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In this work, we consider a multiobjective minimal cost flow (MMCF) problem where there are 

several commodities to transport from sources to destinations and there is more than one 

conveyance for those transporting. We also assume that in each conveyance, there are distinct 

capacities for each commodity. The obtained model is not necessary balanced and we introduced 

a method to solve this model without converting it to a balanced model. The advantages of the 

proposed method are also discussed. 
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1. Introduction 

 

    Minimum Cost Flow (MCF) problems have many applications in almost all industries, 
such as agriculture, communications, education, energy, manufacturing, medicine, and 
transportation [1]. Generally, the MCF problem minimizes the cost of transporting some 
product that is available at some sources and required at some destinations. However, in the 
real word, there are few MCF problems with only a single objective. Therefore, in the recent 
years multiple objective minimum cost flow problems have been considered by many authors 
[14]. Another complexity which exists in the real problems is the impreciseness of values of 
coefficients of the variables in the objective functions, availability and demand of the 
products. The fuzzy set theory introduced by Zadeh [25] is a good alternative for this 
impreciseness. To the best of our knowledge, the first formulation of fuzzy multiobjective 
linear programming is proposed by Zimmermann [26]. Also, the first time, Shih and Lee [24] 
considered a fuzzy MCF problem. After that, this problem has been studied by many 
researchers from several viewpoints; see [2, 13, 17] and the references therein. Recently, 
Bavandi and Nasseri [3, 4] provided the model that manages unknown coefficients in 
fractional multi-commodity networks. In these problems, the coefficients of the objective 
function in the numerator of the fraction and the arc capacity are assumed to be fuzzy random 
variables and the coefficients of the objective function in the denominator of the fraction are 
assumed to be fuzzy variables. Since this problem is investigated simultaneously in both 
random and fuzzy environments, they used a probability-possibility approach to convert the 
problem to a deterministic form and then proposed solving process. Our motivation in this 
paper is recent works of Kaur and Kumar [16,17]. In [16], the authors consider fuzzy 
multiobjective transportation problems where there  exists some nodes, called intermediate 
nodes, at which the product may be stored in case of the excess of the available product and 
later on the product may be supplied from these intermediate nodes to the destinations. As 
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well as, they assumed that there are different types of conveyances such as trucks, cargo 
flights, trains, ships, etc., for transporting the products from sources to destinations.  Such 
multiobjective transportation problems in which both the conveyances as well as 
intermediate nodes are used simultaneously are known as multi-objective Solid Minimal Cost 
Flow (SMCF) problems  [16]. The SMCF problem with fuzzy data studied by several authors 
[5, 7, 16, 19, 21].  In some situations, we must transport more than one commodity from 
sources to destinations. These problems are called multicommodity flow problem. Ghatee 
and Hashemi [12] studied fuzzy multicommodity flow problem and  Chakraborty and et al.  
[11], Dalman and et al. [10], Kundu and et al. [20], and Rani and et al. [24] considered 
multiobjective multi item solid transportation problem under uncertainty. In this paper, we 
consider a fuzzy multiobjective multicommodity minimal cost flow (FMMMCF) problem 
when there are some limitations on conveyances. In fact, in our model, a conveyance may be 
allowed to transport a certain amount of a commodity. To the best of our knowledge, there 
is not any research for this model even for deterministic data. 
 
   This paper is organized in 6 sections. In the next section some preliminaries of fuzzy 
numbers are reviewed. In Section 3, we describe our model and a formulation of FMMMCF 
problem is introduced. In Section 4 the new method is proposed and we illustrate this method 
by some numerical example in Section 5. The conclusion and some suggestion are given in 
Section 6. 
 

2. Preliminaries 

 

    In this section we provide some preliminaries. 
 
Definition 2.1.  [23] A function �: �0, ∞� →  �0,1] (or �: �0, ∞� →  �0,1]) is said to be a 
reference function of fuzzy numbers if and only if 
(i) �(0� = 1 (or �(0� = 1)  

(ii) � (�) is non-increasing on �0, ∞�. 
 
