm. 

 

All algorithms were implemented in Fortran 95, compiled using the g95 compiler and the 

calculations were carried out on a 2.90 GHz Intel Core i5-3470S machine with 8 GB of RAM. We used 
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12 data sets in numerical experiments, with brief description as given in Table 1. Their detailed 

description can be found in [22, 26]. Data sets contain only numeric attributes and do not have missing 

values. In these data sets, the number of attributes ranges from 2 to 128 and the number of data points 

ranges from hundreds (smallest 150) to hundreds of thousands (largest 434,874). 

 

The following notations are used to present computational results: 

 

 𝑚 is the number of observations (data points); 

 𝑛 is the number of attributes; 

  𝑘 is the number of clusters; 

 𝑓𝑏𝑒𝑠𝑡 (multiplied by the number shown after name of data set) is the best known value of the 

cluster function (3) (multiplied by 𝑚) for the corresponding number of clusters; 

 The sign “-”shows that an algorithm failed to compute clusters in the given time frame. 

 

The error 𝐸𝐴 is computed as: 

 

𝐸𝐴 =
𝑓𝐴 − 𝑓𝑏𝑒𝑠𝑡

𝑓𝑏𝑒𝑠𝑡
× 100%, 

 

where 𝑓𝐴 is the value of the clustering function 𝑓𝑘 obtained by an algorithm 𝐴. If 𝐸𝐴 = 0, then an 

algorithm finds the best known solution. 

 

Table 1. A brief description of the data sets. 

Data sets  𝑚  𝑛 

Iris Plants 150 4 

TSPLIB3038 3038 2 

Page Blocks 5473 10 

Gas Sensor Array Drift 13910 128 

EEG Eye State 14980 14 

Letter Recognition 20000 16 

KEGG Metabolic Relation Network 53413 20 

Shuttle Control 58000 9 

Pla85900    85900 2 

Localization Data for Person Activity 164860 3 

Skin Segmentation 245057 3 

3D Road Network 434874 3 

 

We computed up to 10 clusters in Iris Plants data set and up to 25 clusters in other 11 data sets. The 

CPU time used by the algorithms is limited to 20 hours. Results for cluster function values found by 

different algorithms are presented in tables 2 and 3. In these tables, for brevity, IDC stands for IDCClust, 

SM for SMOOTH and MS for MS-KDM algorithms. 

 

Table 2 presents results for data sets with 𝑚 ≤ 20,000. In two smallest data sets, Iris Plants and 

TSPLIB3038, all algorithms were equally successful. They were able to find the best solutions with 

high accuracies almost in all cases. On the Page Blocks data set, which has no well separated clusters, 

the SMOOTH algorithm is the most successful. The IDCClust algorithm is able to find the near best 

solutions, and the MS-KMD algorithm fails in most cases. On the Gas Sensor Array Drift data set, 

which has the largest number of attributes among all the data sets, the MS-KMD algorithm was the 

most successful. Although the SMOOTH algorithm found the best solution, it calculated only seven 
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clusters within the 20 hours time period. Outcomes by the IDCClust algorithm were the worst in this 

data set. 

 

Table 2. Best cluster function values and errors. 

𝑘 𝑓𝑏𝑒𝑠𝑡 𝐸𝐼𝐷𝐶  𝐸𝑆𝑀 𝐸𝑀𝑆 𝑘 𝑓𝑏𝑒𝑠𝑡 𝐸𝐼𝐷𝐶  𝐸𝑆𝑀  𝐸𝑀𝑆 

 Iris (× 104)  TSPLIB3038 (× 106) 

2 2.1670 0.00 0.00 0.00 2 3.7308 0.00 0.00 0.00 

3 1.5920 0.00 0.00 0.00 3 3.0056 0.00 0.00 0.00 

4 1.3650 0.00 0.00 0.00 5 2.2551 0.00 0.00 0.00 

5 1.2460 0.00 0.96 0.00 7 1.8932 0.01 0.02 0.00 

6 1.1530 0.00 0.00 0.00 10 1.5447 0.54 0.03 0.00 

7 1.0620 0.00 0.00 0.00 12 1.3940 0.75 0.18 0.00 

8 1.0010 0.00 0.30 0.00 15 1.2295 0.03 0.10 0.00 

9 0.9510 0.00 0.63 0.00 20 1.0595 0.00 0.02 0.16 

10 0.9070 0.00 0.44 0.00 25 0.9435 0.18 0.08 0.00 

 Page Blocks (× 107)  Gas Sensor Array Drift (× 109) 

