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A novel algorithm to allocate customers and retailers in a closed-

loop supply chain under probabilistic demand 
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In this paper, a closed-loop supply chain (CLSC) is modeled to consider the demand and location 

of probabilistic customers in order to determine the optimal location of retailers and their 

allocation to other facilities. The CLSC structure comprises production centers, retailers’ centers, 

probabilistic customers, and collection and disposal centers. This study examines two strategies 

for identifying the best retailer locations, focusing on 1) the type of expected movement and 2) 

expected coverage. To achieve this, a bi-objective nonlinear programming model is proposed. This 

model simultaneously evaluates Strategies 1 and 2 to determine the superior approach. Based on 

the chosen strategy, the best allocation is determined using two heuristic algorithms, which then 

establish the optimal retailer locations. Given that the proposed model is NP-hard, a meta-

heuristics (non-dominated sorting genetic) algorithm is utilized for the solution process. The model 
has been implemented using MATLAB software, and an illustrative example has been solved. The 

example results have indicated the optimal location for retailers. In this example, movement has 

been prioritized over coverage, and customers have been suggested to move towards retailers.  
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1. Introduction 

 

Supply chain network design (SCND) is a crucial strategic decision that has recently received 
significant research attention. Ramezani,et al [1]. In recent years, there has been a significant increase 

in interest in reverse logistics (RL) and closed-loop supply chains (CLSCs) due to the growing 

environmental issues. Traditional forward supply chains involve the forward movement of products 
from suppliers, plants, and distributors to customers. RL, on the other hand, focuses on the reverse 

flow of products from end customers and includes activities such as collecting, inspecting, repairing, 

disassembly, disposal, recycling, and remanufacturing of products Biçe and Batun [2], Farrokh,et al 
[3]. Increasing environmental awareness, social responsibility, and government regulations have 
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driven many companies to use recycled products and recover waste Giri and Sharma [4]. Even during 

and after a critical situation (such as the COVID-19 pandemic), it is crucial to activate both the open- 

and closed-loop systems within an effective and resilient supply chain network. Mondal and Roy [5]. 

 
 In this regard, many large companies such as Xerox, Canon, Kodak, Dell, and Acer have put 

efforts into green operations. For instance, Dell has recently changed their business approach to zero-

waste manufacturing and renewable-energy usage Chen and Ulya [6]. Nowadays, (CLSC) systems 
have become increasingly complex and dynamic with extensive geographical coverage. As a result, 

(CLSC) is susceptible to a wide range of uncertainties, some of which may lead to disruptions in the 

(CLSC) Tolooie,et al [7]. When designing a supply chain network (SCN), it is important to consider 
that SC breakdowns are unexpected and irregular occurrences that disrupt the regular flow of goods 

and supplies in the chain. As a result, companies in the SC are vulnerable to commercial and 

operational risks Ghomi-Avili,et al [8]. as disruptions in infrastructure have significant impacts on 

the operation and performance of the SC. Yavari and Zaker [9]. Therefore, the strategy must consider 
these contradictions and the need to choose between competitive criteria such as speed, efficiency, 

quality, cost, and satisfaction, or mixed models. Ebrahimiarjestan and Wang [10].  

 
Allocating retailers in a closed-loop supply chain structure includes production centers, retailer's 

centers, probabilistic customers, collection, and disposal centers. Comparing the type of movement 

and possible coverage and use of innovative algorithms in the allocation is a topic that has been less 

addressed in recent articles. Mondal and Roy [5],Yavari and Zaker [9], Gholizadeh and Fazlollahtabar 
[11],Yu and Solvang [12], Sazvar,et al [13], Chai,et al [14], Saha,et al [15], Ke and Cai [16]. 

 

2. Literature Review 

 

In this section, we present recent studies on the location-routing-inventory problem, closed-loop 

supply chain, and their synthesis to demonstrate the need for this research. This paper reviews the 
related literature in two research domains of CLSC under certain and uncertain conditions. Sun,et al 

[17] Studied the equilibrium of the CLSCN, considering two types of suppliers, the manufacturer's 

risk aversion, and the suppliers' capacity constraints. this model after The analysis explores the 
interaction and influence of these factors on the equilibrium, offering a deeper understanding of the 

system's dynamics. Zhang and Ren [18] presented a CLSC model that involved an original 

manufacturer, third-party remanufacturer, and retailer. The model stipulated that the remanufacturer 

could only recycle and remanufacture patented products with patent licensing from the original 
manufacturer. Newly manufactured and remanufactured products are then sold together in the same 

market at different prices. Shi,et al [19] developed a multi-objective Mixed Integer Programming 

Model for a CLSCN design problem. The suggested model optimized overall carbon emissions and 
network responsiveness in addition to overall costs. An improved genetic algorithm based on the 

framework of NSGA II was developed in this study to solve the problem and obtain Pareto-optimal 

solutions. Ahmadi and Amin [20] also developed a multi-period, multi-product, multi-echelon, and 
multi-customer CLSCN for a mobile phone network, taking into account various types of product 

returns. The researchers Chen and Chi [21] examined a two-echelon SC with one manufacturer and 

one retailer and three different reverse channel formats. The purpose of the study was to analyze the 

impact of the reverse channel structure on the wholesale price, retail price, collection rate, and total 
channel profits. Mondal and Giri [22] developed a two-period closed-loop green supply chain 

(CLGSC) model with a single manufacturer and a single retailer to study the effects of green 

innovation, marketing effort, and collection rate of used products on the SC decisions. Wu,et al [23] 
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designed a multi-objective optimization model for the product family. Next, they formulated CLSC 

based on a cooperative game model to minimize the manufacturer’s total cost and maximize 
suppliers’ total payoffs. In Xiao,et al [24] a dual-channel CLSC structure was proposed where a 

manufacturer sells to a retailer through both traditional retail and a direct online channel. The 

components of this model operate in a Stackelberg game. In this setup, the manufacturer acts as the 

leading channel, owning both the traditional retail channel and an Internet-based direct channel, while 
the retailer follows as a channel and sells products in the traditional retail channel. in Zheng,et al [25] 

the authors introduced a CLSC model with dual competitive sales channels. They considered three 

reverse channel structures in the CLSC Manufacturer collecting (Model M), retailer collecting (Model 
R), and third-party collecting (Model C) structures. In addition, they showed that a simple price 

contract consisting of the wholesale price, direct channel price, and transfer price of the used product 

(in Model R and Model C), with a complementary profit-sharing mechanism, can effectively 

coordinate dual-channel CLSCs under different recycling channel structures. In Chan,et al [26] a 
dynamic equilibrium model of oligopolistic CLSCN was created to address the seasonal nature of 

demand. In this model, demands and returns are uncertain and time-dependent. Additionally, the 

dynamic Cournot-Nash equilibrium of the oligopolistic network is established through evolutionary 
variation inequality and projected dynamical systems. Fathollahi-Fard,et al [27] proposed a new 

mathematical formulation for a multi-objective stochastic CLSCN that takes social impacts into 

account. Three novel hybrid meta-heuristics were applied to a strategically CLSC based on the 
proposed model. The researchers simultaneously considered economic and social aspects using 

specific suppositions. In Kim,et al [28] developed a deterministic mixed-integer optimization model 

and robust counterparts to address uncertainty in the fashion industry regarding recycled products and 

customer demand. The researchers demonstrated that a robust counterpart with a budget of 
uncertainty is equivalent to a robust counterpart with a box uncertainty under specific conditions. In 

Ma and Li [29] the study focused on the design of a closed-loop supply chain network for hazardous 

products (HP-CLSCND), encompassing both forward SC and reverse SC. They demonstrated that 
the inherent uncertainty in CLSCN significantly impacts the overall performance of the network's 

design. The model addresses the HP-CLSCND problem with uncertain demands and returns. They 

proposed a two-stage stochastic programming model (scenario-based) to solve this issue, 
simultaneously considering risk restriction constraints and reward-penalty mechanisms. The primary 

objective of this model is to minimize the total system cost by making ordering decisions. In 

Zeballos,et al [30] a two-stage mixed-integer problem (MIP) model was proposed that combines the 

conditional value at risk and the structure of a CLSCN. In this model, end-customer areas are divided 
into two parts, namely, the primary market and the secondary market. This approach can prevent a 

distinct impact on economic performance via changes in quality. In Vahdani and Ahmadzadeh [31] a 

mixed-integer nonlinear programming (MILP) model was proposed to integrate pricing with facility 
location and inventory control decisions in a CLSCN in the information and communications 

technology (ICT) industry. This model maximizes the total profit obtained by selling the new ICT 

products or collecting the used ICT products. Abdi,et al [32] suggested a new nature-inspired 

algorithm, the Whale Optimal Station Algorithm (WOA), in a CLSC model. They also utilized the 
popular algorithm Particle Swarm Optimization (PSO) to address this issue. Additionally, they 

employed the well-known meta-heuristics Genetic Algorithm (GA) and Simulated Annealing (SA). 

The researchers used various evaluation metrics to assess the quality of the algorithms' Pareto optimal 
fronts and conducted a comparative study. Fathollahi-Fard,et al [33] demonstrated the development 

of a comprehensive CLSC and the design of a network that takes into account both the cost objective 

and the service efficiency objective of warehouses/hybrid facilities. The proposed MILP model aids 
decision-making in the facility location and distribution planning in a CLSCN under the two 

objectives. In another study Kalantari Khalil Abad and Pasandideh [34] a two-stage stochastic 

programming model was introduced for designing a green CLSC. This model provides an upper limit 

on emission capacity, which assists governments and industries in managing greenhouse gas 
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emissions. The researchers in Gholizadeh and Fazlollahtabar [11] examined a CLSC with various 

grades derived from a reverse flow melting process for demand planning to address model 

uncertainty. The focus of the modeling was on maximizing profitability in the face of demand 

uncertainty. They explored several aspects of this area and employed a robust and modified GA for 
optimization. In Yu and Solvang [12] a novel fuzzy-stochastic multi-objective mathematical model 

was introduced for sustainable CLSCN design. The model aims to balance the trade-off between cost-

effectiveness and environmental performance under various uncertainties and demands. The 
environmental performance of the CLSCN design is assessed based on carbon emissions. 

