
Iranian Journal of Operations Research

Vol. 9, No. 2, 2018, pp. 31-48

Intelligent Mapping

A. Fathollahzadeh1

This paper is directed to the question of how to model and design an efficient tool for the

intelligent mapping which is based on both dynamic and efficient storage of data and soft

computing. The former is performed by our method that learns how to store, search and delete

the data. After pointing out the limitation of the crisp evaluation of the distance between two

points, we argue in favor of soft computing which is based on the extension of metric space to

interval one and then to the fuzzy metric. A-Star algorithm is used to illustrate our model along

with the injection of competitive data structures.

Keywords: Automata, Classification, Possibility and necessity measures, A-star.

Manuscript was received on 13/09/2018, revised on 21/11/2018 and accepted for publication on 28/11/2018.

1. Introduction

Classical map matching determines which road a vehicle is on, based on inaccurate measured

locations, such as GPS points, where 10 nearest road segments in a radius of 200 meters are

searched. This approach uses the observation probability.

Among the drawbacks of this approach, we can mention twofold limitations. The first one is the

static storage of data, where there is no way to insert a new data; e.g., it is not rare to observe a new

building in a location just in a period of two months, or the destruction of an existing house, etc.

The second one is the poor performance of the hard computing which often make guiding search

impossible.

The contribution of this paper is an aid to the realization of the intelligent mapping along with

the following properties:

• Acceptable time's query.

• Flexible software for being injected in the final engine using Galileo.

Here, flexible means how efficient the collection of information associated with locations can be

done. In particular, how these data, i.e., both locations and information associated with locations,

called hereafter, for short, keys and key-values, respectively, can efficiently and dynamically be

stored along with the data transmitted by Galileo which is the global navigation satellite system is

being created by the European Union through the European Space Agency.

The rest of this paper is organized as follows. Section 2 describes how multiple key-values (for

short, values) of the same key can be collected efficiently. Then how to learn for storing, searching

and deleting dynamically all the data is outlined in Section 3. Using soft computing along with the

extension of metric space to interval one and then to the fuzzy metric being advocated by a method

1 Artificial Intelligence Group, University of Tabriz, Tabriz, Iran, Email: abfzadeh@gmail.com.

Part of this work is done in the University of CentraleSupelec, France.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 1 / 18

http://iors.ir/journal/article-1-587-en.html

32 Fathollahzadeh

which provides a unique data structure is the theme of Section 4. The A-star algorithm being used to

design the tool along with the injection of competitive data structures is described in Section 5. The

paper ends with concluding remarks in Section 6.

2. Efficient and Dynamic Collection of Key-values

In intelligent mapping, we may have the same location with two or more geographical

indications, such as two ones which are situated in Iran and France, respectively:

Gul-Tapé {30, 91}
Saint-Colombe {05, 16, 17, 21, 25, 33, 35, 40, 46, 50, 69, 76, 77, 89}

where each number indicates a particular geographical department in the mentioned country. In

other words, we have to deal with the homographs (ℎ𝑔), i.e., a word defined over a finite alphabet

associated with two or more values.

In the statistic community parlance [2, 3], building dynamic homographs of large data can be

viewed as an important part of the factor selection. Factor selection is always a difficult task just as

in general model selection of the machine learning, statistic, etc. For this purpose, we need a more

robust method, thereby helping to reduce the model uncertainty.

In addition to the traditional approaches such as the aggregation in a linear form defined by the

full truth or the true model in terms of factor [20], we have identified a new challenging task that

improves upon the quality of factor selection with respect to the elimination of the redundancy. This

is done by the injection of our homograph method [6] into the factor selection which is based on the

efficient collection of homographs to reduce the redundancy. For instance, let us consider the word

“in” in Table 1.

Table 1. Reducing the redundancy via homograph. ‘?’ stands for unknown value. Left: Input with 7

entries, Right: Output with 4 entries including 2 homographs (ℎ𝑔s) and 2 sets of homograph-values

(ℎ𝑣s).

In prep in {?, {adj, adv}, prep}

for prep for {adj, adv}

In of {prep}

Of prep ⇒ good {prep}

In {adv, adj}

good prep

In {adj, adv}

As appears from the left part of Table 1, we may except to find any permutation of any subset of

a set with 𝑛 elements. The maximum number of the subsets of 𝑆, plus 𝑆, is based on the following

two theorems [6].

Theorem 2.1. The number of permutations of 𝑛 distinct objects taken 𝑟 at a time, denoted by 𝑃𝑟
𝑛,

where repetitions are not allowed, is given by 𝑃𝑟
𝑛 =

𝑛!

(𝑛−𝑟)!
.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 2 / 18

http://iors.ir/journal/article-1-587-en.html

Intelligent Mapping 33

Table 2. #𝜋: The number of the permutations of a set 𝑆 with 𝑛 elements. The symbols and

denote insignificant and impossible, respectively. The impact of #𝜋 on the calculation of the

maximum number of the sets and the subsets of 𝑆, max(#ℎ𝑣 , 𝑛) is obvious, e.g., for 𝑆 = {𝑎, 𝑏, 𝑐},
max(#ℎ𝑣 , 3) = 1 + 3 + 3! + 3! = 16.

𝑛 #𝜋 mi/sec bi/sec tr/sec

10 3628800

11 39916800 seconds

12 479001600 minutes

13 6227020800 hours seconds

14 87178291200 day minutes

15 1307674368000 weeks minutes seconds

16 20922789888000 Month hours seconds

17 355687428096000 Years days minutes

18 6402373705728000 month hours

19 121645100408832000 days

20 2432902008176640000 month

Theorem 2.2. The maximum number of the subsets of 𝑆 with 𝑛 elements, including the empty set

and 𝑆 is denoted by max((#𝑝𝑖ℎ𝑣, 𝑛)), where repetitions are not allowed, is: max(#𝑝𝑖ℎ𝑣 , 𝑛) = 1 +

∑
𝑛!

(𝑛−𝑟)!
𝑛
𝑟=1 .

Note that processing a permutation often, as in our case, costs much more than generating it.