2 0.8414 0.00 0.00 25.28 2 2.2743 0.95 0.00 0.00 

3 0.6747 0.00 0.00 0.00 3 1.8987 0.88 0.00 0.00 

5 0.4882 0.03 0.00 0.00 5 1.4508 8.37 0.01 0.00 

7 0.3909 0.68 0.00 5.22 7 1.2371 1.95 0.01 0.00 

10 0.3170 0.16 0.00 13.48 10 1.0653 4.76 - 0.00 

12 0.2849 1.48 0.00 14.78 12 0.9765 6.77 - 0.00 

15 0.2562 1.27 0.00 22.94 15 0.8873 7.50 - 0.00 

20 0.2193 2.42 0.00 25.30 20 0.7957 6.15 - 0.00 

25 0.1979 2.51 0.00 28.38 25 0.7313 5.34 - 0.00 

 EEG Eye State (× 107)  Letter Recognition (× 106) 

2 0.5289 0.00 0.00 15.46 2 0.4833 0.00 0.02 0.00 

3 0.4197 0.00 0.00 0.00 3 0.4576 0.00 5.64 0.04 

5 0.2944 0.00 0.00 0.00 5 0.4225 1.61 8.75 0.00 

7 0.2493 0.00 0.00 4.93 7 0.4038 1.36 6.71 0.00 

10 0.2173 0.00 0.00 13.78 10 0.3778 0.00 8.69 0.23 

12 0.2090 0.01 0.00 13.13 12 0.3644 0.00 7.76 0.47 

15 0.1966 0.36 0.00 23.10 15 0.3519 0.00 3.80 0.25 

20 0.1827 0.03 0.00 22.99 20 0.3329 0.00 4.45 0.28 

25 0.1740 0.11 0.00 26.83 25 0.3188 0.00 3.35 0.57 

 

The performance of the IDCClust and SMOOTH algorithms on the EEG Eye State data set was 

similar, whereas MS-KDM failed in this data set. The IDCClust and the MS-KDM algorithms 

showed a similar performance on the Letter Recognition data set, and the SMOOTH algorithm failed 

to find the best or near best solutions in most cases. These results show that optimization based 

clustering algorithms are not always efficient in data sets with the large number of attributes, as large 

scale optimization problems are required to be solved at each iteration of the incremental algorithm. 

 

Results for the data sets with 𝑚 > 50,000 are presented in Table 3. The MS-KMD algorithm 

demonstrated a good performance on the Pla85900 data set, failed on two other data sets: Shuttle 

Control and KEGG Metabolic Relation Network. This algorithm was not applicable to very large 

data sets and in such data sets it cannot be considered as an alternative to the other two algorithms. 

The SMOOTH algorithm was successful on all the data sets except the KEGG Metabolic Relation 
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Network with 𝑘 = 7,10 and the 3D Road Network with 𝑘 = 20, 25. Overall, the IDCClust algorithm 

demonstrated the best performance on all the data sets with 𝑚 >  50,000. 

 

Table 3. Best cluster function values and errors (continued). 

𝑘 𝑓𝑏𝑒𝑠𝑡 𝐸𝐼𝐷𝐶  𝐸𝑆𝑀 𝐸𝑀𝑆 𝑘 𝑓𝑏𝑒𝑠𝑡 𝐸𝐼𝐷𝐶  𝐸𝑆𝑀  𝐸𝑀𝑆 

 KEGG Relation Network (× 106)  Shuttle Control (× 107) 

2 3.5860 0.12 1.08 0.00 2 0.3891 0.00 0.01 0.00 

3 2.7979 0.27 0.04 0.00 3 0.3443 0.00 0.02 2.47 

4 2.0779 0.00 1.26 0.00 5 0.3001 0.58 0.72 0.00 

5 1.7222 1.14 2.78 4.93 7 0.2624 0.01 0.00 1.14 

6 1.4497 0.00 3.70 13.78 10 0.2311 0.00 0.03 3.52 

7 1.3294 0.00 0.73 13.13 12 0.2172 0.31 0.00 2.14 

8 1.2130 0.14 0.00 23.10 15 0.1973 1.34 0.00 2.39 

9 1.0765 0.00 0.06 22.99 20 0.1763 1.02 0.00 6.73 

10 0.9894 0.00 0.64 26.83 25 0.1603 0.00 0.00 10.51 

 Pla85900 (× 1010)  Localization Data (× 105) 

