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A nonmonotone extension of the line search method for 

minimization of locally Lipschitz functions 
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In this paper, a nonmonotone line search strategy is presented for minimization of the locally 

Lipschitz continuous function. First, the Armijo condition is generalized along a descent direction 

at the current point. Then, a step length is selected along a descent direction satisfying the 

generalized Armijo condition. We show that there exists at least one step length satisfying the 

generalized Armijo condition. Next, the nonmonotone line search algorithm is proposed and its 

global convergence is proved. Finally, the proposed algorithm is implemented in the MATLAB 

environment and compared with some methods in the subject literature. It can be seen that the 

proposed method not only computes the global optimum also reduces the number of function 

evaluations than the monotone line search method. 
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1. Introduction 

 

In this paper, we consider the following unconstrained nonsmooth optimization problem: 

min
𝑥∈ℝ𝑛

 𝑓(𝑥), (1) 

where 𝑓: ℝ𝑛 →  ℝ is a locally Lipschitz continuous function. There exist several iterative methods 

for solving the problem (1) where they  use the monotone iterative techniques [1-9]. If the sequence 

{𝑥𝑘} be generated by a monotone iterative algorithm, then  𝑓(𝑥𝑘+1 ) ≤ 𝑓(𝑥𝑘). These methods may 

not converge to the global optimal point and converge to the local optimal point when the initial point 

is selected near to that point. This is a disadvantage of monotone methods, while nonmonotone 

methods do not dependent on the initial point. 

In this paper, we try to extend a nonmonotone method for solving (1). When 𝑓: ℝ𝑛 →  ℝ is a twice 

continuously differentiable function, then one of the most important methods,  for solving the problem 

(1), is the line search method [10]. The basis of the line search method is finding a step length 𝛼𝑘 

along a descent direction 𝑑𝑘. The line search method is divided into two classes: nonmonotone and 

monotone. The Computing of the step length is done by the exact and inexact techniques. 

In the exact search method, 𝛼𝑘  is calculated from solving the following problem: 

min
𝛼>0

𝑓(𝑥𝑘 + 𝛼 𝑑𝑘) .  

As can be seen, the above problem is an optimization problem, and it has a high computational cost 

in solving Large-scale problems. In the inexact line search method, 𝛼𝑘 is the largest number satisfying 

the Armijo condition:  
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𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤  𝑓(𝑥𝑘) + 𝑐1𝛼𝑘∇  𝑓(𝑥𝑘)𝑇𝑑𝑘,  
where 𝑐1 ∈ (0,1) and ∇ 𝑓(𝑥𝑘) is the gradient of 𝑓 at the point 𝑥𝑘 [10]. The Armijo condition is also 

called the sufficient reduction condition. 𝛼𝑘 is usually calculated from the Backtracking method. For 

the first time, the nonmonotone line search technique was introduced by Grippo et al. [11] for solving 

the smooth one of the problem (1). In this method, 𝑑𝑘 is the Newton descent direction and 𝛼𝑘 ∈ (0,1] 
is the biggest nonnegative number such that 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ max
0≤ 𝑗≤ 𝑚(𝑘)

[ 𝑓(𝑥𝑘−𝑗)] + 𝑐1𝛼𝑘𝛻 𝑓(𝑥𝑘)𝑘
𝑇𝑑, (2) 

where 𝑚(0) = 0, 0 ≤ 𝑚(𝑘) ≤ 𝑚𝑖𝑛[𝑚(𝑘 − 1) + 1, 𝑀], for 𝑘 ≥ 1, and 𝑀 is a nonnegative integer. 

Afterwards, many researchers studied the nonmonotone line search  technique and its global 

convergence [12,13]. Due to the good numerical results of the nonmonotone line search method, the 

researchers combined this method with other popular methods in nonlinear optimization [14,15]. 

 There is not any nonmonotone technique for minimizing the locally Lipschitz continuous function. 