Table 2 shows the situation is even worse for the calculation of max(#ℎ𝑣 , 𝑛).

We have designed a linear-time algorithm [6] for this task. Table 3 shows the result of our

algorithm applied to the classification a geographical domain in 13 classes, where each class has the

same number of alternated department-codes (e.g., {59, 60}).

2.1. Main Algorithm

The main algorithm of building dynamic homograph (bdh) operates in six modes: insertion,

deletion, retrieval, save, restore and dump (i.e. to show the contents of the data structures).

A string is a sequence of zero or more symbols from an alphabet Sigma. The length of a string 𝑥

is denoted by |𝑥|. We will treat string as array in the C programming language. So 𝑥[0] shall denote

the first character of 𝑥, 𝑥[1] its second character, etc.

Table 3. Construction of 1408 new sets of French City and Villages.

Cardinal Total Example Cardinal Total Example

2 805 Abancourt 9 11 Montigny

3 279 Fours 10 5 Le Pin

4 98 Artigues 11 3 Saint-Loup

5 56 Vaux 12 2 Beaulieu

6 21 Castillon 13 2 Sainte-Marie

7 14 Mons 14 1 Sainte-Colombe

8 11 Bagneux 15 0

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 3 / 18

http://iors.ir/journal/article-1-587-en.html

34 Fathollahzadeh

For any 𝑛 ∈ ℕ, let [𝑛] = {0, 1, … , 𝑛 − 1}. The input is a user-file of the following (customary)

form: 𝑓 = {(𝑘𝑖, 𝑣𝑖) | 𝑖 ∈ [𝑛]}, where each (𝑘𝑖, 𝑣𝑖) represents an entry with strings 𝑘𝑖 and 𝑣𝑖 standing

for a key and key-value (for short value), respectively. Hereafter, word, string and key is used

interchangeably.

The preprocessing phase of the main algorithm has 2 steps. The first step outputs 𝑓𝑡, the

temporary file 𝑓𝑡 = {(𝑘𝑗, 𝑣𝑗) | 𝑗 ∈ [𝑛
′], 𝑛′ ≤ 𝑛} which identifies possible missing values and

eliminates possible empty entries of 𝑓. The second step re-sizes 𝑓𝑡 for obtaining the output, namely

the temporary dictionary noted by 𝑡𝑑𝑖𝑐𝑡. Since the best hash table sizes are powers of two, so we

compute 𝑇𝑆𝑖𝑧𝑒 (i.e., the size of 𝑡𝑑𝑖𝑐𝑡), by invoking the function RoundUpPow2, which rounds up

to the next highest power 2 of 𝑛′. For not to do slow operation of modulo a prime, we used 32(𝑁)-

bits based of the Jenkins hash function [9] noted by JenkinsHash to hash a variable-length key into

a 32-bit value. Since 𝑡𝑑𝑖𝑐𝑡 contains at most 𝑇𝑆𝑖𝑧𝑒 = RoundUpPow2 (𝑛′) keys, to optimize yet the

hash function, another function, namely, Ilog2U32 is invoked which uses De Bruijn logarithmic

index to compute the log base 2 of an 𝑁-bit integer in 𝑂(𝑙𝑔(𝑁)) operations with multiply and

lookup.

Below, we describe the processing of the first (insert) mode. We write 𝑝𝑑𝑖𝑐𝑡 to refer to the

permanent dictionary which may be empty (i.e., no previous file has been submitted to bdh) or

acquired by past or multiple uses of the above modes.

Let 𝑘 ∈ 𝑡𝑑𝑖𝑐𝑡. We write 𝑣𝑝 and 𝑣𝑐 to refer to the values of 𝑝𝑑𝑖𝑐𝑡 and 𝑡𝑑𝑖𝑐𝑡, respectively. Assume

𝑝𝑑𝑖𝑐𝑡 is empty. If 𝑘 is a homograph, then the function PSUB(𝑣𝑐) is invoked to form 𝑣𝑝, the output

set, and the pair (𝑘, 𝑣𝑝) is stored into 𝑝𝑑𝑖𝑐𝑡. If not, only (𝑘, 𝑣𝑐) is stored into 𝑝𝑑𝑖𝑐𝑡.

Figure 1. Time measures

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 4 / 18

http://iors.ir/journal/article-1-587-en.html

Intelligent Mapping 35

When 𝑝𝑑𝑖𝑐𝑡 is not empty, lines 5-11 of Algorithm 1 shows how 𝑝𝑑𝑖𝑐𝑡 can properly be maintained

depending on 𝑣𝑝 and 𝑣𝑐. If both 𝑣𝑝 and 𝑣𝑐 are simple and distinct strings, then in lines 6-10 the

sorted concatenation of 𝑣𝑝 and 𝑣𝑐 without using treaps [1] is used. Otherwise, the function

PSUB(𝑣𝑐) is invoked in line 13.

Each call of PSUB uses the operation Union. Given two treaps 𝑡𝑟1 and 𝑡𝑟2, Union (𝑡𝑟1, 𝑡𝑟2)
returns a treap 𝑡𝑟 that is the union of the two of them. To maintain the heap order, the root of 𝑡𝑟 has

the largest priority. Let 𝑣 be the key of 𝑡𝑟. Union 𝑠𝑝𝑙𝑖𝑡𝑠 the other treap by 𝑣 into a less-than 𝑣 and

greater-than treap with values greater than 𝑣, and possibly a duplicate node with a value equal to 𝑣.

Then recursively it finds the union of the left child of 𝑡𝑟 and the less-than treap and the union of the

right child of 𝑡𝑟 and the greater-than treap. The results of the two unions of operations becomes the

left and right subtrees of 𝑡𝑟, respectively.