Additionally, the model incorporates network flexibility in the decision-making process to ensure that 

customer demands can be met through different methods.in Alinezahd [35] proposed a Closed-Loop 
Supply Chain Network (CLSCN) with four echelons in the forward chain (suppliers, plants, 

distribution centers, and customers) and three echelons in the backward chain (collection centers, 

inspection centers, and disposal centers). This model addresses a multi-product and multi-period 

mixed-integer linear programming problem, aiming to maximize profit in the closed-loop supply 
chain network. Xu,et al [36] proposed a two-stage stochastic model to design the CLSC under a 

carbon trading scheme in the multi-period planning context by considering the uncertain demands 

and carbon prices. this model provided a four-step solution procedure with scenario reduction that 
enables the proposed model to be solved using popular commercial solvers efficiently. Govindan,et 

al [37] proposed a model that addresses the location-inventory-routing problem by structuring the 

network. It incorporates a carbon tax policy and a vehicle scheduling problem to minimize emissions 

and reduce vehicle waiting time, respectively. The approach utilizes stochastic scenarios to handle 
demand uncertainty and employs an augmented epsilon-constraint method to solve the proposed bi-

objective model. The researchers in Mondal and Giri [38] investigated a  (CLSC) involving an 

environmentally conscious manufacturer, a retailer, and a third-party collector while considering 
government intervention. The manufacturer provides a return policy for defective products within a 

specific timeframe, and the third-party collector offers consumers an acquisition price for returning 

their used products. Geon Kim,et al [39] suggested a robust optimization model for a CLSC, 
considering uncertain demand and time-series patterns of uncertain carbon tax rates based on 

historical data. This model incorporated the first-order autoregressive model in a set-based robust 

optimization model to attain a less conservative solution. Furthermore, two new uncertainty sets have 

been formulated to mirror the time-series pattern using historical data and their manageable robust 
counterparts.in Zadeh,et al [40] a multi-objective mixed-integer linear programming model was 

developed to design a green multi-echelon closed-loop supply chain network under uncertainty. The 

model addresses partial disruptions at distribution centers using a fuzzy credibility constraint 
approach. Additionally, the ε-constraint method is presented to solve and validate the model in small-

sized instances. Furthermore, a Non-dominated Sorting Genetic Algorithm is developed to solve 

large-sized problems. Researchers in Babaei,et al [41] proposed a branch and bound algorithm in 
(CLSC), which includes an optimization model and an evaluator model. The model aims to minimize 

the total supply chain cost, maximize the sustainability score, and minimize inequity among 

customers simultaneously. To account for real-world conditions, parameters related to labor and 

demand are assumed under uncertainty. Due to the involvement of multiple objective functions, the 
fuzzy goal programming method is used to address the multi-objectiveness. Aliahmadi,et al [42] 

proposed a mathematical model for a multi-echelon closed-loop supply chain network, taking into 

account pricing decisions and queuing systems in the face of uncertainty. The study focused on the 
impact of actual demand on pricing decisions for both final and returned products within the supply 

chain network. The objective of the mathematical model was to maximize the net present value 

considering uncertain parameters related to potential demand and transportation costs. 
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3. Mathematical Model 

 

3.1.   Network Structure 

 

The structure CLSC (Fig. 1) consists of production centers, retail centers, probabilistic 
customers, collection centers, and disposing centers. All modeling and written equations in this 

article are based on this figure. 

 

 

 
 

Figure. 1 Schematic Diagram of The Modeled CLSC 

 

In Fig. 1, the customers are chosen probabilistically with lower and upper time bounds and have 

minimum and maximum coverage radii to reach retailers. Also, retailers have lower and upper 

bounds such that they have minimum and maximum coverage ranges to provide customer service. 

 

3.2.   Model Assumption 

  

• The single-period model is considered; 

• Insufficiency is allowed; 

• Transportation costs are fixed over a period; 

• All customers must receive their services; 

• Every customer can visit more than one retail center to receive services; 

• The customers’ and retailers’ motion type are either Rectangular, Euclidean, Euclidean Square, or 

Chebyshev; 

• The motion happens on a page; 

• Based on the relocation distance, the transportation time is constant and invariable; 

• All chain parameters and variables are definite, excluding the customer place, customer coverage 
time, retailer coverage distance, and customer’s demand; 

• No cost is considered for keeping the goods; 
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• The retail coverage distance for random customers is not constant at each stage; 

• The customer coverage time of retailers is not constant at every stage; 

• The quantity of goods in retailers is always constant. 
 

3.3. Sets 

 

In this section, all the indexes used in modeling the problem are presented. 

 

3.4. Model Parameters   

 

In this section, all the parameters associated with the problem are introduced. 
 

Table 1. Parameters Used in Model 

𝑐𝑎𝑝𝑒 Capacity of facility 𝑒 ∈ {𝑝, 𝑗, 𝑖, 𝑐𝑐, 𝑑𝑖𝑠} 

𝑐𝑎𝑝𝑘𝑒 Capacity of facility 𝑘𝑒|𝑒 ∈ {𝑝 , 𝑗, 𝑐𝑐, 𝑑𝑖𝑠} 

𝜏𝑘𝑒  The amount of facility 𝑘𝑒|𝑒 ∈ {𝑝 , 𝑗, 𝑐𝑐, 𝑑𝑖𝑠} 

𝑣𝑟  The amount of the type r production 

𝐹𝑐𝑘𝑒  Fixed cost of the facility 𝑘𝑒|𝑒 ∈ {𝑝 } 

𝐹𝐶𝑗  Fixed cost of the jth potential retailer center 

𝐹𝐶𝑘𝑒
′  Fixed cost of the facility 𝑘𝑒|𝑒 ∈∈ {𝑐𝑐, 𝑑𝑖𝑠} 

𝐿𝑗  Standard radius of the service distance for the jth retailer  

𝑇𝑖 Standard radius of time of service receiving for the ith probabilistic costumer 

𝑙𝑗,𝑖,𝑟 Distance covered by the jth retailer transfer to provide service for the ith 

probabilistic customer due to send the type r product 

𝑝 = 1,2, …𝑃 Index of collection centers that have the potential to produce 

𝑗 = 1,2, … 𝐽 Index of collection of retail centers that have the selling potential 

𝑖 = 1,2, … 𝐼 Index of collection of probabilistic customers 

𝑐𝑐 = 1,2, …𝐶𝐶 Index of collection centers that have the potential to collect 

𝑑𝑖𝑠 = 1,2, …𝐷𝐼𝑆 Index of collection of disposal centers that have the elimination potential 

𝑟 = 1,2, …𝑅 Index of the produced goods 

𝑒, 𝑒′= The set of all echelons (𝑒, 𝑒′ ∈ {𝑝 , 𝑗, 𝑖, 𝑐𝑐, 𝑑𝑖𝑠}) 
 

𝑘, 𝑘′= The set of facilities in the echelon (𝑘𝑒 , 𝑘𝑒
′ ∈ {1,…𝐾𝑒}) 
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𝑡𝑖,𝑗,𝑟 Time covered by the ith probabilistic customer spend to gain service for the jth 

retailer due to receive the type r product 

℮𝑗  Upper and lower limit values from the standard distance radius 

𝜃𝑖 Upper and lower limit values from the standard time radius  

𝜇𝑖1 The average horizontal coordinates of the ith probabilistic customer  

𝜇𝑖2 The average vertical coordinates of the ith probabilistic customer  

𝜎𝑖1
2  The variance of horizontal coordinates of the ith probabilistic customer  

𝜎𝑖2
2  The variance of vertical coordinates of the ith probabilistic costumer  

𝑑𝑗1 Spatial horizontal coordinates of the jth retailer 

𝑑𝑗2   Spatial vertical coordinates of the jth retailer 

𝜋𝑗,𝑖,𝑟 The shortage costs of the type rth product from the jth potential retailer center to 

the ith probabilistic customer 

𝜋′𝑖,𝑗,𝑟 The shortage costs of the type rth product from the ith probabilistic customer to the 

jth potential retailer center 

α The percentage of customers returning goods. (α ≤ 1) 

β,
1β2 The percentage of the products that can be revived in the collection center and 

eliminated in the disposal center ( β1 + β2 = 𝛼) 

𝐶𝑜𝑠𝑡𝑘𝑒𝑘𝑒′
′  ,𝑟  The relocation cost of the type r product from the facility center 𝑘𝑒 to facility 

center 𝑘𝑒′  (𝑒, 𝑒
′ ∈ {𝑝 , 𝑗}) 

𝐶𝑜𝑠𝑡𝑗,𝑖,𝑟 The relocation cost of the type r product from the jth potential retailer center to the 

ith probabilistic customer 

𝐶𝑜𝑠𝑡𝑖,𝑗,𝑟
′  The relocation cost of the type r product from the ith probabilistic customer to the 

jth potential retailer center 

𝐶𝑜𝑠𝑡
𝑘𝑒𝑘𝑒′

′  ,𝑟
′  The relocation cost of the type r product from the facility center 𝑘𝑒 to facility 

center 𝑘𝑒′  (𝑒, 𝑒
′ ∈ {𝑖, 𝑐𝑐, 𝑑𝑖𝑠, 𝑝}) 

𝑑𝑖𝑐𝑘𝑒𝑘𝑒′
′  ,𝑟  The transferring distance of the type r product from the facility center 𝑘𝑒 to facility 

center 𝑘𝑒′  (𝑒, 𝑒
′ ∈ {𝑝 , 𝑗}) 
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𝑑𝑖𝑐𝑗,𝑖,𝑟  The distance for transferring type r product from the j th potential retailer center to 

the i th probabilistic customer. 

𝑑𝑖𝑐𝑖,𝑗,𝑟
′  The distance for transferring type r product from the i th potential retailer center to 

the j th probabilistic customer. 