Definition 2.2.  [10] A fuzzy number �� = (�, �, �, ����   is  said to be LR flat fuzzy number 
if its membership function ���(�� is given by 
 

��� =
⎩⎪⎨
⎪⎧� �� − ��  ,   !"# � ≤ �, � > 0

� &� − �� ' ,   !"# � ≥ �, � > 01,                                ")ℎ+#,-.+
 

 
 
Definition 2.3.  [10] Two LR flat fuzzy numbers ��/ = (�/, �/, �/, �/��� and ��0 =(�0, �0, �0, �0���  are said to be equal i.e., ��/ = ��0 if and only if �/ = �0, �/ = �0, �/ =�0, and �/ = �0. 
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Definition 2.4. [9] An LR flat fuzzy number �� = (�, �, �, ����  is said to be non-negative 
LR flat fuzzy number if and only if � −  � ≥  0. 
 
Let ��/ = (�/, �/, �/, �/��� and  ��0 = (�0, �0, �0, �0���  be two LR flat fuzzy number. Then 
(i) ��/ ⊕ ��0 = (�/ + �0, �/ + �0, �/ + �0, �/ + �0��� .  
(ii)  Let ��/ and ��0 be non-negative  LR flat fuzzy numbers. Then ��/ ⊗ ��0 ≃  (�/ �0, �/ �0, (�/  −  �/�(�0  −  �0� −  �/ �0, (�/ + �/�(�0 + �0�−  �/ �0���  
(iii)  Let 6 be a real number. Then λ��/ = 8(λ m/, λ n/, λ α/, λ β/�=>            λ ≥  0(λ n/, λ m/, −λ β/, −λ α/�=>     λ < 0  
  
    In this paper we use of modified Liou and Wang's ranking [9] for the comparison of fuzzy 
numbers. 
Assume, �� = (�, �, �, ���� . 
 

ℜ(��� = A B C (�6 +  �(1 −  6��D6/
E  F

+ (1 −  A� B6 C  G� −  � �H/(I�JDI + (1 −  6� C G� + � �H/(I�JDI/
E  /

E F, 
where A ∈  �0,1] and 6 ∈  �0,1]. 
 

Let �� and LM be two LR flat fuzzy numbers. Then  �� ≥N  LM (�� ≤N LM� if ℜ(��� ≥  ℜGLMJ  �ℜ(��� ≤  ℜGLMJ . 

3. Fully fuzzy multicommodity multiobjective model 

 

    In this section we introduce a fully fuzzy multicommodity multiobjective model for solid 
minimal cost flow problems which there are limitation on conveyances for transport the 
products. For example, assume that we want to transport coal and petroleum from a city to 
another one by train. For each commodity (coal and petroleum) we need a special tank. 
Therefore, we cannot allocate the all capacity of the train to a commodity. For another 
example, assume that we want to send grease and petroleum from a country to another 
country by ship. Assume that there are some rules for import grease or petroleum by ship in 
the destination country which do not allow to you to send more than certain value of these 
materials. Therefore, you cannot allocate the all capacity of the ship to a commodity. These 
examples show that we must design a new model to cover these problems. 
 
    Assume that O = (P, Q� is a given network where P is the set of nodes and  Q is the set of 
links. We describe our problem with a simple example. Consider a network with two nodes, 
shown in Figure 1. We want to send two commodity )/ and )0 from node 1 to node 2. There 
exist three conveyance between these two nodes and each conveyance has a total capacity + 
and furthermore each conveyance have a capacity for each commodity as +RS  and +RT . Note 
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that, we cannot send commodity more of the total capacity +, while we can have +RS + +RT ≥+. 

 
Figure 1. Network representing FMMMCF 

 

Similar to [14,15],  we categorize the nodes as follows: 
 
Purely source node: Those nodes S which there exists some node U′ such that the product 
may be supplied from U to U′ while there does not exist any node U′′ to transport product from U′′ to U. The set of all such nodes is denoted by PWX. 
 
Purely destination node: Those nodes D which there does not exist any node Y′ such that 

the product may be supplied from Y to Y′ while there exist some node Y′′ to transport product 
from Y′′ to Y. The set of all such nodes is denoted by PWZ. 
 