The operation Split destructively splits the treap 𝑡𝑟 into two treaps: the “left treap” is a treap

with key-values less than “value” and the “right treap” is a treap with values greater than “value”.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 5 / 18

http://iors.ir/journal/article-1-587-en.html

36 Fathollahzadeh

Split searches down the treap in key-value order to find the root of the subtreap that contains key-

values that are too large (small) to be in the left (right) subtreap (then changes direction of the

search). Split makes this subtreap the other branch of right (left) subtreap. This subtreap in turn has

nodes that are too small (large) and need to be moved back to where the subtreap was taken, and so

on until it reaches a leaf or a node with the same key as “values”. Split returns either the leaf

(NULL) or this node. The expected time to split two treaps into two treaps of size 𝑛 and 𝑚 is

𝒪(lg 𝑛 + lg 𝑚). Figure 1 reports the time measures done on 8 input files of large data, where there

were neither the set of key-values, missing key-values nor the commentary texts.

3. Learning How to Store

For the application of large-scale dictionaries two major problems have to be solved: fast lookup

speed and compact representation. Using automata we can achieve fast lookup by determinization

and compact representation by minimization. For providing information for the recognized words one

can use the transducers (i.e., automata with outputs) [15, 19].

Finite-state transducers can be used to map a language onto a set of values. We have introduced an

alternate representation [7] for such a mapping, consisting of associating a finite-state automaton

accepting the input language with a decision tree representing the output values. The advantages of

this approach are that it leads to more compact representations than transducers, and that decision

trees can easily be synthesized by machine learning techniques. We have proposed a competitor to the

transducers [7, 5] which combines automata and machine learning theories with the following desired

properties:

1. The number of the states (and hence the transitions) representing the input language of our

method is less as compared to the transducers.

2. In constructing transducers, we have to represent every transition by a data structure of at least

two fields: one for the symbol representing the transition, another for the label-value (for short,

label) associated with the symbol. So, in order to properly calculate the outputs, the label set

needs to have the algebraic structure e.g., semiring in the case of weighted automata [15, 19].

In our approach the transitions are not labeled with outputs; the cost of exploring the automata

is low.

3. In most applications (e.g., those of using part of speech tagging) there may be (many) identical

output values. When you use the transducers there is no guarantee to save the amount of space

for the identical information, whereas in our approach such economy is allowed.

In order to explain intuitively the benefits of our method, we give a very simple example as

following. Let 𝑉 = {𝐴𝑠𝑖𝑎, 𝐸𝑢𝑟𝑜𝑝𝑎} be the output values of three following countries: 𝐾 =
{𝐼𝑟𝑎𝑛, 𝐼𝑟𝑎𝑞, 𝐼𝑟𝑒𝑙𝑎𝑛𝑑}. In order to determine the output values of any element of 𝐾 one can learn the

decision tree based on the mutual information; if the key (of 𝐾) ends with ‘𝑛/𝑞’ then retrieve ‘𝐴𝑠𝑖𝑎’}

else ‘𝐸𝑢𝑟𝑜𝑝𝑎’.

An acyclic finite-state automaton: a graph of the form 𝑔 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), where 𝑄 is a finite set

of states, 𝑞0 is the start state, 𝐹 ⊆ 𝑄 is the accepting states. 𝛿 is a partial mapping 𝛿:𝑄 × Σ → 𝑄

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 6 / 18

http://iors.ir/journal/article-1-587-en.html

Intelligent Mapping 37

denoting transition. For 𝑎 ∈ Σ, the notation 𝛿(𝑞, 𝑎) =⊥ is used to mean that 𝛿(𝑞, 𝑎) is undefined. The

extension of the partial 𝛿 mapping with 𝑥 ∈ Σ⋆ is a function 𝛿⋆: 𝑄 × Σ⋆ → 𝑄 and defined as follows:

𝛿⋆(𝑞, 𝜀) = 𝑞

𝛿⋆(𝑞, 𝑎𝑥) = {
𝛿⋆(𝛿(𝑞, 𝑎), 𝑥), If 𝛿(𝑞, 𝑎) ≠⊥
⊥ , otherwise.

The property 𝛿⋆ allows fast retrieval for variable-length strings and quick unsuccessful search

determination. The pessimistic time complexity of 𝛿⋆ is 𝒪(|𝑥|) with respect to a string 𝑥. A finite

automaton is said to be (𝑛𝑠, 𝑛𝑡) −automaton if |𝑄| = 𝑛𝑠 and |𝐸| = 𝑛𝑡, where 𝐸 denotes the set of

the edges (transitions) of 𝑔.

Table 4. Left: The profit trend of 10 restaurants where CP, HB and CK stand for competition,

Hamburger and Chelo-Kabab (Iranian food), respectively. Right: Its compressed form. the strings

of three first columns of each row of the left Table is compressed in one string using the first

character of each string (e.g., “old” is transformed into ‘o’).

3.1. More Illustrations

The framework for learning the output language of an input language is described in [5, 7]. In this

subsection, we only illustrate that method using another example. A decision tree (𝑑𝑡) is a direct

acyclic graph of nodes and arcs. At each node, a simple test is made; at the leaves a decision is made

with respect to the class labels (values associated with a word in our case).

Example: The left part of Table 4 shows the data for 10 restaurants using four attributes. One can find

out the attribute age is the best to be selected at first; this indicates that it is most likely that a decision

can be made quickly if one first asks for the age of a restaurant. If the answer to this question is ‘new’

or ‘old’, then the profit can be predicted by ‘up’ or ‘down’, respectively. If the answer is `midlife',

then another question must be posed, about the presence of competition. After this answer is known,

the profit trend can be determined.

Figure 4 shows the data structure of a node of 𝑚-ary decision. The first field contains a

nonnegative integer, say 𝑖 for 0 ≤ 𝑖 ≤ ℓ, where ℓ denotes the length of the longest word(s) of the

input language. If 𝑖 = 0, this means that the node is a leaf one, otherwise the node is an internal one

(including the root node). The second filed represents either a best string or the output value. The third

filed is 𝑚-pointers to other nodes, each indicating which node has to be followed in the tree when

searching the output value.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 7 / 18

http://iors.ir/journal/article-1-587-en.html

38 Fathollahzadeh

Figure 2. A (6,10) automaton for recognizing

ten keys of the right part of Table4.
Figure 3. Learned 𝑚-ary decision tree of the

right part of Table 4.

Figure 4. Node of 𝑚-ary decision tree.