𝑑𝑖𝑐
𝑘𝑒𝑘𝑒′

′  ,𝑟
′  The distance for transferring type r product from the facility center 𝑘𝑒 to facility 

center 𝑘𝑒′  (𝑒, 𝑒
′ ∈ {𝑖, 𝑐𝑐, 𝑑𝑖𝑠, 𝑝}) 

𝑥𝑘𝑒𝑘𝑒′
′  ,𝑟 The amount of the type r product sends from the facility center 𝑘𝑒 to facility center 

𝑘′𝑒′  (𝑒, 𝑒
′ ∈ {𝑝 , 𝑗}) 

𝑥𝑗,𝑖,𝑟  The amount of probabilistic demand of the type r product send from jth potential 

retailer center to the ith probabilistic customer 

𝑥𝑖,𝑗,𝑟
′  The amount of probabilistic demand of the type r product received the ith 

probabilistic customer from, the jth potential retailer center 

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′  The amount of the type r product sends from the facility center 𝑘𝑒 to facility center 

𝑘′𝑒′  (𝑒, 𝑒
′ ∈ {𝑖, 𝑐𝑐, 𝑑𝑖𝑠, 𝑝}) 

𝑑𝑖𝑐𝑅 

𝑑𝑖𝑐𝐸𝐷 

𝑑𝑖𝑐𝐸𝐷𝑆 

𝑑𝑖𝑐𝐶𝐻 

Rectangular motion 

Euclidean motion 

Euclidean Square motion 

Chebyshev motion 

𝐶𝑂𝑉1 

𝐶𝑂𝑉2 

Expected distance coverage 

Expected time coverage 

 

 

3.5. Decision Variable 

 

In this paper, only one decision variable (0 and 1) is to designate customers to retailers or vice 

versa.\ 

𝑸𝟏 = {
𝟏  
𝟎
𝒊𝒇 𝒕𝒉𝒆 𝒓𝒆𝒕𝒂𝒊𝒍𝒆𝒓 𝒊𝒔 𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝒕𝒐 𝒕𝒉𝒆 𝒄𝒐𝒔𝒕𝒖𝒎𝒆𝒓

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

 

3.6. Model formulation 
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 The mathematical model of this chain consists of two stages. The first stage formulates the 

mathematical model among probabilistic customers and retailers, while the second stage formulates 
the entire problem. 

Step 1: Calculations are highly effective for retailers and potential customers. Thus, it is presumed 

that the movement type from retailers to customers or vice versa, and the calculation of retailers' 

distance coverage radius and customers' time coverage radius are compared using heuristic 
algorithms. Subsequently, the minimum value is selected and deemed as the output of this section. 

 

 
Equation (1) outlines the objective function for the initial step involving retailers and probabilistic 

customers. This process comprises two distinct parts delineated by "{}”. The first part calculates the 

minimum coverage of expected distance and motion (Rectangular, Euclidean, Euclidean Square, and 
Chebyshev) for retailers providing services to customers. Additionally, this section specifies the 

probabilistic customer demand. The second part involves computing the minimum expected time 

coverage and motion (Rectangular, Euclidean, Euclidean Square, and Chebyshev) for customers 
availing services from retailers. Ultimately, the minimum costs are compared, and the lowest value 

is chosen as the output. This output determines whether the retailers deliver the goods or the 

customers pick them up. Constraint (2) defines the maximum time coverage radius for the customer, 

while Constraint (3) specifies the maximum motion radius for retailers. Finally, Constraint (4) 
pertains to the selection of the decision variable. 

Step 2: In this step, according to Fig. 1 of the modeling process, the input and output ports of the 

desired chain are calculated. The first objective function shows the value of the first target function 
(displacement cost), and the second objective function shows the profits from the sale of goods. For 

more information, see the related Equation 𝑓1(𝑗,𝑖),  𝑓2(𝑖,𝑗), 𝑓3(𝑗.𝑖), 𝑓4(𝑖,𝑗)E(S) and E (𝑆′) in APPENDIX. 

 

 

Equation (5) represents the objective function of the process, which consists of 3 parts, each separated 

by a "{}" from the others. Part 1 includes the sum of the fixed and the variable costs of the transfer 

of goods, which are shipped from the production centers to the retailer centers. Part 2 is calculated 
using Equation (1). Finally, Part 3 includes the entire fixed and variable cost of products returned by 

customers to the collection centers. Afterward, fixed and variable costs of the transfer of goods from 

collection centers to repair and disposing centers are calculated. Finally, calculated fixed and variable 
costs of the transfer of goods from the repair center to distribution and warehouse and disposing 

centers are computed. 

 

𝑓 = 𝑚𝑖𝑛 ({∑ 𝐹𝐶𝑗
𝐽
𝑗 + ∑ ∑ ∑ 𝑥𝑗,𝑖,𝑟

𝑅
𝑟=1

𝐽
𝑗=1

𝐼
𝑖=1 × 𝐶𝑜𝑠𝑡𝑗,𝑖,𝑟 ×𝑚𝑖𝑛( 𝑓1(𝑗,𝑖), 𝑓3(𝑗.𝑖))} ×

𝑄1 + {∑ 𝐹𝐶𝑗 +
𝐽
𝑗

∑ ∑ ∑ 𝑥𝑖,𝑗𝑟
′𝑅

𝑟=1
𝐼
𝑖=1

𝐽
𝑗=1 × 𝐶𝑜𝑠𝑡𝑖,𝑗,𝑟

′ ×𝑚𝑖𝑛( 𝑓2(𝑖,𝑗), 𝑓4(𝑖,𝑗))} × (1 − 𝑄1))  

S.T 

𝜃𝑖 < 𝑇𝑖        ∀𝑖 ∈ 𝐼                    
℮𝑗 < 𝐿𝑗       ∀𝑗 ∈ 𝐽                    

𝑄1 + (1 − 𝑄1)=1 

(1) 

 

 
 

 

(2) 
(3) 

(4) 

𝑇𝑂𝑇𝐴𝐿 𝑂𝐵𝐽𝐸𝐶𝑇1 = 𝑚𝑖𝑛 ({∑ 𝐹𝑐𝑘𝑒𝑘𝑒∈{𝑝 } + ∑ ∑ 𝑥𝑘𝑒𝑘𝑒′
′  ,𝑟 × 𝐶𝑜𝑠𝑡𝑘𝑒𝑘𝑒′

′  ,𝑟 ×𝑟𝑘𝑒∈{𝑝 ,𝑗}

𝑑𝑖𝑐𝑘𝑒𝑘𝑒′
′  ,𝑟}  + 𝑚𝑖𝑛{𝑓} +  {∑ 𝐹𝐶𝑘𝑒

′
𝑘𝑒∈{𝑐𝑐,𝑑𝑖𝑠} + ∑ ∑ 𝑥

𝑘𝑒𝑘𝑒′
′  ,𝑟

′ × 𝐶𝑜𝑠𝑡
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ×𝑟𝑘𝑒∈{𝑖,𝑐𝑐,𝑑𝑖𝑠,𝑝}

𝑑𝑖𝑐
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ })  

(5) 
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Equation (6) presents the Profit function of the probabilistic customer by uncertain demand. 
 

 

 

Constraint (7) represents the maximum capacity of all facility centers. Constraint (8) indicates the 

maximum capacity. Constraint (9) declares the maximum production amount, r, in each facility 

center. Constraint (10) shows the maximum capacity of goods entering the production centers. 

𝑇𝑂𝑇𝐴𝐿 𝑂𝐵𝐽𝐸𝐶𝑇2 = 𝑚𝑎𝑥(𝑆𝐴𝑗,𝑖,𝑟 ×𝑚𝑖𝑛{𝐸(𝑥𝑗,𝑖,𝑟), 𝑐𝑎𝑝𝑗} − 𝜋𝑗,𝑖,𝑟 ×𝑚𝑎𝑥{(𝐸(𝑥𝑗,𝑖,𝑟) − 𝑐𝑎𝑝𝑗), 0} ×

𝑄1) + (𝐵𝑈𝑖,𝑗,𝑟
′ × 𝑚𝑖𝑛{𝐸(𝑥′𝑖,𝑗,𝑟), 𝑐𝑎𝑝𝑗}  − 𝜋

′
𝑖,𝑗,𝑟 ×𝑚𝑎𝑥[(𝐸(𝑥

′
𝑖,𝑗,𝑟) − 𝑐𝑎𝑝𝑗), 0] × 1 − 𝑄1)  

(6) 

S. T   

∑ 𝜏𝑘𝑒 ,𝑟 ≤𝑘𝑒|𝑒∈{𝑝,𝑗,𝑐𝑐,𝑑𝑖𝑠} 𝑐𝑎𝑝𝑒∈{𝑝,𝑗,𝑐𝑐,𝑑𝑖𝑠}  ∀𝑟 (7) 

∑ 𝜏𝑘𝑒 ,𝑟 ≤ 𝑐𝑎𝑝𝑘𝑒𝑟   ∀𝑘𝑒|𝑒 ∈ {𝑝 , 𝑗, 𝑐𝑐, 𝑑𝑖𝑠}                                (8) 

∑ 𝜏𝑘𝑒  ,𝑟 ≤ 𝑣𝑟𝑘𝑒|𝑒∈{𝑝,,𝑗,𝑐𝑐,𝑑𝑖𝑠}   ∀𝑟 (9) 

∑ 𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑐𝑐,𝑝}) +∑ 𝑥𝑘𝑒𝑘𝑒′

′  ,𝑟𝑘𝑒,𝑘𝑒′
′ |𝑒,𝑒′∈{𝑝,𝑗} ≤ ∑ 𝜏𝑘𝑒 ,𝑟𝑘𝑒|𝑒∈{𝑝}   ∀𝑟 (10) 

∑ 𝑥𝑘𝑒𝑘𝑒′
′  ,𝑟𝑟 ≤  ∀𝑥𝑘𝑒𝑘𝑒′

′  ∈ (𝑒, 𝑒
′ ∈ {𝑝 , 𝑗}), ∀𝜏𝑘𝑒 |𝑒 ∈ {𝑗}  (11) 