Intermediate node:  The intermediate nodes are another part of a network. In the following 
we sort the types of these nodes: 
 

)i(  Those nodes S which have some quantity of the product for supplying to other nodes and 
also there exist some nodes such that some quantity of the product is transporting from those 
nodes to node U. Such nodes are called source nodes and the set of all such nodes is dented 
by PX. 
 
(ii) Those nodes Y which require some quantity of the product and also there exist some 

nodes such that the product is supplying from node Y  to those nodes. Such nodes are called 
destination nodes and the set of all such nodes is dented by PZ. 
 
(iii) Those nodes [ which neither any quantity of the product is available at them to transship 
nor any quantity of the products is required, and all quantity of the product which are 
transferred from some nodes to node [ is supplying from [ to some other nodes. Such nodes 

are called transition nodes and the set of all such nodes is dented by P\. 
 
    In the following, we list notations which we use them in the representation of our model. 

 ��]R: The fuzzy availability of the product   ) at -th purely source node. 

 ��]R′: The fuzzy availability of the product ) at -th source node. 

 LM̂R :The fuzzy demand of the product ) at _th purely destination node. 

 LM̂R′ :The fuzzy demand of the product ) at _th destination node.  

 +̃aR : The fuzzy capacity of the bth conveyance for transfer the product ). 

 +̃a: The total fuzzy capacity of the bth conveyance. 
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 c̃]^aRd : The fuzzy penalty per unit of flow )from -th (purely) source to _th (purely) 

destination by means of the bth conveyance in the eth objective function. 

 ��]^aR : The fuzzy quantity of the product )  that should be transported from -th node to _th node by means of the bth conveyance in order to minimize all objective functions. 

 Uf: The set of all available conveyances. 
 

    We assume that ��]R, ��]R′  ,bM hi, LM̂R′, +̃aR , +̃a are non-negative LR flat fuzzy numbers. We also 

assume that there are �  objective function and [commodities. With these notations, a  
FMMMCF problem can be formulated into the following fuzzy multiobjective linear 
programming problem: 

 

Minimum    m m m (c̃]^aRd ⊗ ��]^aR
a∈ Xn(],^�∈ o

\
Rp/ �                               e = 1, … , � (1)

Subject to 

      ∑ ∑ ��]^aRa∈ Xn^:(],^�∈ o  ≤N  ��]R                                                - ∈  PWX, ) = 1, … , [ 

      ∑ ∑ ��]^aRa∈ Xn^:(],^�∈ o  ≤N ∑ ∑ ��̂ ]aRa∈ Xn^:(^,]�∈ o ⊕ ��]R′     - ∈  PX, ) = 1, … , [ 

      ∑ ∑ ��]^aRa∈ Xn]:(],^�∈ o  ≥N  LM̂R                                                 _ ∈  PWZ , ) = 1, … , [ 

      ∑ ∑ ��]^aRa∈ Xn]:(],^�∈ o  ≥N ∑ ∑ ��̂ ]aRa∈ Xn]:(^,]�∈ o ⊕ LM̂R′     _ ∈  PZ , ) = 1, … , [ 

      ∑ ∑ ��]^aRa∈ Xn^:(],^�∈ o = ∑ ∑ ��̂ ]aRa∈ Xn^:(^,]�∈ o                 - ∈  P\ , ) = 1, … , [ 

      ∑ ∑ ��]^aR^:(],^�∈ o\Rp/ ≤N +̃a                                                    b ∈  Uf 

      ��]^aR ≤N +̃ai                                                                        b ∈  Uf , (-, _� ∈  Q, ) = 1, … , [ 

 

where ��]^aR
 is a non-negative LR flat fuzzy number for all  (-, _� ∈  Q and  b ∈  Uf. 
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4. Proposed method 

 

    Almost in all available algorithms for MCF problems, we must examine that the problem 
is balanced or unbalanced and with some modifications, convert an unbalanced one to 
balanced. This process may be so expensive and therefore it is better to solve our model 
without this assumption. In our model there are some equalities and inequalities, therefore 
with a generalization of the proposed algorithm in the Subsection 5.4.2 of [13] and using of 
existing methods [18] for solving of a multiobjective linear programming, we can obtain the 
optimal compromise solution for our model. We recall the definition of fuzzy efficient 
solution from the literature.  
 