In this work, we get the nonmonotone idea and propose a new method for solving the nonsmooth 

optimization problem (1).  We review some preliminary concepts of the nonsmooth analysis in 

Section 2. In Section 3, the NN line search is proposed for computing a step length along a given 

descent direction. Then, the global convergence property of the presented minimization algorithm is 

proved. The presented algorithm is generalized to find a descent direction and step length satisfying 

the N Armijo condition. Next, the global convergence property of the presented algorithm is shown. 

The numerical results are reported in Section 5. Section 6 states the conclusion and the future research. 

2. Preliminaries  

In this section, we state the basic concepts and definitions of the nonsmooth analysis [16]. The Clarke 

generalized directional derivative of the locally Lipschitz function 𝑓 at the point 𝑥 in the direction 𝑑 

is defined by: 

𝑓∘(𝑥, 𝑑): = limsup𝑦→ 𝑥,𝑡↓ 0
𝑓(𝑦+𝑡𝑑)−𝑓(𝑥)

𝑡
. 

The Clarke generalized subdifferential at point 𝑥 is given 

 𝜕𝑓 (𝑥)  =  {𝜉 ∈ ℝ𝑛| 𝑓∘(𝑥, 𝑑) ≥ 𝜉𝑇𝑑       ∀ 𝑑 ∈ ℝ𝑛}, 

where each vector 𝜉 ∈ 𝜕𝑓 (𝑥) is called the subgradient of 𝑓 at 𝑥. For 𝜀 > 0, the Goldstein 𝜀-

subdifferential of 𝑓 at the point 𝑥 is the set 

𝜕𝜀𝑓(𝑥): = cl con{𝜕𝑓(𝑦), ‖𝑥 − 𝑦‖2 ≤ 𝜀},  
where “cl con” is the closure convex hull of a set. Each vector 𝜉 ∈ 𝜕𝜀𝑓(𝑥) is called an 𝜀-subgradient 

of the function 𝑓 at 𝑥 [16]. It can be seen that 𝑓𝜀
∘(𝑥, 𝑑) = sup𝜉∈𝜕𝜀𝑓(𝑥) 𝜉𝑇𝑑 for all 𝑑 ∈ ℝ𝑛. If 𝑓 be 

differentiable at 𝑥, then ∇𝑓(𝑥) ∈ 𝜕𝑓(𝑥). Furthermore, if 𝑓 is continuously differentiable at 𝑥, then 

𝜕𝑓(𝑥) = {∇ 𝑓(𝑥)}.  𝑥∗ is called as an 𝜀-stationary point of 𝑓 if 0 ∈ 𝜕𝜀𝑓(𝑥) or 𝑓𝜀
∘(𝑥, 𝑑) ≥  0 for all 

𝑑 ∈ ℝ𝑛. 

3. Nonsmooth nonmonotone line search technique and its convergence 

In this section, we present a new method for the problem (1) and we show its global convergence 

property. First of all, we define a descent direction by 𝜕𝜀𝑓(⋅), for a given 𝜀 > 0. Next, by this 

definition, we generalize the Armijo condition and show that it is well-defined. Then, we extend the  

Nonmonoton (N) line search algorithm and demonstrate its convergence property. Let 𝑣𝑘  is a vector 

of 𝜕𝜀𝑓(𝑥𝑘), with the least 𝑙2-norm:  

𝑣𝑘 = argmin {‖𝜉‖  |𝜉 ∈ 𝜕𝜀𝑓(𝑥𝑘)}.  (3) 

If 𝑣𝑘
𝑇𝑑 < 0, then 𝑑 is a descent direction for 𝑓 at 𝑥𝑘. Now, for a decreasing direction, the 

Nonmonotone Armijo condition is defined for the continuous locally Lipschitz functionas as follows: 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
24

-1
1-

24
 ]

 

                             2 / 10

http://iors.ir/journal/article-1-757-en.html


A nonmonotone extension of the line search method for minimization of 

locally Lipschitz functions 

75 

 