∑ 𝑥𝑘𝑒𝑘𝑒′
′  ,𝑟= 𝑥

𝑘𝑒𝑘𝑒′
′  
∈(𝑒,𝑒′∈{𝑝,𝑗}) ,𝑟   

(∑ ∑ 𝐸(𝑥𝑗,𝑖,𝑟
𝐽
𝑗=1

𝐼
𝑖=1 )) × 𝑄1 + (∑ ∑ 𝐸(𝑥𝑖,𝑗,𝑟

′ )𝐼
𝑖=1

𝐽
𝑗=1 ) × (1 − 𝑄1)  

∀𝑟 (12) 

(∑ ∑ 𝛼𝑗,𝑖,𝑟
𝐽
𝑗

𝐼
𝑖 × ∑ ∑ 𝐸(𝑥𝑗,𝑖,𝑟

𝐽
𝑗=1

𝐼
𝑖=1 )) × 𝑄1 + (∑ ∑ 𝛼𝑖,𝑗,𝑟

𝐼
𝑖

𝐽
𝑗 ×∑ ∑ 𝐸(𝑥𝑖,𝑗,𝑟

′ )𝐼
𝑖=1

𝐽
𝑗=1 ) × (1 −

𝑄1) = ∑ 𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑖,𝑐𝑐})   

∀𝑟 (13) 

∑ ∑ 𝛼𝑗,𝑖,𝑟
𝐽
𝑗

𝐼
𝑖 × 𝑄1 + ∑ ∑ 𝛼𝑖,𝑗,𝑟

𝐼
𝑖

𝐽
𝑗 × (1 − 𝑄1) ≤ 1  ∀𝑟 (14) 

∑ 𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑖,𝑐𝑐}) ≤ ∑ 𝜏𝑘𝑒 ,𝑟𝑘𝑒|𝑒∈{𝑐𝑐}   ∀𝑟 (15) 

∑ ∑ 𝛽𝑖,𝑐𝑐,𝑟
1𝐼

𝑖=1
𝐶𝐶
𝑐𝑐=1 × ∑ 𝑥

𝑘𝑒𝑘𝑒′
′  ,𝑟

′
𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑖,𝑐𝑐}) = ∑ 𝑥

𝑘𝑒𝑘𝑒′
′  ,𝑟

′
𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑐𝑐,𝑝})   

 

∀𝑟 (16) 

∑ 𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑐𝑐,𝑝}) ≤ ∑ 𝑥

𝑘𝑒𝑘𝑒′
′  ,𝑟

′
𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑖,𝑐𝑐})    (17) 

∑ ∑ 𝛽𝑖,𝑐𝑐,𝑟
2𝐼

𝑖
𝐶𝐶
𝑐𝑐 × ∑ 𝑥

𝑘𝑒𝑘𝑒′
′  ,𝑟

′
𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑖,𝑐𝑐}) = ∑ 𝑥

𝑘𝑒𝑘𝑒′
′  ,𝑟

′
𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑐𝑐,𝑑𝑖𝑠})    (18) 

∑ 𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑐𝑐,𝑑𝑖𝑠}) ≤ ∑ 𝜏𝑘𝑒 ,𝑟𝑘𝑒|𝑒∈{𝑑𝑖𝑠}    (19) 

∑ 𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑐𝑐,𝑑𝑖𝑠}) ≤ ∑ 𝑥

𝑘𝑒𝑘𝑒′
′  ,𝑟

′
𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑖,𝑐𝑐})    (20) 

∑ 𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑐𝑐,𝑝})  + ∑ 𝑥

𝑘𝑒𝑘𝑒′
′  ,𝑟

′
𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑐𝑐,𝑑𝑖𝑠}) =

∑ 𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′

𝑥
𝑘𝑒𝑘𝑒′

′  ,𝑟
′ ∈(𝑒,𝑒′∈{𝑖,𝑐𝑐})   

 (21) 

 

∀𝑟 
 

 

∀𝑟 

 

∀𝑟 

 

∀𝑟 
 

 

∀𝑟 

(17) 
 

 

(18) 

 
(19) 

 

(20) 
 

 

(21) 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
24

-0
3-

20
 ]

 

                            10 / 28

http://iors.ir/journal/article-1-822-en.html


78 N. Javadian et al 

 

Constraint (11) indicates the maximum entry capacity of each retailer center. Constraint (12) ensures 

the balance of goods entering and leaving retail centers. Based on Algorithms 1 and 2, this constraint 

determines whether the retailers send goods to the customers or the customers go to the retailers to 

receive the goods. Constraint (13), depending on the decision variable, shows the percentage of goods 

returned by customers. Constraint (14) sets the total percentage of goods returned by customers to a 

maximum of 1. Constraint (15) represents the maximum capacity of goods entering the collection 

centers from all customers. Constraint (16) shows the percentage of goods shipped from the collection 

center to the production centers. Constraint (17) states that the maximum number of goods in the 

collection center equals the number of returned goods. Constraint (18) gives the percentage of goods 

sent from the total collection center to the disposal centers. Constraint (19) shows that the maximum 

number of goods sent from the collection centers to the disposal centers is equal to the maximum 

capacity of the disposal centers. Constraint (20) asserts that the maximum number of destroyed goods 

is equal to the number of returned goods. Finally, Constraint (21) presents the balance of goods entry. 

 

4. Solution Approach 

 

Additionally, the proposed model not only reduces costs for retailers by selecting the best location 
but also decreases the carbon dioxide emissions for both retailers and customers. In this model, 

retailers can be chosen to provide services, while customers can also be selected to receive services. 

The expected distances between customers and retailers are calculated based on different movement 
methods (Rectangular, Euclidean, Euclidean Square, and Chebyshev) due to the probabilistic nature 

of customers. These values are then compared with the MECD of retailers, as displayed in Algorithm 

1, and the minimum value is selected. Similarly, the minimum value is used to assign customers to 
retailers based on their movement methods and compared with MECT, presented in Algorithm 2. 

Ultimately, the allocation and service provision method is determined by choosing the minimum cost 

from the two methods mentioned above. 
 

Algorithm 1: Assigning retailers to customers  

Step 1: Initialization 

-Generate the average longitudinal and transverse to the number of probabilistic 

customers 

 𝝁11, 𝝁21, … , 𝝁𝐼1.  

𝝁12, 𝝁22 , … , 𝝁𝐼2. 

Step 2: Computing expected distance and cost 

- Compute expected distance based on the type of sending the goods from retailers to 

probabilistic customers (Rectangular, Euclidean, Euclidean Square, and Chebyshev)      

-Calculate the cost of sending goods from retailers to potential customers using the 

second step  

 [
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Step 3: Computing distance coverage radius 

- Computes 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 based on the second step  

 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑎𝑥(𝐸[(𝑑𝑖𝑐𝑅𝑗,𝑖), (𝑑𝑖𝑐𝐸𝐷𝑗,𝑖), (𝑑𝑖𝑐𝐸𝐷𝑆𝑗,𝑖), (𝑑𝑖𝑐𝐶𝐻𝑗,𝑖)]) 

𝑙𝑗,𝑖,𝑟=𝑟𝑎𝑛𝑑([1 ,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒])𝐽×𝐼×𝑅 

Step 4: Computing maximum and the minimum    distance coverage radii 

-For all retailers to provide services, calculate the minimum and the maximum distance 

coverage radius separately; 

Min and Max = [𝐿𝑗 −℮𝑗    𝐿𝑗 +℮𝑗 ] 

Step 5: assign retailer 

If: 

(𝑙𝑗,𝑖,𝑟) ≤ [𝐿𝑗 −℮𝑗] Then, calculate {∑ 𝐹𝐶𝑗
𝐽
𝑗 + ∑ ∑ ∑ 𝑥𝑗,𝑖,𝑟

𝑅
𝑟=1

𝐽
𝑗=1

𝐼
𝑖=1 × 𝐶𝑜𝑠𝑡𝑗,𝑖,𝑟 ×

𝑚𝑖𝑛(𝐸[𝑑𝑖𝑐𝑗,𝑖,𝑟], 𝐸[𝐶𝑂𝑉
1(𝑙𝑗,𝑖,𝑟)])} and assign the retailer to the 

𝑚𝑎𝑥(𝐸[𝑑𝑖𝑐𝑗,𝑖,𝑟], 𝐸[𝐶𝑂𝑉
1(𝑙𝑗,𝑖,𝑟)]) 

 𝐿𝑗 −℮𝑗 < (𝑙𝑗,𝑖,𝑟) ≤ 𝐿𝑗, then, calculate {∑ 𝐹𝐶𝑗
𝐽
𝑗 +∑ ∑ ∑ 𝑥𝑗,𝑖,𝑟

𝑅
𝑟=1

𝐽
𝑗=1

𝐼
𝑖=1 × 𝐶𝑜𝑠𝑡𝑗,𝑖,𝑟 ×

𝑚𝑖𝑛(𝐸[𝑑𝑖𝑐𝑗,𝑖,𝑟], 𝐸[𝐶𝑂𝑉
1(𝑙𝑗,𝑖,𝑟)])} and assign the retailer to the 

max(𝐸[𝑑𝑖𝑐𝑗,𝑖,𝑟], 𝐸[𝐶𝑂𝑉
1(𝑙𝑗,𝑖,𝑟)])  

𝐿𝑗 < (𝑙𝑗,𝑖,𝑟) ≤ 𝐿𝑗 +℮𝑗 , then, calculate {∑ 𝐹𝐶𝑗
𝐽
𝑗 + ∑ ∑ ∑ 𝑥𝑗,𝑖,𝑟

𝑅
𝑟=1

𝐽
𝑗=1

𝐼
𝑖=1 × 𝐶𝑜𝑠𝑡𝑗,𝑖,𝑟 ×

𝑚𝑖𝑛(𝐸[𝑑𝑖𝑐𝑗,𝑖,𝑟], 𝐸[𝐶𝑂𝑉
1(𝑙𝑗,𝑖,𝑟)])} and assign the retailer to the 

max(𝐸[𝑑𝑖𝑐𝑗,𝑖,𝑟], 𝐸[𝐶𝑂𝑉
1(𝑙𝑗,𝑖,𝑟)])  

(𝑙𝑗,𝑖,𝑟) > 𝐿𝑗 +℮𝑗 , then calculate {∑ 𝐹𝐶𝑗
𝐽
𝑗 + ∑ ∑ ∑ 𝑥𝑗,𝑖,𝑟

𝑅
𝑟=1

𝐽
𝑗=1

𝐼
𝑖=1 × 𝐶𝑜𝑠𝑡𝑗,𝑖,𝑟 ×

𝑚𝑖𝑛(𝐸[𝑑𝑖𝑐𝑗,𝑖,𝑟], 𝐸[𝐶𝑂𝑉
1(𝑙𝑗,𝑖,𝑟)])} and assign the retailer S to the max(𝐸[𝑑𝑖𝑐𝑗,𝑖,𝑟], 𝐸[𝐶𝑂𝑉

1(𝑙𝑗,𝑖,𝑟)]) 

Algorithm 2: Assigning customers to retailers 

 

Step 1: Initialization 

Generate the average longitudinal and transverse to the number of probabilistic customers 

 𝝁11, 𝝁21, … , 𝝁𝐼1.  
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𝝁12, 𝝁22 , … , 𝝁𝐼2. 