A decision tree (𝑑𝑡) is a direct acyclic graph of nodes and arcs. At each 𝑛𝑜𝑑𝑒, a simple test is

made; at the 𝑙𝑒𝑎𝑣𝑒𝑠 a decision is made with respect to the class labels (values in our case). The 𝑑𝑡 is

introduced in the machine learning (ML) community [13].

At the top of this tree expressed by Figure 4, by way of three rules situated in the right one can see

the attribute age; this indicates that it is most likely that a decision can be made quickly if one first

asks for the age of a restaurant. If the answer to this question is ‘new’ or ‘old’, then the profit can be

predicted by ‘down’ or `up', respectively. If the answer is ‘midlife’, then another question must be

posed, about the presence of the competition. After this answer is known, the profit trend can be

determined.

3.2. Compact Representation of Homographs

As we have mentioned the advantage of our method compared to the transducers for storing the

keys and their values are saving the space and gaining time. In this subsection, first the formal

definition of the transducer [15] is given, then an example is used to illustrate the advantages of our

method.

Formally, a finite transducer 𝑇 is a 6-tuple (𝑄, Σ, Γ, 𝐼, 𝐹, 𝛿) [14] such that 𝑄 is a finite set, the set of

states, Σ is a finite set, called the input alphabet, Γ is a finite set, called the output alphabet, 𝐼 is a

subset of 𝑄, the set of initial states, 𝐹 is a subset of 𝑄, the set of final states; and 𝛿 ⊆ 𝑄 × (Σ ∪ {𝜖}) ×
(Γ ∪ {𝜖}) × 𝑄 (where 𝜖 is the empty string) is the transition relation. We can view (𝑄, 𝛿) as a labeled

directed graph, known as the transition graph of 𝑇: the set of vertices is 𝑄, and (𝑞, 𝑎, 𝑏, 𝑟) ∈ 𝛿 means

that there is a labeled edge going from vertex 𝑞 to vertex 𝑟. We also say that 𝑎 is the input label and 𝑏

the output label of that edge.

The extended transition relation 𝛿∗ is defined as the smallest set such that 𝛿 ⊆ 𝛿∗, (𝑞, 𝜖, 𝜖, 𝑞) ∈ 𝛿∗
for all 𝑞 ∈ 𝑄, and whenever (𝑞, 𝑥, 𝑦, 𝑟) ∈ 𝛿∗ and (𝑟, 𝑎, 𝑏, 𝑠) ∈ 𝛿 then (𝑞, 𝑥𝑎, 𝑦𝑏, 𝑠) ∈ 𝛿∗. Figure 5

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 8 / 18

http://iors.ir/journal/article-1-587-en.html

Intelligent Mapping 39

shows the transducer of the following input which is first compacted by 𝑏𝑑ℎ in a compact file for

being represented by a graph of (13,16).

Figure 6 shows that our solution is competitive along with an easy usage. That is to say, given 𝑥

(i.e. user-string), if it can be spelled out by the unlabeled automaton of the input language (𝐾), then

use the decision tree to output its value, else return nil witness for failure i.e., 𝑥 ∉ 𝐾.

Examples: Consider 𝑥 = onC along with 𝑔 the unlabeled automaton of Figure 2. Invoking 𝛿∗(0, 𝑥)
confirms that 𝑥 ∈ 𝐾 where 𝐾 is the keys of Table 3. So, its decision tree shown in Figure 4 is used to

output the value of 𝑥. As in case of the homograph, let 𝑥 = cabba. Similar to the previous example,

via Figure 6, the value {𝑥𝑥𝑥𝑥𝑥, 𝑥𝑡𝑧𝑦𝑥, 𝑥𝑥𝑦𝑦𝑥} is returned.

Figure 5. Transducer: g = (13,16). Source: A.

Kempe, Xerox Research Center Europe [11].

Figure 6. Our alternative: A (6,6)-automaton

along with one decision rule. based on colored-

transitions i.e., if 𝑏2 =‘b’ then
{𝑥𝑥𝑥𝑥𝑥, 𝑥𝑥𝑦𝑦𝑥, 𝑥𝑡𝑧𝑦𝑥}, else {𝑦𝑧𝑥𝑥𝑦, 𝑦𝑧𝑦𝑦𝑦},
where 𝑏2 denotes the second character from

right to left of any key (of input language)

which is already recognized by this automaton.

4. A-Star

A-star algorithm [17, 18] is used in path finding and graph traversal, which is the process of

finding an efficiently directed path between multiple points, called “nodes”. It enjoys a widespread

use due to its performance and accuracy.

A-star has been studied extensively by researchers along with several variants [10] formulated

in terms of exact weighted graphs (e.g., Figure 7 (a): starting from a specific node of a graph, it

constructs a tree of paths starting from that node, expanding paths one step at a time, until one of

its paths ends at the predetermined goal node. At each iteration of its main loop, A-star needs to

determine which of its partial paths to expand into one or more longer paths. It does so based on an

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 9 / 18

http://iors.ir/journal/article-1-587-en.html

40 Fathollahzadeh

estimate of the cost (total weight) still to go to the goal node. Specifically, A-star selects the path

that minimizes 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), where 𝑛 is the last node on the path, 𝑔(𝑛) is the cost of the

path from the start node to 𝑛, and ℎ(𝑛) gives an heuristic estimating the cost of the cheapest path

from 𝑛 to the goal. The heuristic is problem-specific. The traveling salesman problem (TSP) is the

problem of finding a minimal cost closed a tour that visits each location once. Below, using Figure

7 (a), a description of how 𝑔 and ℎ of TSP can be calculated is provided.

4.1. Computing 𝒈 and 𝒉

For the algorithm to find the actual shortest tour, the heuristic function must be admissible,

meaning that it never over estimate the actual cost to get to the nearest goal node.

Figure 7. Exact and inexact costs.

Typical implementations of A-Star use a priority queue to perform the repeated selection of

minimum (estimated) cost nodes to expand. This priority queue is known as the open set or fringe.