Definition 3.1. Suppose that 𝑑𝑘 is a descent direction for the function 𝑓 at 𝑥𝑘.We say that the step 

length 𝛼 > 0 satisfies the Nonmonotone Armijo condition, if the following inequality holds: 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘 ) − 𝑓(𝑥𝑙(𝑘)) ≤ −𝑐1𝛼𝑘𝑣𝑘
𝑇𝑑𝑘 , (4) 

where 𝑣𝑘 is the solution of (3), 𝑐1 ∈ (0,1], 𝑚(0) = 0,   𝑓(𝑥𝑙(𝑘)) = max0≤ 𝑗≤ 𝑚(𝑘)𝑓(𝑥𝑘−𝑗), for 𝑘 ≥ 1,

0 ≤ 𝑚(𝑘) ≤ 𝑚𝑖𝑛{𝑚(𝑘 − 1) + 1, 𝑀} and 𝑀 is a nonnegative integer. 

 

Now, we show that there exists at least one step length for each descent direction such that the N 

Armijo condition (4) holds. 

 

Proposition 3.2. Suppose that 𝜀 > 0 and 𝑣𝑘 is the solution of the problem (3), then  

𝑓 (𝑥𝑘 +
𝜀

||𝑑𝑘||
 𝑑𝑘) − 𝑓(𝑥𝑙(𝑘)) ≤  − 𝑐1𝜀 ‖𝑣𝑘‖,  (5) 

where 𝑑𝑘 = −𝑣𝑘. 

 

Proof. Let 𝑡 =
𝜀

||𝑑𝑘||
 . Since 𝑓 is a locally Lipschitz continuous function, then according to Mean-

Value Theorem, Theorem 3.18 in [16], there exists 𝑧 ∈ (𝑥𝑘, 𝑥𝑘 + 𝑡𝑑𝑘), where [𝑥𝑘, 𝑥𝑘 + 𝑡 𝑑𝑘] is 

the line segment, such that 

𝑓 (𝑥𝑘 + 𝑡𝑑𝑘) − 𝑓(𝑥𝑘) ∈ 𝜕𝑓 (𝑧)𝑇(𝑡𝑑𝑘). 
Therefore, there exits 𝜉 ∈ 𝜕𝑓(𝑧) 

𝑓(𝑥𝑘 + 𝑡𝑑𝑘) − 𝑓(𝑥𝑘) = 𝑡𝜉𝑇𝑑𝑘 . (6) 

Since ||𝑧 − 𝑥𝑘|| ≤ 𝜀, then 𝜉 ∈ 𝜕𝜀𝑓(𝑥𝑘). As respects 𝑓𝜀
∘(𝑥𝑘 , 𝑑𝑘) = 𝑚𝑎𝑥{𝜉𝑇𝑑𝑘 |𝜉 ∈ 𝜕𝜀𝑓(𝑥𝑘)}, we 

have 

𝑓(𝑥𝑘 + 𝑡𝑑𝑘) − 𝑓(𝑥𝑘) = 𝑡𝜉𝑇𝑑𝑘 ≤ 𝑡 𝑓𝜀
∘(𝑥𝑘, 𝑑𝑘). 

Hence 

𝑓(𝑥𝑘 + 𝑡𝑑𝑘) ≤  𝑓(𝑥𝑘) + 𝑡𝑓𝜀
∘(𝑥𝑘, 𝑑𝑘). 

On the other hand 𝑓(𝑥𝑙(𝑘)) = ma𝑥0≤ 𝑗≤ 𝑚(𝑘)𝑓(𝑥𝑘−𝑗). Thus 

f(𝑥𝑘 + 𝑡𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝑡𝑓𝜀
∘(𝑥𝑘, 𝑑𝑘) ≤ 𝑓(𝑥𝑙(𝑘)) + 𝑡𝑓𝜀

∘(𝑥𝑘, 𝑑𝑘). 

Also 𝑐1 ∈ (0,1) and 𝑓𝜀
∘(𝑥𝑘, 𝑑𝑘) < 0, so 

𝑓(𝑥𝑘 + 𝑡 𝑑𝑘) ≤ 𝑓(𝑥𝑙(𝑘)) + 𝑡 𝑓𝜀
∘(𝑥𝑘, 𝑑𝑘) ≤ 𝑓(𝑥𝑙(𝑘)) + 𝑐1𝑡 𝑓𝜀

∘(𝑥𝑘, 𝑑𝑘), 

and the proof is complete.  