Step 2: Computing expected distance and cost 

Compute expected distance based on the type of sending the goods from retailers to 

probabilistic customers (Rectangular, Euclidean, Euclidean Square, and Chebyshev),  

Calculate the cost of sending goods from retailers to potential customers using the second step  

Step 3: Computing time coverage radius 

Using the second step, compute 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

𝑀𝑎𝑥𝑇𝑖𝑚𝑒 = 𝑚𝑎𝑥(𝐸[(𝑑𝑖𝑐𝑅𝑖,𝑗), (𝑑𝑖𝑐𝐸𝐷𝑖,𝑗), (𝑑𝑖𝑐𝐸𝐷𝑆𝑖,𝑗), (𝑑𝑖𝑐𝐶𝐻𝑖,𝑗)]) 

𝑡𝑖,𝑗,𝑟=𝑟𝑎𝑛𝑑([1 , 𝑀𝑎𝑥𝑇𝑖𝑚𝑒])𝐼×𝐽×𝑅 

Step 4: Computing maximum and the minimum time coverage radius 

For all retailer service providers, calculate the minimum and the maximum time coverage 

radius separately; 

Min and max= [𝑇𝑖 − 𝜃𝑖     𝑇𝑖 + 𝜃𝑖] 

Step 5: assign customer 

if: 

(𝑡𝑖,𝑗,𝑟) ≤ [𝑇𝑖 − 𝜃𝑖] then calculate {∑ 𝐹𝐶𝑗 +
𝐽
𝑗

∑ ∑ ∑ 𝑥𝑖,𝑗,𝑟
′𝑅

𝑟=1
𝐼
𝑖=1

𝐽
𝑗=1 × 𝐶𝑜𝑠𝑡𝑖,𝑗,𝑟

′ ×

𝑚𝑖𝑛([𝑑𝑖𝑐𝑖,𝑗,𝑟], 𝐸[𝐶𝑂𝑉
2(𝑡𝑖,𝑗,𝑟)])} And assign the customer to the max ([𝑑𝑖𝑐𝑖,𝑗,𝑟], 𝐸[𝐶𝑂𝑉

2(𝑡𝑖,𝑗,𝑟)])  

𝑇𝑖 − 𝜃𝑖 < (𝑡𝑖,𝑗,𝑟) ≤ 𝑇𝑖  then calculate {∑ 𝐹𝐶𝑗 +
𝐽
𝑗

∑ ∑ ∑ 𝑥𝑖,𝑗,𝑟
′𝑅

𝑟=1
𝐼
𝑖=1

𝐽
𝑗=1 × 𝐶𝑜𝑠𝑡𝑖,𝑗,𝑟

′ ×

𝑚𝑖𝑛([𝑑𝑖𝑐𝑖,𝑗,𝑟], 𝐸[𝐶𝑂𝑉
2(𝑡𝑖,𝑗,𝑟)])} And assign the customer to the max([𝑑𝑖𝑐𝑖,𝑗,𝑟], 𝐸[𝐶𝑂𝑉

2(𝑡𝑖,𝑗,𝑟)])  

𝑇𝑖 < (𝑡𝑖,𝑗,𝑟) ≤ 𝑇𝑖 + 𝜃𝑖, then calculate {∑ 𝐹𝐶𝑗 +
𝐽
𝑗

∑ ∑ ∑ 𝑥𝑖,𝑗,𝑟
′𝑅

𝑟=1
𝐼
𝑖=1

𝐽
𝑗=1 × 𝐶𝑜𝑠𝑡𝑖,𝑗,𝑟

′ ×

𝑚𝑖𝑛([𝑑𝑖𝑐𝑖,𝑗,𝑟], 𝐸[𝐶𝑂𝑉
2(𝑡𝑖,𝑗,𝑟)])} And assign the customer to the max ([𝑑𝑖𝑐𝑖,𝑗,𝑟], 𝐸[𝐶𝑂𝑉

2(𝑡𝑖,𝑗,𝑟)])  

(𝑡𝑖,𝑗,𝑟) > 𝑇𝑖 + 𝜃𝑖 then calculate {∑ 𝐹𝐶𝑗 +
𝐽
𝑗

∑ ∑ ∑ 𝑥𝑖,𝑗,𝑟
′𝑅

𝑟=1
𝐼
𝑖=1

𝐽
𝑗=1 × 𝐶𝑜𝑠𝑡𝑖,𝑗,𝑟

′ ×

𝑚𝑖𝑛([𝑑𝑖𝑐𝑖,𝑗,𝑟], 𝐸[𝐶𝑂𝑉
2(𝑡𝑖,𝑗,𝑟)])} And assign the customer to the max ([𝑑𝑖𝑐𝑖,𝑗,𝑟], 𝐸[𝐶𝑂𝑉

2(𝑡𝑖,𝑗,𝑟)])  

The minimum cost is chosen by comparing the outputs of Algorithm 1 and Algorithm 2. 

5. Non-Sorting-Genetic Algorithm II 
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The application of meta-heuristic algorithms can yield significant benefits in addressing complex 

problems. As a result, the utilization of NSGA-II for solving unconstrained multi-objective problems 

is rapidly gaining traction. Pasandideh,et al [43]. this study, the algorithm is employed to address the 

general model of the SC, given its dual-objective nature and numerous constraints. Figure 2 illustrates 
the flowchart of this algorithm. Garg,et al [44]. 

 
NSGA-II

Difin input parameter

Initialise random population

Tournament selection 

Non-dominated sorting

Stopping criteria Pareto front

Genetic operator(Crosse over and mutation)

Non-dominated sorting

Replace chromosome

 
 

Figure 2.  Flow Chart of the NSGA-II 

 

In addition, a Taguchi method is used to set the parameters of these algorithms to enhance their 

performance. Table 2 shows proposed values for NSGA II algorithm parameters. see the related data 

in appendix. 

5.1. Proposed chromosome 

 

 The structure of the chromosome is defined to be consisting of several components, in which the 
variable related to location and survivors are considered as one part. The variables in this part are 

defined as is shows figure 3. 
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Figure 3. Proposed Chromosome 

Figure 4 shows the intersection of the proposed chromosome. As can be seen, a single point 

intersection has been used. In this form, a point is randomly selected and the corresponding genes are 

moved 

 

Figure 4. Proposed Chromosome 

5.2. Mutation Operation 

 

Figure 5 shows the mutation operator. For this purpose, a row is selected as desired and the 

selected row is reversed. 

 

Figure 5. Mutation Operation 

To estimate the algorithm parameters, the result of 100 experiments designed for this problem 

shows that in each experiment, the algorithm parameters change and the results change accordingly. 

Figure 6 shows the results of the Taguchi approach for estimating parameters. 
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Figure 6. Taguchi Parameter Adjustment 

In addition, a Taguchi method is used to set the parameters of these algorithms to enhance their 
performance. Table 2 shows proposed values for NSGA II algorithm parameter 

 

Table 2. Proposed Values for NSGA II Algorithm Parameters 

 

 

 

6. Numerical example 

 

Fig. 1 presents a numerical example for the CLSC model to understand the problem model. This 

problem is solved using MATLAB R2018b coding. 

  

7. Computational results 

 

The CLSC, as a multi-objective matter, stands as a crucial facet of SC problems. A key objective 

in these scenarios involves reducing retailer service distance or cutting customer travel time to reach 
service centers. In this study, a specific instance of CLSC problems, the focus lies on presenting 

heuristic allocation algorithms. It emphasizes retailers with known coordinates and their coverage 

distance for service provision. Additionally, customers possess probabilistic coordinates and 
visitation time for retail centers. This model achieves optimal allocation by simultaneously evaluating 

retailer distances and expected coverage, alongside the time and expected coverage of probabilistic 

customers. Also, the best places of retailers are discovered using the NSGA-II algorithm. Afterward, 

the distance coverage radius between retailers and the time coverage radius of the customers is 
calculated considering the amount of standard radius, upper and lower bounds of each of the retailers 

and customers. To prevent further dissemination in solving this example, we held the potential 

location search range for probabilistic customers within [4000, 7000] and the optimal search location 

mutation Cross over Pop number Max number 

0.2 0.4 80 200 
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for retail centers within [3000, 7000] spans. Thus, the optimal coordinates of retailers are calculated 

in the same span. 
 

 

 

Figure 7.  Initial Coordinates OF Retailers and Probabilistic Customers and Standard Lower and 

Upper Coverage Radius 

Initial Coordinates of Retailers and Probabilistic Customers and Standard Lower and Upper 

Coverage Radius are essential for understanding the distribution of potential customers and the reach 

of each retailer. Analyzing these coordinates allows us to establish the standard lower and upper 
coverage radius for each retailer, enabling them to optimize their efforts. This data will offer valuable 

insights into customer behavior and preferences, empowering retailers to better meet the needs of 

their target audience. 
 