At each step of the algorithm, the node with the lowest 𝑓(𝑥) value is removed from the queue, the

𝑓 and 𝑔 values of its neighbors are updated accordingly, and these neighbors are added to the

queue. The algorithm continues until a goal node has a lower 𝑓 value than any node in the queue

(or until the queue is empty). The 𝑓 value of the goal is then the length of the shortest path, since ℎ

at the goal is zero in an admissible heuristic.

Given the graph 𝑔 = (𝑆, 𝐴), where 𝑆 and 𝐴 denote the set of vertices and edges, respectively,

first, we compute the minimal costs arriving at each vertex of 𝑔, along with vertices, denoted by

TMC. Table 5 (a) shows the calculation using the costs of Figure 7 (a).

Table 5. Minimal costs arriving at each vertex of Figure 7.

𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4

2 2 2 1 1 [2, 3] [1, 3] [1, 3] [1, 2] [1, 2]
(a) (b)

Table 6. Evaluations of two optimal circuits of Figure 7.

Path 𝑔 ℎ 𝑓 Path 𝑔 ℎ 𝑓

𝑠0𝑠1 2 6 8 𝑠0𝑠1 [2,3] [5,10] [7,13]
𝑠0𝑠1𝑠2 4 4 8 𝑠0𝑠1𝑠2 [3,6] [4,7] [7,13]
𝑠0𝑠1𝑠2𝑠4 6 3 9 𝑠0𝑠1𝑠2𝑠4 [5,10] [3,5] [8,15]
𝑠0𝑠1𝑠2𝑠4𝑠3 7 2 9 𝑠0𝑠1𝑠2𝑠4𝑠3 [6,12] [2,3] [8,15]
𝑠0𝑠1𝑠2𝑠4𝑠3 11 0 11 𝑠0𝑠1𝑠2𝑠4𝑠3𝑠0 [8,16] 0 [8,16]

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 10 / 18

http://iors.ir/journal/article-1-587-en.html

Intelligent Mapping 41

(a) (b)

Let 𝑠𝑥 ∈ 𝑆. We write 𝑎𝑠𝑠𝑜𝑐(𝑠𝑥 , 𝑇𝑀𝐶) which returns 𝑐𝑥 the minimal cost arriving at 𝑐𝑥. The

minimal cost for traversing from the node 𝑛 = (𝑠0, 𝑠𝑖 , ⋯ , 𝑠𝑗) to 𝑛′ = (𝑠0, 𝑠𝑖 , ⋯ , 𝑠𝑗 , 𝑠𝑘) where

(𝑠𝑗 , 𝑠𝑘) ∈ 𝐴 and 𝑠𝑘 ∉ (𝑠𝑖 , … , 𝑠𝑗) is 𝑓(𝑛′) = 𝑔(𝑛′) + ℎ(𝑛′) calculated as follows: 𝑔(𝑛′) = 𝑐0,𝑘 +

⋯+ 𝑐𝑗,𝑘, ∑ 𝑐𝑥∀𝑠𝑥∉{𝑠𝑖,⋯,𝑠𝑗,𝑠𝑘}
, where 𝑐𝑥 = 𝑎𝑠𝑠𝑜𝑐(𝑠𝑥 , 𝑇𝑀𝐶).

Figure 8. Search tree for graph of Figure 7 (a). The departure vertex is 𝑆0.

Table 6 (a) shows the costs of some paths of the search for solving TSP of Figure 7 (a) shown

in Figure 8, where the traversal order is depth-first. The minimal cost is 11. Notice the benefit of

using the TMC in A-Star leading to not explore the entire tree which may be dramatically large.

This is the reason why the classical map matching based on hard computing (e.g. Dijkstra's

algorithm [4]) has serious limitations as mentioned earlier in the first paragraph of the introductory

Section.

5. Soft Computing: Extension of Fuzzy Costs

In the case when the costs are fuzzy intervals, we must answer the three following questions:

• What will be the strategy of choosing a node (state) to develop?

• What will be the criteria for stopping the procedure?

• What will be the result at termination?

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 11 / 18

http://iors.ir/journal/article-1-587-en.html

42 Fathollahzadeh

The choice of a state can be reduced to the problem of comparing fuzzy intervals 𝑛𝑗 =

[𝑓(𝑛𝑗), 𝑓(𝑛𝑗)], for 𝑗 = 1, 2, … , 𝑝, where 𝑛1, … , 𝑛𝑝 are the candidate states in development at the

current moment (node). We are looking for the state having the smallest evaluation. When 𝑝 = 2,

we have to compare the relative position of the two intervals. So we naturally get four possible

ranking criteria that indicate if 𝑛1 is the state to be developed instead of 𝑛2:

𝐶1: 𝑓(𝑛2) ≥ 𝑓(𝑛1) 𝐶2: 𝑓(𝑛2) ≥ 𝑓(𝑛1)

𝐶3: 𝑓(𝑛2) ≥ 𝑓(𝑛1) 𝐶4: 𝑓(𝑛2) ≥ 𝑓(𝑛1)

If 𝐶1 is checked, despite the inaccuracy, we are sure that the evaluation of 𝑛1 is better than that

of 𝑛2. On the other hand, if criterion 𝐶4 is verified, we only know there is a possibility that 𝑛1 has

the smallest evaluation. When the criteria 𝐶2 and 𝐶3 are checked simultaneously, we can write

𝐶23 = miñ ([𝑓(𝑛1), 𝑓(𝑛1)] , [𝑓(𝑛2), 𝑓(𝑛2)]) = [𝑓(𝑛1), 𝑓(𝑛1)],

where miñ is the minimum operation applied at the intervals. The min operation allows one to

define selection criterion 𝐶23 intuitively satisfying and being less strong than 𝐶1. The selection

criteria are naturally ordered according to their strengths [12]:

𝐶1 ⇒ 𝐶23 {
⇒ 𝐶2 ⇒ 𝐶4
⇒ 𝐶3 ⇒ 𝐶4

In practice, it is suggested to select the node by applying the criteria in the order indicated by the

implications above. Only 𝐶2 and 𝐶3 are naturally not ordered; we will choose priority 𝐶2 if we think

that the smallest values of 𝑓(𝑛1) and 𝑓(𝑛2) are more plausible than larger values. In the general

case, where there are 𝑝 > 2 states, we will be brought back to compare the evaluation of each 𝑛𝑗

with miñ[𝑓(𝑛𝑘)) , (𝑓(𝑛𝑘)] , for 𝑘 ≠ 𝑗, that is to say, with the smallest of the other assessments,

using the five criteria in order suggested given above.