 

Now, we are ready to present the new N line search method algorithmically as follows: 

 

Algorithm 3.1 )Nonmonotone line search technique(  

Step 1. Set 𝜀, 𝜎, 𝑐1 ∈ (0,1), 𝑥0 ∈ ℝ𝑛, 𝑘 = 0, and a positive integer 𝑀. 

Step 2. Consider 𝑣𝑘 as a solution of the problem (3) 

             If  ‖𝑣𝑘‖ ≤ 𝜀, then stop,  else set 𝑑𝑘 = −𝑣𝑘 and got to the Step 3. 

Step 3 Set 𝛼 = 𝜎 and 𝜃 = 𝑚𝑖𝑛{𝜀,
𝜀

‖𝑑𝑘‖
} 

           While 𝑓(𝑥𝑘 + 𝛼𝑑𝑘) > 𝑓(𝑥𝑙(𝑘)) − 𝑐1𝛼 ‖𝑣𝑘‖2 and  𝛼 > 𝜃 

                      𝛼: = 𝜎 ∗ 𝛼;  

           End(While) 

Step 4 If 𝛼 > 𝜀𝑘, then 𝛼𝑘: = 𝛼, else 𝛼𝑘: = 𝜃. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 = 𝑘 + 1 and go to Step 2. 
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The following lemma shows that the generalized sequence {𝑓(𝑥𝑙(𝑘)}, by Algorithm 3.1, is 

nonincreasing. 

 

Lemma 3.3 Suppose that 𝑓 is a locally Lipschitz function and the level set ℒ = {𝑥 |𝑓(𝑥) ≤ 𝑓(𝑥0)} is 

bounded. Then the following inequalities hold, 

𝑓(𝑥𝑘+1) ≤  𝑓(𝑥𝑙(𝑘+1)) ≤  𝑓(𝑥𝑙(𝑘)), 

where the sequence {𝑓(𝑥𝑙(𝑘))} is generated  by Algorithm 3.1. Also {𝑓(𝑥𝑙(𝑘))} has at least one limit 

point. 

 

Proof. According to the definition of 𝑚(𝑘), we have 𝑚(𝑘 + 1) ≤ 𝑚(𝑘) + 1,  

                                                         𝑓(𝑥𝑙(𝑘+1)) = max
0≤ 𝑗≤ 𝑚(𝑘+1)

𝑓(𝑥𝑘+1−𝑗)   

                                                                             ≤  max
0≤𝑗≤𝑚(𝑘)+1

𝑓(𝑥𝑘+1−𝑗)   

                                                                             =   max {𝑓(𝑥𝑙(𝑘)), 𝑓(𝑥𝑘+1)} 

                                                                             =   𝑓(𝑥𝑙(𝑘)).  

Hence 𝑓(𝑥𝑘) ≤  𝑓(𝑥𝑙(𝑘)) ≤  𝑓(𝑥0), so {𝑥𝑘} ⊂ ℒ . On the other hand,  ℒ is bounded, therefore {𝑥𝑘} 

has at least one convergent subsequence. Since the function 𝑓 is locally Lipschitz function, so the 

sequence {𝑓(𝑥𝑙(𝑘))} has at least a limit point. 

 

    Now, we are ready to prove the global convergence of Algorithm 3.1. In the following, theorem,  

we show that 0 ∈ ∂𝑓(𝑥∗), for each accumulation point 𝑥∗ of the generated sequence {𝑥𝑘} by 

Algorithm 3.1. 

 

Theorem 3.4 Let 𝑓: ℝ𝑛 → ℝ be a locally Lipschitz function and the level set ℒ  be bounded. If 

Algorithm 3.1 does not terminate after finitely many iterations, then 0 ∈ ∂𝑓(𝑥∗), where 𝑥∗ is a limit 

point of {𝑥𝑘}. 