Fig. 8 Considering that customer location coordinates are random and include any value, the red 

star points in this figure depict the probabilistic customer coordinates. The optimal solution point 
from the heuristic algorithm is also shown with a black star. In the third part, this point is compared 

with random points and guided to the best point according to the algorithm, represented by a square 

containing the red star. 
 

 

 

Figure 8. The Pareto Front Chart of Numerical Sample 

The results of problem-solving before and after solving with the NSGA-II algorithm are presented 

in Table 3. The results show that customers should turn to retailers for services. The example results 
show that both the original and improved algorithms require customers to contact retailers for service. 
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A comparison table depicts the cost and profit before and after the genetic algorithm's final solution. 

The algorithm's efficiency and its proximity to solving the problem with the genetic algorithm make 

it an acceptable solution. The comparison table also indicates that the improved algorithm led to a 

significant cost reduction and profit increase, demonstrating the genetic algorithm's effectiveness in 
optimizing the solution. The algorithm's final solution's proximity to the optimal one indicates its 

efficiency and reliability. The results also emphasize the potential for further algorithm improvements 

and the need for ongoing monitoring and adjustments to ensure continued optimization. 
 

 

Table 3. Total Cost and Profit Function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 shows the starting coordinates of retailers and potential customers. Additionally, it displays 
the optimal coordinates calculated from Table 3 that retailers can provide to these customers. The 

original retailer locations are denoted by red squares, while the random probablistic customer 

locations are represented by black circles. After the improvement, this algorithm suggests new 
coordinates for retailers, shown as green squares. Coordinates for retailers, shown as green squares. 

 

R
esu

lts ch
eck

 

C
o
st an

d
 p

ro
fit 

calcu
lated

 b
y
 allo

catin
g
 

th
e p

ro
p
o
sed

 alg
o
rith

m
 

b
efo

re N
S

G
A

-II 

C
o
st an

d
 p

ro
fit 

calcu
lated

 b
y
 allo

catin
g
 

th
e p

ro
p
o
sed

 alg
o
rith

m
 

after N
S

G
A

-II 

C
o
st  

fu
n
ctio

n
 

P
ro

fit 

fu
n
ctio

n
 

C
o
st  

fu
n
ctio

n
 

P
ro

fit 

fu
n
ctio

n
 

1 

The total cost 
of the system, 

if retailers 

provide 

services to 
probabilistic 

customers 

14806589 5082 14385401 4449 

2 

The total cost 
of the system, 

if probabilistic 

customers 

refer to 
retailers for 

service 

14572321 4913 14260093 4311 

Conclusion Customers refer to 
retailers for 

services 

Customers refer to 
retailers for 

services 
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Figure 9. Optimal Coordinated of Retailers 

Table 4 presents the coordinates of retailers before and after being solved by NSGA-II. As the 

range of coordinates for retailers is limited, the optimal solutions have also been chosen within this 

range. 

Table 4. Retailers Coordinates Before and After Solving By NSGA-II 

Coordinates of 

the retailers after 
solving with 

NSGA-II 

Coordinates of 

the retailers 
before solving 

with NSGA-II 
N

u
m

b
er 

R
etailer 

[4489.6, 4288.2] 
[5457.6, 4939.4] 

[4715.9, 3572.7] 

[3200, 5000] 
[5500, 6000] 

[7000, 5000] 

1 
2 

3 

 

The results from Table 5 show that after using NSGA-II, the allocation of retailers to customers 
has improved, ensuring that customers are directed to the most suitable retailers for their needs. This 

optimization has led to improved efficiency and customer satisfaction, benefiting both retailers and 

customers. 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Table 5. Probabilistic Customers Assigned to Retailers 
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Table 6 shows the customers' preference for motion or coverage usage before and after the NSGA-
II algorithm solution. Prior to implementing the NSGA-II algorithm solution, all customers used 

coverage options. However, following the NSGA-II algorithm solution, customers incorporated 

movement in addition to coverage usage, indicating a notable enhancement in customer engagement 
with these features. 

 

Table 6. Deciding On the Type of Movement or Coverage 

After solving by Nsga2 Before solving by Nsga2  

j=3 j=2 j=1 j=3 j=2 j=1 

𝐂𝐎𝐕𝟐 dicED COV2 COV2 COV2 COV2 r=1 i=1 

𝐂𝐎𝐕𝟐 dicED COV2 COV2 COV2 COV2 r=2 

𝐂𝐎𝐕𝟐 COV2 COV2 COV2 COV2 COV2 r=1 i=2 

𝐂𝐎𝐕𝟐 COV2 COV2 COV2 COV2 COV2 r=2 

𝐂𝐎𝐕𝟐 COV2 dicED COV2 COV2 COV2 r=1 i=3 

𝐂𝐎𝐕𝟐 COV2 dicED COV2 COV2 COV2 r=2 

𝐝𝐢𝐜𝐂𝐇 COV2 COV2 COV2 COV2 COV2 r=1 i=4 

𝐝𝐢𝐜𝐂𝐇 COV2 COV2 COV2 COV2 COV2 r=2 

𝐂𝐎𝐕𝟐 COV2 dicED COV2 COV2 COV2 r=1 i=5 

𝐂𝐎𝐕𝟐 COV2 dicED COV2 COV2 COV2 r=2 

𝐂𝐎𝐕𝟐 dicCH COV2 COV2 COV2 COV2 r=1 i=6 

𝐂𝐎𝐕𝟐 dicCH COV2 COV2 COV2 COV2 r=2 

𝐂𝐎𝐕𝟐 COV2 COV2 COV2 COV2 COV2 r=1 i=7 

𝐂𝐎𝐕𝟐 COV2 COV2 COV2 COV2 COV2 r=2 

𝐂𝐎𝐕𝟐 dicED COV2 COV2 COV2 COV2 r=1 i=8 

𝐂𝐎𝐕𝟐 dicED COV2 COV2 COV2 COV2 r=2 

After solving by Nsga2 Before solving by Nsga2 
 

j=3 j=2 j=1 j=3 j=2 j=1 

      r=1 
i=1 

      r=2 

      r=1 
i=2 

      r=2 

      r=1 
i=3 

      r=2 

      r=1 
i=4 

      r=2 

      r=1 
i=5 

      r=2 
      r=1 

i=6 
      r=2 

      r=1 
i=7 

      r=2 

      r=1 
i=8 

      r=2 
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8. Conclusion 

 

In this paper, a closed-loop supply chain (CLSC) is modeled to obtain the best location of retailers 

and allocate them to other utilities. The structure of CLSC includes production centers, retailers’ 

centers, probabilistic customers, collection, and disposal centers. In the first step, considering the 

probabilistic place of customers and the fixed location of retailers, the expected distance is calculated 

at the first step according to the type of movement (Rectangular, Euclidean, Ecclesiastical Square, 

And Chebyshev). Next, based on the coverage radius, the distance between retailers and the time of 

probabilistic customers is calculated probabilistically by integral calculations. Additionally, 

customers were allocated to retailers or vice versa by presenting Algorithms 1 and 2. In the second 

step, which is the general solution to the problem, the NSGA-II algorithm is applied. The results of 

applying the model to the studied example indicate that concerning costs and profit. Based on these 

results, customers are recommended to refer to retailers to receive services. Moreover, the type of 

motion was hinted at considering the calculated expected coverage time. Furthermore, new 

coordinates are calculated for retailers such that to provide the lowest cost for customers and enable 

the optimal allocation of retailers to customers. Finally, routing, relocating time, probabilistic 

inventory in warehouse can be possible themes for future research using various scenarios in a time 

window. 
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APPENDIX: 

 𝑓1(𝑗,𝑖) = min (𝐸[𝑑𝑖𝑐𝑗,𝑖]) =

𝑚𝑖𝑛(𝐸[(𝑑𝑖𝑐𝑅𝑗,𝑖), (𝑑𝑖𝑐𝐸𝐷𝑗,𝑖), (𝑑𝑖𝑐𝐸𝐷𝑆𝑗,𝑖), (𝑑𝑖𝑐𝐶𝐻𝑗,𝑖)])  

= 𝑚𝑖𝑛[(∑ ∑ (|𝑑𝑗1 − 𝜇𝑖1| + |𝑑𝑗2 −
𝑰
𝒊=𝟏

𝑱
𝒋=𝟏

𝜇𝑖2|)) , (∑ ∑ ((√(𝑑𝑗1 − 𝜇𝑖1)
2
+ (𝑑𝑗2 − 𝜇𝑖2)

2
) +𝐼

𝑖=1
𝐽
𝑗=1

1

2
(

𝜎𝑖1
2 +𝜎𝑖2

2

√(𝑑𝑗1−𝜇𝑖1)
2
+(𝑑𝑗2−𝜇𝑖2)

2
))) , (∑ ∑ ((𝑑𝑗1 −

𝐼
𝑖=1

𝐽
𝑗=1

𝜇𝑖1)
2
+ 𝜎𝑖1

2 + (𝑑𝑗2 − 𝜇𝑖2)
2
+

 𝜎𝑖2
2 )) , (𝑚𝑎𝑥(∑ ∑ |𝑑𝑗1 − μ𝑖1|

𝐼
𝑖=1

𝐽
𝑗=1 , |𝑑𝑗2 − μ𝑖2|))]  

 𝑓2(𝑖,𝑗) = min (𝐸[𝑑𝑖𝑐𝑖,𝑗]) =

𝑚𝑖𝑛(𝐸[(𝑑𝑖𝑐𝑅𝑖,𝑗), (𝑑𝑖𝑐𝐸𝐷𝑖,𝑗), (𝑑𝑖𝑐𝐸𝐷𝑆𝑖,𝑗), (𝑑𝑖𝑐𝐶𝐻𝑖,𝑗)])  

= 𝑚𝑖𝑛 [(∑ ∑ (|𝜇𝑖1 − 𝑑𝑗1| + |𝜇𝑖2 −
𝑰
𝒋=𝟏

𝑱
𝒊=𝟏

𝑑𝑗2|)),(∑ ∑ ((√(𝜇𝑖1 − 𝑑𝑗1)
2
+ (𝜇𝑖2 − 𝑑𝑗2)

2
) +𝐼

𝑗=1
𝐽
𝑖=1

1

2
(

𝜎𝑖1
2 +𝜎𝑖2

2

√(𝜇𝑖1−𝑑𝑗1)
2
+(𝜇𝑖2−𝑑𝑗2)

2
))), (∑ ∑ ((𝜇𝑖1 −

𝐼
𝑗=1

𝐽
𝑖=1

𝑑𝑗1)
2
+ 𝜎𝑖1

2 + (𝜇𝑖2 − 𝑑𝑗2)
2
+

 𝜎𝑖2
2 )) , (𝑚𝑎𝑥(∑ ∑ |𝜇𝑖1 − 𝑑𝑗1|

𝐼
𝑗=1

𝐽
𝑖=1 , |𝜇𝑖2 − 𝑑𝑗2|))]  

Lemma1: The following equations are always 

confirmed. 