Definition 4.1. A fuzzy feasible solution �� = {��]^aR } is said to be a fuzzy efficient solution of 

the fully fuzzy multiobjective SMMMCF problem if there is no other fuzzy feasible solution ��′ = {��]^aR{ } such that 

m m m ℜ(c̃]^aRd ⊗ ��]^aR{
a∈ Xn(],^�∈ o

\
Rp/ � ≤ m m m ℜ(c̃]^aRd ⊗ ��]^aR

a∈ Xn(],^�∈ o
\

Rp/ � 

for all e ∈ {1, … , �}, and 

m m m ℜ(c̃]^aRd ⊗ ��]^aR{
a∈ Xn(],^�∈ o

\
Rp/ � < m m m ℜ(c̃]^aRd ⊗ ��]^aR

a∈ Xn(],^�∈ o
\

Rp/ � 
 
for at least one e ∈ {1, … , �}. 
    Note that, for real world problems, we do not need to obtain the set of all fuzzy efficient 
solutions. It is sufficient to compute a fuzzy optimal compromise solution. A fuzzy optimal 
compromise solution of the FMMMCF problem is a feasible solution which is preferred by 
the decision maker to all other solutions, taking into consideration all criteria contained in 
the multiobjective functions. We accept that a fuzzy optimal compromise solution has to be 
a fuzzy efficient solution. 

 
Step 1: Assume that c̃]^aRd = G|]^aRd , }]^aRd , �]^aRd , �]^aRd J��, ��]^aR = G~]^aR , �]^aR , A]^aR , �]^aR J��, ��]R =(#]R, .]R , �]R , �]R���, ��]R{ = (#]R{, .]R{, �]R{ , �]R{���, LM̂R = G�̂R, ,̂R , �R̂, �̂RJ��, LM̂R{ =G�̂R{, ,̂R{, �R̂{, �̂R{J��, +̃a = (�a, ℎa, 6a, �a���, and +̃aR = (�aR , ℎaR , 6aR , �aR ��� .  Therefore 

Problem (1) can be written as: 
 

Minimum    m m m G|]^aRd , }]^aRd , �]^aRd , �]^aRd J��a∈ Xn(],^�∈ o
\

Rp/⊗ G~]^aR , �]^aR , A]^aR , �]^aR J��                                e = 1, … , � 

(2)

Subject to 
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 ∑ ∑ G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o  ≤N  (#]R, .]R, �]R , �]R���        - ∈  PWX, ) = 1, … , [ 

 ∑ ∑ G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o  ≤N ∑ ∑ G~̂ ]aR , �̂ ]aR , Â ]aR , �̂ ]aR J��a∈ Xn^:(^,]�∈ o ⊕(#]R{, .]R{, �]R{ , �]R{���     - ∈  PX, ) = 1, … , [ 

m m G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn]:(],^�∈ o  ≥N  G�̂R , ,̂R, �R̂ , �̂RJ                   _ ∈  PWZ , ) = 1, … , [ 

m m G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn]:(],^�∈ o  ≥N m m G~̂ ]aR , �̂ ]aR , Â ]aR , �̂ ]aR J��a∈ Xn]:(^,]�∈ o⊕ G�̂R{, ,̂R{, �R̂{, �̂R{J��     _ ∈  PZ , ) = 1, … , [ m m G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o = m m G~̂ ]aR , �̂ ]aR , Â ]aR , �̂ ]aR J��a∈ Xn^:(^,]�∈ o   - ∈  P\ , )      
= 1, … , [ 

m m G~]^aR , �]^aR , A]^aR , �]^aR J��^:(],^�∈ o
\

Rp/ ≤N (�a, ℎa, 6a, �a���                                   b ∈  Uf 

 G~]^aR , �]^aR , A]^aR , �]^aR J�� ≤N (�aR , ℎaR , 6aR , �aR ���                b ∈  Uf , (-, _� ∈  Q, ) = 1, … , [ 

 

where G~]^aR , �]^aR , A]^aR , �]^aR J�� is a non-negative LR flat fuzzy number for all  b ∈  Uf , (-, _� ∈ Q, ) = 1, … , [. 
 