5.1. Classical Intervals

We consider the same problem of TSP, as given previously, but considering the costs being

imprecise, that is to say that, for example, the duration of the journey connecting the cities is only

imperfectly known. The function 𝑔(𝑛) is simply obtained by summing respectively the lower and

upper bounds of the imprecise costs [𝑐𝑖𝑗, 𝑐𝑖𝑗] along the way corresponding to the state 𝑛. The

function ℎ(𝑛) is a sum of pre-calculated intervals for each vertex of the city graph (𝑆, 𝐴) For the top

𝑖, we have

[ℎ𝑖, ℎ𝑖] = miñ[𝑐𝑖𝑗, 𝑐𝑖𝑗], for (𝑖, 𝑗) ∈ 𝐴,

and for 𝑛 = 𝑠0𝑠1…𝑠𝑗𝑠𝑘 we have

ℎ(𝑛) = ∑ ℎ𝑙
𝑙∉{𝑠0,𝑠1,…,𝑠𝑘}

,

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 12 / 18

http://iors.ir/journal/article-1-587-en.html

Intelligent Mapping 43

ℎ(𝑛) = ∑ ℎ𝑙
𝑙∉{𝑠0,𝑠1,…,𝑠𝑘}

.

The ranges [ℎ(𝑛), ℎ(𝑛)] of our example are provided by Table 5 (b). Table 6 (b) shows the

states developed using the five criteria 𝐶1, 𝐶23, 𝐶2, 𝐶3, 𝐶4.

The complete trace of A-star algorithm applied to the data of Figure 7 (b) is given in Table 8,

where the column number represents the order of development of the different states. The

development of (𝑠0𝑠1𝑠2𝑠2𝑠4) was considered in the 7th stage. But in this case, no successor state

has been produced, whereas, the state 9 (𝑠0𝑠1𝑠4𝑠3𝑠2) produces one that leads to the optimal circuit

in the sense of 𝐶23 which is chosen the stop criterion. Note that the algorithm provides the

Hamiltonian path and the cost of terminal state is [8,16], which is the result of the miñ operation

on the ten candidate states, precisely the son of state 9 (see Table 8). Note that if we had been

content with the 𝐶2 criterion to stop, the research would have developed only 9 summits.

Table 7. Evaluation of an optimal circuit of the right graph of Figure 7 according to 𝐶23 criterion.

Path 𝑔 ℎ 𝑓

𝑠0𝑠1 [2,3] [5,10] [7,13]
𝑠0𝑠1𝑠2 [3,6] [4,7] [7,13]
𝑠0𝑠1𝑠2𝑠4 [5,10] [3,5] [8,15]
𝑠0𝑠1𝑠2𝑠4𝑠3 [6,12] [2,3] [8,15]
𝑠0𝑠1𝑠2𝑠4𝑠3𝑠0 [8,16] 0 [8,16]

Table 8. Trace of the computation of 𝑓 corresponding to the data of Figure 7 (b).

𝑛° Path 𝑔 ℎ 𝑓 𝑛° Path 𝑔 ℎ 𝑓

1 𝑠0 9 𝑠0𝑠1𝑠2𝑠4𝑠3 [6,12] [2,3] [8,15]
2 𝑠0𝑠1 [2,3] [5,10] [7,13] 𝑠0𝑠1𝑠2𝑠4𝑠3𝑠0 [8,16] 0 [8,16]
3 𝑠0𝑠1𝑠2 [3,6] [4,7] [7,13] 10 𝑠0𝑠3𝑠2 [4,7] [4,8] [8,15]
4 𝑠0𝑠3 [2,4] [5,11] [7,15] 11 𝑠0𝑠3𝑠2𝑠1 [5,10] [3,5] [8,15]
5 𝑠0𝑠3𝑠4 [3,6] [4,9] [7,15] 𝑠0𝑠3𝑠2𝑠1𝑠4 [8,14] [2,3] [10,17]
 𝑠0𝑠3𝑠4𝑠2 [5,10] [3,6] [8,16] 12 𝑠0𝑠1𝑠4 [5,7] [4,8] [9,13]
 𝑠0𝑠3𝑠4𝑠1 [6,10] [3,6] [9,16] 13 𝑠0𝑠1𝑠4𝑠3 [6,9] [3,6] [9,15]
6 𝑠0𝑠1𝑠3 [5,9] [3,5] [8,14] 14 𝑠0𝑠2 [4,5] [5,10] [9,15]
7 𝑠0𝑠1𝑠2𝑠3𝑠4 [6,11] [2,3] [8,14] 15 𝑠0𝑠2𝑠1 [5,8] [4,7] [9,15]
8 𝑠0𝑠1𝑠2𝑠4 [5,10] [3,5] [8,15] 𝑠0𝑠2𝑠1𝑠4 [8,12] [3,5] [11,17]
9 16 𝑠0𝑠1𝑠4𝑠3𝑠2 [8,12] [2,3] [10,15]

In the case of the commercial traveler, the selection on the criterion 𝐶2 (resp. 𝐶3) clearly returns

to lead the algorithm only on the coefficients 𝑐𝑖𝑗 (resp. 𝑐𝑖𝑗), that is, we get back to the case of

accurate data. In particular, if the optimal solution obtained by each of these selection criteria

correspond to a Hamiltonian path, then this Hamiltonian path is optimal in the sense of criterion