 

Proof. Suppose that 𝜀 > 0  and Algorithm 3.1 does not terminate after finitely many iterations. From 

(5), we have 

𝑓(𝑥𝑙(𝑘)) − 𝑓(𝑥𝑙(𝑙(𝑘)−1)) ≤ − 𝑐1𝛼𝑙(𝑘)−1‖𝑣𝑙(𝑘)−1‖
2

,      for   𝑘 > 𝑀 (7) 

Lemma 3.2 shows that the sequence {𝑓(𝑥𝑙(𝑘))} is convergent, then taking limit, 𝑘 → ∞, (7) implies 

lim
𝑘→∞

𝛼𝑙(𝑘)−1‖𝑣𝑙(𝑘)−1‖
2

 = 0. (8) 

Since 𝑑𝑘 = −𝑣𝑘 and 𝛼𝑘 ≤ 𝜎, (8) implies 

lim
𝑘→∞

𝛼𝑙(𝑘)−1‖𝑑𝑙(𝑘)−1‖ = 0.  

Let 𝑙(𝑘) = 𝑙(𝑘 + 𝑀 + 2), we prove by induction that 

lim
𝑘→∞

𝛼𝑙(𝑘)−𝑗‖𝑑𝑙(𝑘)−𝑗‖ = 0 (9) 

for 𝑘 ≥  𝑗 − 1 and 𝑗 ≥  1. If 𝑗 = 1, (8) implies (9). Now, we assume that (9) holds for a given 𝑗, and 

we prove (9) for 𝑗 + 1. Consider (5) at 𝑘 = 𝑙(𝑘) − (𝑗 + 1) as follows: 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
24

-1
1-

24
 ]

 

                             4 / 10

http://iors.ir/journal/article-1-757-en.html


A nonmonotone extension of the line search method for minimization of 

locally Lipschitz functions 

77 

 

𝑓(𝑥𝑙(𝑘)−𝑗) ≤  𝑓(𝑥
𝑙(𝑙(𝑘)−(𝑗+1))

) − 𝑐1𝛼𝑙(𝑘)−(𝑗+1) ||𝑣𝑙(𝑘)−(𝑗+1)||
2

.  

Using the same technique in converting the equation (7) to (8), we have 

lim
𝑘→∞

𝛼𝑙(𝑘)−(𝑗+1) ||𝑑𝑙(𝑘)−(𝑗+1)||  = 0.  

Then (9) is correct for all 𝑘 ≥ 𝑗 − 1 and 𝑗 ≥ 1. Thus ||𝑥𝑙(𝑘) − 𝑥𝑙(𝑘)−(𝑗+1)|| → 0 and since 𝑓 is 

locally Lipschitz, we have 

lim
𝑘→∞

𝑓( 𝑥𝑙(𝑘)−(𝑗+1)) = lim
𝑘→∞

𝑓( 𝑥𝑙(𝑘)−𝑗) = lim
𝑘→∞

𝑓( 𝑥𝑙(𝑘)),  ∀ 𝑗 ≥  1.  (10) 

On the other hand, we have 

𝑥𝑘+1 = 𝑥𝑙(𝑘) − ∑ 𝛼𝑥�̂�(𝑘)−𝑗
𝑑𝑥�̂�(𝑘)−𝑗

𝑙(𝑘)−𝑘−1

𝑗−1

,  

then 

lim
𝑘→∞

||𝑥𝑘+1 − 𝑥𝑙(𝑘)|| = 0.  

Since 𝑓 is locally Lipschitz and by (10), then we have 

lim
𝑘→∞

𝑓( 𝑥𝑘+1) = lim
𝑘→∞

𝑓( 𝑥𝑙(𝑘)) = lim
𝑘→∞

𝑓( 𝑥𝑙(𝑘)).      

We have the N Armijo condition (5) as follows: 

𝑓(𝑥𝑘+1) ≤  𝑓(𝑥𝑙(𝑘)) − 𝑐1𝛼𝑘‖𝑣𝑘‖2. 