2 2.0656 0.00 0.21 0.42 2 1.7626 0.00 0.00 - 

3 1.6259 0.00 0.14 0.02 3 1.5151 0.00 0.00 - 

5 1.2571 0.12 1.77 0.00 5 1.2717 0.00 0.00 - 

7 1.0615 0.00 0.83 0.53 7 1.1044 0.00 0.00 - 

10 0.8946 0.00 1.50 0.07 10 0.9612 0.01 0.00 - 

12 0.8169 0.15 1.40 0.00 12 0.9050 0.18 0.00 - 

15 0.7330 0.07 1.59 0.00 15 0.8477 0.01 0.00 - 

20 0.6362 0.22 1.27 0.00 20 0.7709 0.00 0.07 - 

25 0.5709 0.00 1.40 0.05 25 0.7192 0.00 0.18 - 

 Skin Segmentation (× 107)  3D Road Network (× 106) 

2 2.3069 0.00 0.00 - 2 3.7950 0.00 0.00 - 

3 1.8485 0.00 0.00 - 3 2.6869 0.00 0.00 - 

5 1.3539 0.00 0.00 - 5 1.7861 0.00 0.00 - 

7 1.0504 0.00 0.00 - 7 1.3790 0.00 0.00 - 

10 0.8490 0.00 0.05 - 10 1.0719 0.00 0.00 - 

12 0.7565 0.00 0.03 - 12 0.9494 0.00 0.00 - 

15 0.6799 0.00 0.03 - 15 0.8248 0.01 0.00 - 

20 0.5940 0.00 0.01 - 20 0.7006 0.00 2.35 - 

25 0.5284 0.00 0.00 - 25 0.6243 0.00 1.78 - 

 

Fig. 1 depicts the dependence of the number of distance function evaluations on the number of 

clusters for the IDCClust and SMOOTH algorithms. We do not include the MS-KMD algorithm, 

since its CPU time and the number of distance function evaluations were fixed beforehand. This 

figure demonstrates that in most cases, specially in three largest data sets, the SMOOTH algorithm 

required more distance function evaluations than the IDCClust algorithm. 

 

The dependence of the CPU time used by algorithms on the number of clusters are given in Fig. 

2 In general, on large data sets, the IDCClust algorithm required less CPU time than the SMOOTH 

algorithm. As the number of attributes increased, both algorithms became more time consuming. 

However, in this case the SMOOTH requires significantly more CPU time than the IDCClust. This 

is due to the fact that the smooth approximations of clustering functions in the SMOOTH algorithm 

were more complex than those in the IDCClust algorithm. 
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Figure 1. Number of distance function evaluations versus number of clusters. 
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Figure 2. CPU times versus number of clusters. 
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6. Conclusion 

 

An algorithm for solving clustering problems with the similarity measure defined by the 𝐿1-norm 

was introduced. This algorithm was based on an explicit DC representation of the clustering functions. 

These functions were complex nonsmooth nonconvex whose smoothing might require a large number 

of parameters. However, in the DC representations of clustering functions first the DC components 

were simple convex nonsmooth functions which could easily be smoothed using only one smoothing 

parameter. Such an approach allowed one to define a partial smoothing of the clustering functions 

whose Clarke subgradients could be efficiently computed. 

 

An optimization algorithm for finding Clarke stationary points of clustering problems was 

designed and its convergence behavior was studied. An incremental clustering algorithm was 

developed using the optimization algorithm. The proposed clustering algorithm was tested and 

compared with other clustering algorithms using several real world data sets including those with 

large number of data points. Two algorithms, used for comparison, were the multi-start 𝑘-medians 

algorithm and an algorithm based on smoothing of the clustering functions without using its DC 

decomposition. Results demonstrated that the proposed algorithm significantly outperformed the 

multi-start 𝑘-medians algorithm on large data sets although on small data sets their performances 

were similar. The proposed algorithm outperformed the second algorithm on large data sets as well 

as on data sets with large number of attributes. 

 

Numerical results demonstrate that the proposed algorithm was efficient for clustering on data sets 

containing hundreds of thousands of data points. However, it also had some limitations. The algorithm 

was time consuming on data sets having large number of attributes (hundreds and more) and/or with 

large number of data points (millions and more). The algorithm for minimization of clustering 

functions converged to Clarke stationary points of these functions. The study of algorithms that can 

guarantee convergence to inf-stationary points of these functions will be subject of future research. 

Calculation of such stationary points may improve the quality of the solution obtained by the 

incremental algorithm. 

 

The Fortran source code of the proposed algorithm is available by request from the authors. 
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