Step 2. Assume that  G|]^aRd , }]^aRd , �]^aRd , �]^aRd J�� ⊗ G~]^aR , �]^aR , A]^aR , �]^aR J�� = G"]^aRd , �]^aRd , φ]^aRd , τ]^aRd J�� , 
 G~̂ ]aR , �̂ ]aR , Â ]aR , �̂ ]aR J�� ⊕ (#]R{, .]R{, �]R{ , �]R{��� = G�^]aR , �̂ ]aR , �^]aR , �^]aR J�� , 
and G~̂ ]aR , �̂ ]aR , Â ]aR , �̂ ]aR J�� ⊕ G�̂R{, ,̂R{, �R̂{, �̂R{J�� = G�^]aR{ , �̂ ]aR{ , �̂ ]aR{ , �^]aR{ J�� . 
With these notations, Problem (2) can be written as 
 

Minimum    m m m G"]^aRd , �]^aRd , φ]^aRd , τ]^aRd J��a∈ Xn(],^�∈ o
\

Rp/                                e = 1, … , � (3)

Subject to 

 ∑ ∑ G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o  ≤N  (#]R, .]R, �]R , �]R���        - ∈  PWX, ) = 1, … , [ 

 ∑ ∑ G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o  ≤N G�^]aR , �̂ ]aR , �̂ ]aR , �̂ ]aR J��     - ∈  PX, ) =1, … , [ 
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m m G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn]:(],^�∈ o  ≥N  G�̂R , ,̂R, �R̂ , �̂RJ                   _ ∈  PWZ , ) = 1, … , [ 

m m G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn]:(],^�∈ o  ≥N m m G�^]aR{ , �̂ ]aR{ , �̂ ]aR{ , �̂ ]aR{ J��a∈ Xn]:(^,]�∈ o      _ ∈  PZ , )
= 1, … , [ m m G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o = m m G~̂ ]aR , �̂ ]aR , Â ]aR , �̂ ]aR J��a∈ Xn^:(^,]�∈ o   - ∈  P\ , )      
= 1, … , [ 

m m G~]^aR , �]^aR , A]^aR , �]^aR J��^:(],^�∈ o
\

Rp/ ≤N (�a, ℎa, 6a, �a���                                   b ∈  Uf 

 G~]^aR , �]^aR , A]^aR , �]^aR J�� ≤N (�aR , ℎaR , 6aR , �aR ���                b ∈  Uf , (-, _� ∈  Q, ) = 1, … , [ 

 

where G~]^aR , �]^aR , A]^aR , �]^aR J�� is a non-negative LR flat fuzzy number for all  b ∈  Uf , (-, _� ∈ Q, ) = 1, … , [. 
 

Step 3. Using rank function ℜ, we solve the following problem: 
 

Minimum    ℜ �m m m G"]^aRd , �]^aRd , φ]^aRd , τ]^aRd J��a∈ Xn(],^�∈ o
\

Rp/ �                                e = 1, … , � (4)

Subject to 

 ℜG∑ ∑ G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o J ≤  ℜ(#]R, .]R , �]R , �]R���        - ∈  PWX, ) =1, … , [ 

 ℜG∑ ∑ G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o J ≤ ℜG�^]aR , �̂ ]aR , �^]aR , �^]aR J��     - ∈  PX, ) =1, … , [ 

ℜ � m m G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn]:(],^�∈ o � ≥  ℜG�̂R, ,̂R, �R̂ , �̂RJ                   _ ∈  PWZ , )
= 1, … , [ 

ℜ � m m G~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn]:(],^�∈ o � ≥ ℜ � m m G�^]aR� , �̂ ]aR� , �^]aR� , �^]aR� J��a∈ Xn]:(^,]�∈ o � 