Taking limits for 𝑘 → ∞ 

lim
𝑘→∞

 𝛼𝑘  ‖𝑣𝑘‖2 = 0, 

and since 𝛼𝑘 ≤ 𝜎 is bounded, we have 

lim
𝑘→∞

 ‖𝑣𝑘‖ = 0. (16) 

Since 𝜕𝑓(⋅) is upper semicontinuous, so we have 0 ∈ 𝜕𝑓(𝑥∗), where 𝑥∗ is an accumulation point of 

the sequence {𝑥𝑘} and proof is complete. 

4. Numerical results 

In this section, the numerical results are reported to show the performance of the N line search 

technique. The proposed algorithm is compared with the steepest descent approximation algorithm in 

[18] on the nonsmooth optimization problems in [16,19,20]. The algorithms are implemented in the 

MATLAB 2019b environment. When we compute the function value, a subgradient is computed. 

Thus the number of function and subgradient evaluations are equal. So, we just report the number of 

function evaluations for comparing these two algorithms. 

Table 1 contains the test problems with their optimal values in 𝑛 = 10, 𝑛 = 100 and 𝑛 = 1000, 

where 𝑛 indicates the dimension of the problem. Problems 8 and 10 are nonconvex and the rest of the 

problems are convex. 
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Table 1. The test problems with their optimum values 

No. Problems 𝑛 = 10 𝑛 = 100 𝑛 = 1000 

1 MAXQ 0 0 0 

2 MAXHILB 0 0 0 

3 LQ -1.272792e+01 -1.400071e+02 −1.41279e+003 

4 CB3I 18 198 1998 

5 CB3II 18 198 1998 

6 problem 2 from TEST29 0 0 0 

7 problem 5 from TEST29 0 0 0 

8 problem 6 from TEST29 0 0 0 

9 problem11from TEST29 1.019614e+02 1.186324e+03 1.20312e+004 

10 problem 13 from TEST29 4.537978e+00 5.559023e+01 5.66131e+002 

Since the problem (3) is not practical in many cases, instead of 𝑣𝑘, the approximate solution for the 

problem (3) is used, i.e. 𝑤𝑘. 𝑤𝑘 is the approximated solution to the problem (3) which is obtained 

from the reference [18]. The N Armijo condition is also replaced by the following condition: 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑙(𝑘)) ≤ −𝑐1𝛼𝑘‖𝑤𝑘‖2, 

where 𝑑𝑘 = −𝑤𝑘.  

By using the above condition instead of the condition (5), as shown in the proof of Theorem 1, we 

can show: 

lim
𝑘→∞

 𝛼𝑘  ‖𝑤𝑘‖2 = 0. 

Since ‖𝑣𝑘‖2 ≤ ‖𝑤𝑘‖2 , so we have  

lim
𝑘→∞

  ‖𝑣𝑘‖ = 0 

The alternative condition results in the correctness of Algorithm 3.1. We investigate the efficiency of 

the proposed algorithm in solving the test problems for 𝑀 = 1,2,5,10. In the case 𝑀 = 1, the 

proposed algorithm is converted to the steepest descent approximation algorithm in [18]. Nonsmooth 

nonmonotone line search algorithm and steepest descent approximation algorithm are shown with 

𝑁𝐿𝑆 and 𝑀𝑌, respectively. We consider the abbreviations 𝑛𝑁𝐿𝑆 and 𝑛𝑀𝑌 for the number of function 

evaluations of  the  𝑁𝐿𝑆 algorithm and the 𝑀𝑌 algorithm, respectively. The parameters are initialized 

similar to 𝑀𝑌 algorithm in [18] as follows: 

𝜀0 = 10−3, 𝛿0 = 10−4, 𝑐1 = 10−4, 𝜎 = .5.  
In references [19,20], the starting points are chosen so that a test algorithm may fall in the local 

minimum, hence we set the starting point as the one selected in the references. We say that an 

algorithm solves a test problem if the following inequality holds: 

|𝑓∗ − 𝑓|

|𝑓∗| + 1
≤ 𝛾,  

where 𝛾,  𝑓∗,  and 𝑓  are the number of digits means of the optimal solution, the optimal value, and 

the computed optimal value, respectively. Now, we report how many problems are solved by the 

proposed algorithm for different 𝑀 and 𝛾 in Table 2.  
 