[𝑑𝑖𝑐𝑅𝑗,𝑖] = ∑ ∑ (|𝑑𝑗1 − 𝜇𝑖1| + |𝑑𝑗2 − 𝜇𝑖2|)
𝑰
𝒊=𝟏

𝑱
𝒋=𝟏   

[𝑑𝑖𝑐𝑅𝑖,𝑗] = ∑ ∑ (|𝜇𝑖1 − 𝑑𝑗1| + |𝜇𝑖2 − 𝑑𝑗2|)
𝑰
𝒋=𝟏

𝑱
𝒊=𝟏   

Proof:  𝑎𝑖1 𝑎𝑛𝑑 𝑎𝑖2 are independent of each other. As 

a result, we have the independence of customers of this 

model. 

𝐸 [𝑑𝑖𝑐𝑅𝑗,𝑖] =

𝐸[𝑙(𝑑𝑗, 𝑎𝑖)] =∫ ∫ 𝑙(𝑑𝑗, 𝑎𝑖)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1𝑙𝑎𝑖2  
∞

−∞

∞

−∞
 

∫ (|𝑑𝑗1 −
+∞

−∞

𝑎𝑖1|𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1𝑙𝑎𝑖2 +

∫ |𝑑𝑗2 −
+∞

−∞

𝑎𝑖2|𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1𝑙𝑎𝑖2) =

∫ ((|𝑑𝑗1 −
+∞

−∞

𝑎𝑖1|𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2) +

∫ ((|𝑑𝑗2 −
+∞

−∞

𝑎𝑖2|𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2) =

[|([∫ (𝑑𝑗1𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2
+∞

−∞
] −

[(𝑎𝑗1𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2])|] +

[|([∫ (𝑑𝑗2𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2
+∞

−∞
] −

[(𝑎𝑗2𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2])|]

=[|𝑑𝑗1 −

𝜇𝑖1| +

|𝑑𝑗2 −

𝜇𝑖2|] 

Lemma 2: The following equations are 
always confirmed Altınel,et al [45]. 

𝑬[𝒅𝒊𝒄𝑬𝑫𝒋,𝒊] =

∑ ∑ [(√(𝒅𝒋𝟏 − 𝝁𝒊𝟏)
𝟐
+ (𝒅𝒋𝟐 − 𝝁𝒊𝟐)

𝟐
)𝑰

𝒊=𝟏
𝑱
𝒋=𝟏 +

𝟏

𝟐
(

𝝈𝒊𝟏
𝟐 +𝝈𝒊𝟐

𝟐

√(𝒅𝒋𝟏−𝝁𝒊𝟏)
𝟐
+(𝒅𝒋𝟐−𝝁𝒊𝟐)

𝟐
)]  

𝑬[𝒅𝒊𝒄𝑬𝑫𝒊,𝒋] =

∑ ∑ [(√(𝝁𝒊𝟏 − 𝒅𝒋𝟏)
𝟐
+ (𝝁𝒊𝟐 − 𝒅𝒋𝟐)

𝟐
)𝑰

𝒋=𝟏
𝑱
𝒊=𝟏 +

𝟏

𝟐
(

𝝈𝒊𝟏
𝟐 +𝝈𝒊𝟐

𝟐

√(𝝁𝒊𝟏−𝒅𝒋𝟏)
𝟐
+(𝝁𝒊𝟐−𝒅𝒋𝟐)

𝟐
)]  

Lemma 3: The following equations are 

always confirmed. 
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𝐸[𝑑𝑖𝑐𝐸𝐷𝑆𝑗,𝑖]=∑ ∑ ((𝑑𝑗1 − 𝜇𝑖1)
2
+𝐼

𝑖=1
𝐽
𝑗=1

𝜎𝑖1
2 + (𝑑𝑗2 − 𝜇𝑖2)

2
+ 𝜎𝑖2

2 ) 

𝐸[𝑑𝑖𝑐𝐸𝐷𝑆𝑖,𝑗]=∑ ∑ ((𝜇𝑖1 − 𝑑𝑗1)
2
+𝐼

𝑗=1
𝐽
𝑖=1

𝜎𝑖1
2 + (𝜇𝑖2 − 𝑑𝑗2)

2
+ 𝜎𝑖2

2 ) 

Proof: 

𝐸[𝑙(𝑑𝑗, 𝑎𝑖)] = ∫ ∫ 𝑙(𝑑𝑗, 𝑎𝑖)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1𝑙𝑎𝑖2
∞

−∞

∞

−∞
  

The Parameters  𝑎𝑖1, 𝑎𝑖2 are independent of 
each other. As a result, the customers of this 

model are independent. 

𝒇𝒋 = (𝒂𝒊𝟏 × 𝒂𝒊𝟐) = 𝒇𝒊𝟏(𝒂𝒊𝟏) × 𝒇𝒊𝟐(𝒂𝒊𝟐) 

 𝐸[𝑙(𝑑𝑗, 𝑎𝑖)] = ∫ ∫ [(𝑑𝑗1 − 𝑎𝑖1)
2
+

+∞

−∞

+∞

−∞

(𝑑𝑗2 − 𝑎𝑖2)
2
]𝑓𝑖(𝑎𝑖1) × 𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖1𝑙𝑎𝑖2  

= ∫ ∫ [(𝑑𝑗1 − 𝑎𝑖1)
2
𝑓𝑖(𝑎𝑖1) ×

+∞

−∞

+∞

−∞

𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖1𝑙𝑎𝑖2 + (𝑑𝑗2 − 𝑎𝑖2)
2
𝑓𝑖(𝑎𝑖1) ×

𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖1𝑙𝑎𝑖2] = ∫ ∫ [(𝑑𝑗1
2 + 𝑎𝑖1

2 −
+∞

−∞

+∞

−∞

2𝑑𝑗1𝑎𝑖1) × 𝑓𝑖(𝑎𝑖1) × 𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖1𝑙𝑎𝑖2 +

(𝑑𝑗2
2 + 𝑎𝑖2

2 −  2𝑑𝑗2𝑎𝑖2) ×

𝑓𝑖 (∫ [∫ 𝑑𝑗1
2 × 𝑓𝑖(𝑎𝑖1)𝑙𝑎𝑖1 ×

+∞

−∞

+∞

−∞

𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖2 + ∫ 𝑎𝑖1
2 × 𝑓𝑖(𝑎𝑖1)𝑙𝑎𝑖1 ×

+∞

−∞

𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖2 − ∫ (2𝑑𝑗1𝑎𝑖1) × 𝑓𝑖(𝑎𝑖1)𝑙𝑎𝑖1 ×
+∞

−∞

𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖2 + ∫ [∫ 𝑑𝑗2
2+∞

−∞
× 𝑓𝑖(𝑎𝑖1)𝑙𝑎𝑖1 ×

+∞

−∞

𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖2 + ∫ 𝑎𝑖2
2 × 𝑓𝑖(𝑎𝑖1)𝑙𝑎𝑖1 ×

+∞

−∞

𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖2 − ∫ 2𝑑𝑗2𝑎𝑖2 × 𝑓𝑖(𝑎𝑖1)𝑙𝑎𝑖1 ×
+∞

−∞

𝑓𝑖(𝑎𝑖2)𝑙𝑎𝑖2]𝑎𝑖1) × 𝑓𝑖(𝑎𝑖2) 𝑙𝑎𝑖1𝑙𝑎𝑖2] = 

[𝑑𝑗1
2 + (𝜎𝑖1

2 + 𝜇𝑖1
2 ) − 2𝑑𝑗1𝜇𝑖1] + [𝑑𝑗2

2 +

(𝜎𝑖2
2 + 𝜇𝑖2

2 ) − 2𝑑𝑗2𝜇𝑖2]   

  On the other hand, the following statements 

are always valid: 

∫ 𝑎𝑖𝑘𝑓𝑖𝑘(𝑎𝑖𝑘

+∞

−∞

)𝑙𝑎𝑖𝑘 = 𝜇𝑖𝑘  

 

∫ 𝑎𝑖𝑘
2𝑓𝑖𝑘(𝑎𝑖𝑘

+∞

−∞

)𝑙𝑎𝑖𝑘 = 𝜎𝑖𝑘
2 + 𝜇𝑖𝑘

2  

∫ 𝑓𝑖𝑘(𝑎𝑖𝑘

+∞

−∞

)𝑙𝑎𝑖𝑘 = 1       
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{
 
 
 
 

 
 
 
 

 1                                                                                                                𝑙𝑗𝑖𝑟 ≤ 𝐿𝑗 −℮𝑗

(
1+(

𝐿𝑗−𝑙𝑗𝑖𝑟

℮𝑗
)

2
)+ 2(

𝐿𝑗−𝑙𝑗𝑖𝑟

℮𝑗
) × 𝑙𝑛2 −

1

2
(((

𝐿𝑗−𝑙𝑗𝑖𝑟

℮𝑗
+ 1)