_ ∈ PZ , ) = 1, … , [    m m ~]^aR
a∈ Xn^:(],^�∈ o = m m ~̂ ]aR

a∈ Xn^:(^,]�∈ o                                                                   - ∈  P\ 
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m m �]^aR
a∈ Xn^:(],^�∈ o = m m �̂ ]aR

a∈ Xn^:(^,]�∈ o                                                                   - ∈  P\ 
m m γ]^aR

a∈ Xn^:(],^�∈ o = m m γ^]aR
a∈ Xn^:(^,]�∈ o                                                                   - ∈  P\ 

m m δ]^aR
a∈ Xn^:(],^�∈ o = m m δ̂ ]aR

a∈ Xn^:(^,]�∈ o                                                                   - ∈  P\ 
ℜ �m m G~]^aR , �]^aR , A]^aR , �]^aR J��^:(],^�∈ o

\
Rp/ � ≤ ℜ(�a, ℎa, 6a, �a���                             b ∈  Uf 

 ℜG~]^aR , �]^aR , A]^aR , �]^aR J�� ≤ ℜ(�aR , ℎaR , 6aR , �aR ���                b ∈  Uf , (-, _� ∈  Q, ) = 1, … , [ 

~]^aR  −  A]^aR , �]^aR  −  ~]^aR , A]^aR , �]^aR ≥  0                            b ∈  Uf , (-, _� ∈  Q, ) =1, … , [     
 

Step 4. With respect to linear property of rank function,  (4) can be written as: 
 

Minimum    m m m ℜG"]^aRd , �]^aRd , φ]^aRd , τ]^aRd J��a∈ Xn(],^�∈ o
\

Rp/                                e = 1, … , � (5)

Subject to 

 ∑ ∑ ℜG~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o ≤  ℜ(#]R, .]R, �]R , �]R���        - ∈  PWX, ) =1, … , [ 

 ∑ ∑ ℜG~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn^:(],^�∈ o ≤ ℜG�^]aR , �̂ ]aR , �^]aR , �^]aR J��     - ∈  PX, ) =1, … , [ m m ℜG~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn]:(],^�∈ o ≥  ℜG�̂R, ,̂R , �R̂, �̂RJ                   _ ∈  PWZ , )
= 1, … , [ m m ℜG~]^aR , �]^aR , A]^aR , �]^aR J��a∈ Xn]:(],^�∈ o ≥ m m ℜG�^]aR� , �̂ ]aR� , �̂ ]aR� , �̂ ]aR� J��a∈ Xn]:(^,]�∈ o  

_ ∈ PZ , ) = 1, … , [    m m ~]^aR
a∈ Xn^:(],^�∈ o = m m ~̂ ]aR

a∈ Xn^:(^,]�∈ o                                                                   - ∈  P\ 
m m �]^aR

a∈ Xn^:(],^�∈ o = m m �̂ ]aR
a∈ Xn^:(^,]�∈ o                                                                   - ∈  P\ 
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m m γ]^aR
a∈ Xn^:(],^�∈ o = m m γ^]aR

a∈ Xn^:(^,]�∈ o                                                                   - ∈  P\ 
m m δ]^aR

a∈ Xn^:(],^�∈ o = m m δ̂ ]aR
a∈ Xn^:(^,]�∈ o                                                                   - ∈  P\ 

m m ℜG~]^aR , �]^aR , A]^aR , �]^aR J��^:(],^�∈ o
\

Rp/ ≤ ℜ(�a, ℎa , 6a, �a���                             b ∈  Uf 

 ℜG~]^aR , �]^aR , A]^aR , �]^aR J�� ≤ ℜ(�aR , ℎaR , 6aR , �aR ���                b ∈  Uf , (-, _� ∈  Q, ) = 1, … , [ 

~]^aR  −  A]^aR , �]^aR  −  ~]^aR , A]^aR , �]^aR ≥  0                            b ∈  Uf , (-, _� ∈  Q, ) =1, … , [     
 

Step 5. With solving the crisp programming problem (5), find the optimal compromise 

solution �]^aR∗ = G~]^aR∗ , �]^aR∗ , A]^aR∗ , �]^aR∗ J�� .  

 
Step 6. Find the fuzzy optimal value of each objective function by putting the values of  �]^aR∗ = G~]^aR∗ , �]^aR∗ , A]^aR∗ , �]^aR∗ J�� in ∑ ∑ ∑ (c̃]^aRd ⊗ ��]^aRa∈ Xn(],^�∈ o\Rp/ �. 