Table 2. The number of problems solved by the proposed algorithm for difference M and γ. 

 𝑛 = 10   𝑛 = 100   𝑛 = 1000  

M 𝛾 = 10−4 𝛾 = 10−5  𝛾 = 10−4 𝛾 = 10−5  𝛾 = 10−4 𝛾 = 10−5 

1 9 7  6 4  5 5 

2 9 8  8 5  7 6 

5 7 7  6 5  6 6 

10 9 7  7 4  7 6 
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According to Table 2, the case 𝑀 = 2 is the best choice because the proposed algorithm solves more 

problems in this case than in other cases. The performance of the algorithms is roughly similar for 

𝑛 = 10. When the dimension increases, more problems are solved for 𝑚 ≥ 2. This demonstrates that 

the proposed method is more efficient than 𝑀𝑌 method for large-scale problems. Also, the most test 

problems are solved by the proposed algorithm in the case 𝑀 = 2. In Table 3, we report the optimal 

value of problems where obtained by 𝑁𝐿𝑆 method in the cases 𝑀 = 1,2,5,10. 
Since better results were obtained for the case M=2, then we report the ratio of the number of function 

evaluations by the MY method to the number of function evaluations by NLS method for M=2, i.e. 
𝑛𝑀𝑌

𝑛𝑁𝐿𝑆
. This ratio indicates how increasing inaccuracy is related to the increase in the number of 

function evaluations. In Table 4, the symbols ``+" and ``-" are used to show 𝑁𝐿𝑆 algorithm solves a 

problem successfully or unsuccessfully, respectively. In the case M=2 and the large scale dimensions, 

the optimal solution of some problems is calculated with the much lower number of function 

evaluations. In other problems, there is no significant difference between cases, but this is negligible 

given that the proposed method can solve more problems. 

5. Conclusion 

In this paper, we presented the nonsmooth nonmonotone line search technique for solving 

nonsmooth optimization problems for the first time. We generalized the Armijo condition for 

the locally Lipschitz function, where called the N Armijo condition. Then, we showed that 

there exists at least one step length for each descent direction satisfying the N Armijo 

condition. The minimization algorithm was proposed and its global convergence was proved. 

Afterward, the proposed algorithm and the steepest descent approximation method were 

implemented and compared. The reported numerical results showed that the proposed 

algorithm has better implementation than the steepest descent approximation method. In 

future work, we want to combine the nonsmooth trust region method with the nonmonotone 

line search technique. We guess, if the trust region method is combined with the N line search 

technique, then we will get better numerical results. 
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Table 4. Success and failure in solving problems  

  𝒏 = 𝟏𝟎    𝒏 = 𝟏𝟎𝟎   𝒏
= 𝟏𝟎𝟎𝟎 

  

No. MY NLS 𝒏𝑴𝒀

𝒏𝑵𝑳𝑺
 

 MY NLS 𝒏𝑴𝒀

𝒏𝑵𝑳𝑺
 

 MY NLS 𝒏𝑴𝒀

𝒏𝑵𝑳𝑺
 

 

1 + + 1.34  + + 1.01  + + 1 

 

2 + + 1.62  + + 2.78  - - - 

 

3 + + 1.86  + + 0.77  + + 0.86 

 

4 + + 0.55  - + -  - + - 

 

5 + + 2.99  + + 1.36  - + - 

 

6 + + 2.57  + + 1.15  + + 1.44 

 

7 + + 1.27  - + -  - - - 

 

8 + + 0.079  + + 0.079  + + 0.07 

 

9 - - -  - - -  + - 1.64 

 

10 + + 0.001  - - -  - - - 
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[5]  Mäkelä, M. M., (2002). Survey of bundle methods for nonsmooth optimization.  

Optimization Methods and Software, 17, 1-29. 
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