2

× 𝑙𝑛(1 + (
𝐿𝑗−𝑙𝑗𝑖𝑟

℮𝑗
)))− ((

𝐿𝑗−𝑙𝑗𝑖𝑟

℮𝑗
)
2

× 𝑙𝑛 (
𝐿𝑗−𝑙𝑗𝑖𝑟

℮𝑗
))) 𝐿𝑗 −℮𝑗 < 𝑙𝑗𝑖𝑟 ≤ 𝐿𝑗

(
1−(

𝑙𝑗𝑖𝑟−𝐿𝑗

℮𝑗
)

2
)− 2(

𝑙𝑗𝑖𝑟−𝐿𝑗

℮𝑗
) × 𝑙𝑛2+

1

2
(((

𝑙𝑗𝑖𝑟−𝐿𝑗

℮𝑗
+ 1)

2

× 𝑙𝑛 (1+ (
𝑙𝑗𝑖𝑟−𝐿𝑗

℮𝑗
)))− ((

𝑙𝑗𝑖𝑟−𝐿𝑗

℮𝑗
)
2

× 𝑙𝑛 (
𝑙𝑗𝑖𝑟−𝐿𝑗

℮𝑗
))) 𝐿𝑗 < 𝑙𝑖𝑗𝑟 ≤ 𝐿𝑗 +℮𝑗

 0                                                                                                                 𝑙𝑖𝑗𝑟 > 𝐿𝑗 +℮𝑗

  

 

{
 
 
 
 
 

 
 
 
 
 

1                                                                                                            𝑡𝑖𝑗𝑟 ≤ 𝑇𝑖 − 𝜃𝑖

(
1+(

𝑇𝑖−𝑡𝑖𝑗𝑟

𝜃𝑖
)

2
) + 2(

𝑇𝑖−𝑡𝑖𝑗𝑟

𝜃𝑖
) × 𝑙𝑛2−

1

2
(((

𝑇𝑖−𝑡𝑖𝑗𝑟

𝜃𝑖
+ 1)

2
× 𝑙𝑛(1 + (

𝑇𝑖−𝑡𝑖𝑗𝑟

𝜃𝑖
)))− ((

𝑇𝑖−𝑡𝑖𝑗𝑟

𝜃𝑖
)
2
× 𝑙𝑛 (

𝑇𝑖−𝑡𝑖𝑗𝑟

𝜃𝑖
))) 𝑇𝑖 − 𝜃𝑖 < 𝑡𝑖𝑗𝑟 ≤ 𝑇𝑖

(
1−(

𝑡𝑖𝑗𝑟−𝑇𝑖

𝜃𝑖
)

2
) − 2(

𝑡𝑖𝑗𝑟−𝑇𝑖

𝜃𝑖
) × 𝑙𝑛2+

1

2
(((

𝑡𝑖𝑗𝑟−𝑇𝑖

𝜃𝑖
+ 1)

2
× 𝑙𝑛(1 + (

𝑡𝑖𝑗𝑟−𝑇𝑖

𝜃𝑖
)))− ((

𝑡𝑖𝑗𝑟−𝑇𝑖

𝜃𝑖
)
2
× 𝑙𝑛 (

𝑡𝑖𝑗𝑟−𝑇𝑖

𝜃𝑖
))) 𝑇𝑖 < 𝑡𝑖𝑗𝑟 ≤ 𝑇𝑖 + 𝜃𝑖

0                                                                                                            𝑡𝑖𝑗𝑟 > 𝑇𝑖 + 𝜃𝑖

  

Lemma 6: The following equations are always confirmed. 

𝐸[𝑑𝑖𝑐𝐶𝐻𝑗,𝑖] = 𝑚𝑎𝑥(∑ ∑ |𝑑𝑗1 − μ𝑖1|
𝐼
𝑖=1

𝐽
𝑗=1 , |𝑑𝑗2 − μ𝑖2|)  

𝐸[𝑑𝑖𝑐𝐶𝐻𝑖,𝑗] = 𝑚𝑎𝑥(∑ ∑ |𝜇𝑖1 − 𝑑𝑗1|
𝐼
𝑗=1

𝐽
𝑖=1 , |𝜇𝑖2 − 𝑑𝑗2|)  

Proof: 

𝐸[𝑙(𝒅𝑗, 𝒂𝑖)] = ∫ ∫ (𝑀𝐴𝑋(|𝑑𝑗1 − 𝑎𝑖1|, |𝑑𝑗2 − 𝑎𝑖2|)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1𝑙𝑎𝑖2)
+∞

−∞

+∞

−∞
= ∫ ∫ 𝑀𝐴𝑋 ((|𝑑𝑗1 −

+∞

−∞

+∞

−∞

𝑎𝑖1|𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1, |𝑑𝑗2 − 𝑎𝑖2|)𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2) =  

MAX(|∫ 𝑑𝑗1𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1
+∞

−∞
| − |∫ 𝑎𝑖1𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖1

+∞

−∞
|) , (|∫ 𝑑𝑗2𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2

+∞

−∞
| − |∫ 𝑎𝑖2𝑓𝑖(𝑎𝑖)𝑙𝑎𝑖2

+∞

−∞
|) =

 𝑀𝐴𝑋(∑ ∑ |𝑑𝑗1 − μ𝑖1|
𝐼
𝑖=1

𝐽
𝑗=1 , |𝑑𝑗2 − μ𝑖2|) 

Lemma 7: The following equations are always confirmed Altınel, Durmaz [45]. 

Lemma 4: The following equations are always confirmed Drezner,et al [46]. 

𝑓3(𝑗,𝑖.𝑟)=Max E(𝐶𝑂𝑉1(𝑙𝑗.𝑖.𝑟)) = 

Lemma 5: The following equations are always confirmed Drezner, Drezner and Goldstein [46]. 

𝑓4(𝑖.𝑗.𝑟)= Max E(𝐶𝑂𝑉2(𝑡𝑖.𝑗.𝑟))= 
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𝑬[𝒅𝒊𝒄𝑬𝑫𝒋,𝒊] = ∑ ∑ [(√(𝒅𝒋𝟏 − 𝝁𝒊𝟏)
𝟐
+ (𝒅𝒋𝟐 − 𝝁𝒊𝟐)

𝟐
)𝑰

𝒊=𝟏
𝑱
𝒋=𝟏 +

𝟏

𝟐
(

𝝈𝒊𝟏
𝟐 +𝝈𝒊𝟐

𝟐

√(𝒅𝒋𝟏−𝝁𝒊𝟏)
𝟐
+(𝒅𝒋𝟐−𝝁𝒊𝟐)

𝟐
)]  

𝑬[𝒅𝒊𝒄𝑬𝑫𝒊,𝒋] = ∑ ∑ [(√(𝝁𝒊𝟏 − 𝒅𝒋𝟏)
𝟐
+ (𝝁𝒊𝟐 − 𝒅𝒋𝟐)

𝟐
)𝑰

𝒋=𝟏
𝑱
𝒊=𝟏 +

𝟏

𝟐
(

𝝈𝒊𝟏
𝟐 +𝝈𝒊𝟐

𝟐

√(𝝁𝒊𝟏−𝒅𝒋𝟏)
𝟐
+(𝝁𝒊𝟐−𝒅𝒋𝟐)

𝟐
)]  

 

Lemma 8: The following equations are always confirmed. 

𝑬(𝑺) = 𝑪𝒐𝒔𝒕𝒋,𝒊,𝒓 ×𝒎𝒊𝒏{𝑬(𝒙𝒋,𝒊,𝒓), 𝒄𝒂𝒑𝒋}  −𝝅𝒋,𝒊,𝒓 ×𝒎𝒂𝒙{(𝑬(𝒙𝒋,𝒊,𝒓) − 𝒄𝒂𝒑𝒋), 𝟎}  

𝑬(𝑺′) = 𝑪𝒐𝒔𝒕𝒊,𝒋,𝒓
′ ×𝒎𝒊𝒏{𝑬(𝒙′𝒊,𝒋,𝒓), 𝒄𝒂𝒑𝒋}  − 𝝅𝒊,𝒋,𝒓 ×𝒎𝒂𝒙[(𝑬(𝒙

′
𝒊,𝒋,𝒓) − 𝒄𝒂𝒑𝒋), 𝟎]  

PROOF: 

𝑬(𝑺) = 𝑪𝒐𝒔𝒕𝒋,𝒊,𝒓 ×𝒎𝒊𝒏{𝑬(𝒙𝒋,𝒊,𝒓), 𝒄𝒂𝒑𝒋} − 𝝅𝒋,𝒊,𝒓 ×𝐦𝐚𝐱 {(𝑬(𝒙𝒋,𝒊,𝒓) − 𝒄𝒂𝒑𝒋), 𝟎}  

= 𝑪𝒐𝒔𝒕𝒋,𝒊,𝒓 × [∫ 𝒙𝒋,𝒊,𝒓 × 𝒇𝒙(𝒙𝒋,𝒊,𝒓)𝒅𝒙 + ∫ 𝒄𝒂𝒑𝒋 × 𝒇𝒙(𝒙𝒋,𝒊,𝒓)𝒅𝒙
∞

𝟎

𝒄𝒂𝒑𝒋
𝟎

] − 𝝅𝒋,𝒊,𝒓 × [∫ (𝒙𝒋,𝒊,𝒓 − 𝒄𝒂𝒑𝒋) ×
∞

𝒄𝒂𝒑𝒋

𝒇(𝒙𝒋,𝒊,𝒓)𝒅𝒙]  

= 𝑪𝒐𝒔𝒕𝒋,𝒊,𝒓 ×𝒎𝒊𝒏{𝑬(𝒙𝒋,𝒊,𝒓), 𝒄𝒂𝒑𝒋} − 𝝅𝒋,𝒊,𝒓 ×𝒎𝒂𝒙{(𝑬(𝒙𝒋,𝒊,𝒓) − 𝒄𝒂𝒑𝒋), 𝟎}  
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