 

5. Illustrative example 

    In this section, we illustrate our method with an example. 

 

Figure 2. Network representing Example 5.1. 
 

Example 5.1. Consider the network Figure ٢ with the following data: 

 Fuzzy penalty for 1st objective function to transport commodity 1st: c/�/// = (3, 4, 2, 2��� ,         c/�0// = (2, 3, 1, 2��� c0//// = (4, 5, 3, 3��� ,          c0/0// = (5, 6, 3, 3���  c0�/// = (5, 7, 4, 3��� ,           c0�0// = (3, 4, 2, 3��� 

 Fuzzy penalty for 2nd objective function to transport commodity 1st: c/�//0 = (4, 6, 3, 3��� ,         c/�0/0 = (3, 4, 2, 2��� c0///0 = (5, 6, 4, 3��� ,          c0/0/0 = (6, 7, 4, 4��� 
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 c0�//0 = (6, 8, 4, 4��� ,           c0�0/0 = (4, 5, 2, 3��� 

 Fuzzy penalty for 1st objective function to transport commodity 2nd: c/�/0/ = (2, 3, 1, 1��� ,         c/�00/ = (2, 4, 1, 2��� c0//0/ = (4, 5, 3, 2��� ,          c0/00/ = (2, 3, 2, 2���  c0�/0/ = (4, 6, 3, 3��� ,           c0�00/ = (2, 3, 1, 2��� 

 Fuzzy penalty for 2nd objective function to transport commodity 2nd: c/�/00 = (3, 4, 2, 1��� ,         c/�000 = (3, 4, 2, 2��� c0//00 = (5, 7, 4, 3��� ,          c0/000 = (5, 6, 3, 3���  c0�/00 = (5, 6, 4, 3��� ,           c0�000 = (2, 3, 1, 1��� 

 Fuzzy availability of the commodity 1st at source node 1 and purely source node 2: a//{ = (30, 40, 20, 10�=>             a0/ = (30, 40, 20, 20�=> 

 Fuzzy availability of the commodity 2nd at source node 1 and purely source node 2: a/0{ = (40, 60, 20, 30�=>,              a00 = (40, 50, 30, 30�=> 

 Fuzzy demand of the commodity 1st at purely destination node 3: L�/ = (30, 50, 20, 30��� 
 Fuzzy demand of the commodity 2nd at purely destination node 3: L�0 = (40, 50, 30, 30��� 
 Fuzzy capacity of the 1st conveyance for transfer the commodities 1st and 2nd: +// = (60, 70, 40, 30��� ,             +/0 = (60, 70, 30, 30��� 
 Fuzzy capacity of the 2nd conveyance for transfer the commodities 1st and 2nd: +0/ = (60, 70, 30, 30��� ,              +00 = (60, 70, 20, 20��� 

 Total fuzzy capacity of the 1st and 2nd conveyances: +/ = (70, 70, 30, 30��� ,               +0 = (70, 80, 20, 20��� 
 

    We assume that �(�� = �(�� = ��� {0, 1 −  ��}. Therefore, for a fuzzy number  �� =(�, �, �, ��, ℜ(��� = /0 (� + �� + �/� (� − �� (see Remark 1 in ]١٤[ ). 

    The model will be as: 
 Minimum  (3, 4, 2, 2�=> ⊗  x/�// ⊕  (2, 3, 1, 2�=> ⊗ x/�0/ ⊕ (4, 5, 3, 3�=> ⊗  x0///                 ⊕ (5, 6, 3, 3��� ⊗  �0/0/  ⊕ (5, 7, 4, 3�=> ⊗  x0�// ⊕ (3, 4, 2, 3�=> ⊗  x0�0/                ⊕ (2, 3, 1, 1��� ⊗  �/�/0 ⊕  (2,4, 1, 2�=> ⊗  x/�00 ⊕ (4, 5, 3, 2�=>  ⊗  x0//0    
              ⊕  (2, 3, 2, 2��� ⊗  �0/00 ⊕ (4, 6, 3, 3�=> ⊗ x0�/0 ⊕  (2, 3, 1, 2�=> ⊗  x0�00    (6)