𝐶23, and it is provided by A-star extended to imprecise data, provided that we adopt 𝐶23 as stop

criterion. This is what happens in the example. Note that in this example, an optimal solution in the

sense of the criterion 𝐶1 does not exist; the children states are 16 and 9, respectively. (𝑠0𝑠1𝑠2𝑠2𝑠4)
and (𝑠0𝑠1𝑠4𝑠3𝑠2) have incomparable terminal states in the sense of 𝐶1.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 13 / 18

http://iors.ir/journal/article-1-587-en.html

44 Fathollahzadeh

5.2. Fuzzy Costs

According to Zadeh [21], a fuzzy interval is a fuzzy convex quantity, i.e., the membership

function is quasi-convex:

∀𝑢, 𝑣, ∀𝑤 ∈ [𝑢, 𝑣], 𝜇𝑄(𝑤) ≥ min(𝜇𝑄(𝑢), 𝜇𝑄(𝑣)) ,

where 𝜇𝑄 is a fuzzy amount, i.e., 𝜇𝑄: ℜ → [0,1]. At the current moment of the development of the

search graph, we have 𝑝 candidate states 𝑛1, 𝑛2, … , 𝑛𝑝, each 𝑛𝑖 (𝑖 = 1,… , 𝑝) being associated with a

fuzzy interval 𝑓(𝑛𝑖) which restricts the possible values of the function 𝑓(𝑛𝑖). A suggestion to select

the state to develop is to choose 𝑛𝑖 as

𝑓(𝑛𝑖) = miñ 𝑓(𝑛𝑗) , for 𝑗 = 1, 𝑝.

It is clear that such a state does not exist and in this case any state can be selected. In addition,

the above formula is relatively strong, since it amounts to applying the criterion 𝐶23 to all couples

𝛼-cuts 𝑓(𝑛𝑗), 𝑗 = 1, 𝑝.

Another approach is to measure how much an evaluation is smaller than another according to the

criteria 𝐶1 − 𝐶4. The miñ operation offers no way to carry out such a quantification. This will be

obtained using the four comparison indices of the fuzzy intervals.

In the case of usual intervals, each of these criteria may be verified or not. For the fuzzy

assessments, these criteria will be more or less verified (see 5.3 below):

• 𝐶1 will be evaluated by Nec(𝑓(𝑛2) > 𝑓(𝑛1))

• 𝐶2 will be evaluated by Nec(𝑓(𝑛2) > 𝑓(𝑛1))

• 𝐶3 will be evaluated by Pos(𝑓(𝑛2) > 𝑓(𝑛1))

• 𝐶4 will be evaluated by Pos(𝑓(𝑛2) > 𝑓(𝑛1))

The criteria 𝐶1 and 𝐶3 are stricter: > instead of ≥ for consistency with the ratings is used. Note

that if the membership functions are continuous, this change has no effect. In the case of 𝑝

developmental states, we compute for each state 𝑛𝑗 the four indices

• PSE(𝑓(𝑛𝑖)), Possibility of over classing,

• PS(𝑓(𝑛𝑖)), Possibility of strict over-classification,

• NSE(𝑓(𝑛𝑖)), Need for over-classing,

• NS(𝑓(𝑛𝑖)), Need for strict over-ranking,

expressing how much 𝑓(𝑛𝑖) is smaller than the other evaluations, in the sense of 𝐶1, 𝐶2, 𝐶3 and 𝐶4.

If there are more than one, we search among these states for one that maximizes NSE 𝑓(𝑛𝑖), and so

on, by checking

𝑁𝑆 (𝑓(𝑛𝑖)) ≤ 𝑁𝑆𝐸 (𝑓(𝑛𝑖)) ≤ 𝑃𝑆𝐸 (𝑓(𝑛𝑖))

𝑁𝑆 (𝑓(𝑛𝑖)) ≤ 𝑃𝑆 (𝑓(𝑛𝑖)) ≤ 𝑃𝑆𝐸 (𝑓(𝑛𝑖)).

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 14 / 18

http://iors.ir/journal/article-1-587-en.html

Intelligent Mapping 45

The criterion for stopping the procedure can be chosen in two ways: Either (1) a terminal state is

selected; and (2) in addition to (1), checking a condition on one of the indices: 𝐸 ∈

{𝑁𝑆,𝑁𝑆𝐸, 𝑃𝑆, 𝑃𝑆𝐸} in the form 𝐸 (𝑓(𝑛𝑖)) ≥ 𝜃, where 𝜃 is a fixed threshold.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 15 / 18

http://iors.ir/journal/article-1-587-en.html

46 Fathollahzadeh

Figure 9. 𝑃 and 𝑁 are the possibility and necessity measures, respectively.

5.3. Possibility and Necessity Measures

The meaning of the verification of 𝐶1 − 𝐶4, evoked above in the case of fuzzy assessments, are

implemented using the possibility and necessity measures.

Let Θ and 𝑃(Θ) be the non-empty set involving all possible events and the power set of Θ,

respectively. ∀𝐴 ⊆ 𝑃(Θ), ∃ non-negative number, possibility measure, noted by 𝑃𝑜𝑠(𝐴) satisfying

the followings:

• 𝑃𝑜𝑠(∅) = 0, 𝑃𝑜𝑠(Θ) = 1,

• ∀𝐴, 𝐵 ∈ 𝑃Θ 𝐴 ⊆ 𝐵 → 𝑃𝑜𝑠(𝐴) ≤ 𝑃𝑜𝑠(𝐵),
• ⋃ 𝑃𝑜𝑠(𝐴𝐾)𝑘 = Sup𝑘𝑃𝑜𝑠(𝐴𝑘).

The counterpart of the possibility measure of 𝐴 is the necessity, 𝑁𝑒𝑐(𝐴) = 1 − 𝑃𝑜𝑠(𝐴𝑐), which

is defined on (Θ, 𝑃(Θ), 𝑃𝑜𝑠) as follows:

• 𝑁𝑒𝑐(∅) = 0, 𝑁𝑒𝑐(Θ) = 1

• 𝑃𝑜𝑠(𝐴) ≥ 𝑁𝑒𝑐(𝐴)
• 𝑃𝑜𝑠(𝐴) = 1 → 𝑁𝑒𝑐(𝐴) = 0; and

• 𝑁𝑒𝑐(𝐴) > 0 → 𝑃𝑜𝑠(𝐴) = 1.

Let 𝑞1 = [𝑎1, 𝑏1, 𝑔1, 𝑑1] and 𝑞2 = [𝑎2, 𝑏2, 𝑔2, 𝑑2] be two trapezoidal representations of two

fuzzy assessments, where, [𝑎, 𝑏] is the support, 𝑔 and 𝑑 denote the left and right margins,

respectively. Then, 𝑃𝑜𝑠(𝑞1, 𝑞2) is calculate as follows:

𝜋(𝑞1, 𝑞2) =

{

0, if (𝛼1 + 𝛼2 ≥ max{𝛼2, 𝛼1})

0, if (𝛼2 > 𝛼1) ⋀ (𝑔2 = 𝑑1 = 0)

0, if (𝛼1 > 𝛼2) ⋀ (𝑔1 = 𝑑2 = 0)

𝑏𝑜𝑟𝑛 (
𝑎2 − 𝑏1
𝑑1 + 𝑔2

) , if 𝛼2 > 𝛼1

𝑏𝑜𝑟𝑛 (
𝑎1 − 𝑏2
𝑑2 + 𝑔1

) , if 𝛼1 > 𝛼2

where 𝑏𝑜𝑟𝑛(𝑥) = max(0, 𝑥 − 1), 𝛼1 = 𝑏2 − 𝑎1 and 𝛼2 = 𝑏1 − 𝑎2. Figure 9 illustrates the values

of the possibility and necessity measures.

Note that we have used the unique data structure, namely the trapezoidal representation for

dealing the cost of fuzzy terms (e.g., [𝑎, 𝑏, 𝑔, 𝑑]), the classical intervals (e.g., [𝑎, 𝑏] by [𝑎, 𝑏, 0, 0]),
and the numbers (e.g., 𝑎 by [𝑎, 𝑎, 0, 0]).

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 16 / 18

http://iors.ir/journal/article-1-587-en.html

Intelligent Mapping 47

6. Conclusions Remarks

We presented two major tasks for an intelligent mapping: dealing with homographs which

abound in any operational tool, and how to maintain and update large data. The implementation

made in the programming language C showed that the performance of our method is not only

acceptable but it can be injected into an operational system. The method can be extended to deal

with the constraints (e.g. eating the fish in a good restaurant while visiting a region) formulated by

user. Taking into account various kinds of data structures used in the soft computing for the

purpose of comparison is useful work to be done.

Acknowledgment

Many thanks to the Editor-in-chief of the Iranian Journal of Operations Research for his

valuable helps that improves the readability of this paper.

References

[1] Blelloch, G.E. and Reid-Miller, M. (1998), Fast set operations using treaps. In

Proceedings of 10th SPAA.

[2] Burnham, K.P. and Anderson, D.R. (2002), Model selection and multimdoal inference: A

practical information-theoretic approach, New York: Springer.

[3] Dawid, A.P. (1984), A present position and potential developments: Some personal views.

StatisticaltTheory, The prequential approach (with discussion), J.R. Statistical Soc. A.,

147, 178-292.

[4] Dijkstra, E. W. (1959), A note on two problems in connexion with graphs, Numerische

Mathematik, 1: 269-271.

[5] Fatholahzadeh, A. (2005), Learning the morphological features of a large set of words,

Journal of Automata, Languages and Combinatorics, 10(5/6), 5/6, 655-669.

[6] Fatholahzadeh, A. (2016), Building incremental homographs of big data, First

International Workshop on Big Data Mathematical and Statistical Tools for Life Science,

May 14-20, Amirkabir University of Teheran-IPM, Tehran,

[7] Fatholahzadeh, A. (2003), Implementation of dictionaries via automata and decision trees,

In: Champarnaud, J.M. and Maurel D. (Eds), Lecture Notes in Computer Science 2608,

Implementation and Application of Automata, Springer-Verlag, Berlin Heidelberg, 95-

105.

[8] Fredman, M. L. and Tarjan, R. E. (1987), Fibonacci heaps and their uses in improved

network optimization algorithms, Journal of the Association for Computing Machinery,

34(3): 596--615.

[9] Jenkins, B., “Jenkins hash coding”, http://burtleburtle.net/bob/c/lookup3.c, May 2006.

[10] Hart, P.E., Nilsson, N. J. and Raphael, B. (1968), A Formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics SSC4. 4 (2), 100-107.

[11] Kempe, A. (2000), Factorizations of ambiguous finite-state transducer, International

Conference on Implementation and Application of Automata}, 157-164.

[12] Prade, H. and Dubois D. (1985), Théorie des possibilités, applications á la représentation

des connaissances en informatique, Masson, 978-2-225-80579-0.

[13] Quinlan, R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann.

[14] Maurel, D. and Daciuk J., (2006), Les transducres á sorties variables, In: Proceedings of

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

 17 / 18

http://iors.ir/journal/article-1-587-en.html

48 Fathollahzadeh

TALN, Leuve, Belgium, 237-245.

[15] Maurel, D. and Guenthner F. (2005), Automata and Dictionaries, Individual author and

King's College, London.

[16] Mitchel, T.M. (1993), Machine Learning, Mc Graw-Hill.

[17] Nilsson, N. J. (1980), Principles of Artificial Intelligence, Palo Alto, California: Tioga

Publishing Company.

[18] Russell, S. and Norvig, P. (2009) Artificial Intelligence: A Modern Approach (3rd ed.),

Prentice Hall.

[19] Yu, S. (1997), Regular languages. In: Rozenberg, G. and Salomma, A. (Eds), Handbook

of formal languages, Vol. 1, Word, Language, Grammar, Springer Science & Business

Media.

[20] Xu, M. and Golay, M.W. (2006), Data-guided combination by decomposition and

aggregation, J. Machine Learning, 63(1), 43-67.

[21] Zadeh, L.A. (1978), PRUF-a meaning representation language for natural, Int. J. Man-

Machine Studies, 10, 395-460.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-0
3-

09
]

Powered by TCPDF (www.tcpdf.org)

 18 / 18

http://iors.ir/journal/article-1-587-en.html
http://www.tcpdf.org