Minimum  (4, 6, 3, 3�=> ⊗  x/�// ⊕   (3, 4, 2, 2�=> ⊗ x/�0/ ⊕ (5, 6, 4, 3�=> ⊗  x0///                 ⊕ (6, 7, 4, 4��� ⊗  �0/0/  ⊕ (6, 8, 4, 4�=> ⊗  x0�// ⊕ (4, 5, 2, 3�=> ⊗  x0�0/                ⊕ (3, 4, 2, 1��� ⊗  �/�/0 ⊕  (3, 4, 2, 2�=> ⊗  x/�00 ⊕ (5, 7, 4, 3�=>  ⊗  x0//0    
              ⊕  (5, 6, 3, 3��� ⊗  �0/00 ⊕ (5, 6, 4, 3�=> ⊗ x0�/0 ⊕  (2, 3, 1, 1�=> ⊗  x0�00    
Subject to 

             �0///  ⊕  �0/0/  ⊕  �0�//  ⊕  �0�0/ ≤N (30, 40, 20, 20��� 
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             �0//0  ⊕  �0/00  ⊕  �0�//  ⊕  �0�00 ≤N (40, 50, 30, 30��� 

             �/�//  ⊕  �/�0/  ≤N  �0///  ⊕  �0/0/ ⊕ (30, 40, 20, 10��� 

             �/�/0  ⊕  �/�00  ≤N  �0//0  ⊕  �0/00 ⊕ (40, 60, 20, 30��� 

             �/�//  ⊕  �/�0/  ⊕  �0�//  ⊕  �0�0/ ≥N (30, 50, 20, 30��� 

             �/�/0  ⊕  �/�00  ⊕  �0�/0  ⊕  �0�00 ≥N (40, 50, 30, 30��� 

�0/// ⊕  �0�// ⊕  �/�// ⊕   �0//0 ⊕  �0�/0 ⊕ �/�/0  ≤N (70, 70, 30, 30��� 

             �0///  ≤N (60, 70, 40, 30��� 

             �0/0/  ≤N (60, 70, 30, 30��� 

             �0�//  ≤N (60, 70, 40, 30��� 

             �0�0/  ≤N (60, 70, 30, 30��� 

             �0//0  ≤N (60, 70, 30, 30��� 

             �0/00  ≤N (60, 70, 20, 20��� 

             �0�/0  ≤N (60, 70, 30, 30��� 

             �0�/0  ≤N (60, 70, 20, 20��� 

 

and �]^aR  (- = _ = 1, 2, 3, b, ) = 1, 2) is a non-negative LR flat fuzzy number. With respect to 

Steps 3 and 4 in Section 4, the fuzzy optimal solution can be obtained by solving the 
following problem: 
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Minimum  /�E (61 ~/�// + 76 z/�// + 8 γ/�// + 48 δ/�// + 38 y/�0/ + 61 z/�0/ +8 γ/�0/ + 40 δ/�0/ + 84 y0/// + 99 z0/// + 8 γ0/// + 64 δ0/// + 99 y0/0/ + 114 z0/0/ +16 γ0/0/ + 72 δ0/0/ + 107y0�// + 129 z0�// + 8 γ0�// + 80 δ0�// + 61y0�0/ + 84 z0�0/ +8 γ0�0/ + 56 δ0�0/ + 38 y/�/0 + 53 z/�/0 + 8 γ/�/0 + 32 δ/�/0 + 38 y/�00 + 76 z/�00 +8 γ/�00 + 48 δ/�00 + 84 y0//0 + 91 z0//0 + 8 γ0//0 + 56 δ0//0 + 46y0/00 + 61 z0/00 +0 γ0/00 + 40 δ0/00 + 84y0�/0 + 114 z0�/0 + 8 γ0�/0 + 72 δ0�/0 + 38y0�00 + 61 z0�00 +8 γ0�00 + 40 δ0�00 � 

(7)

Minimum  130 G84 ~1311 + 114 z1311 + 8 γ1311 + 72 δ1311 + 61 y1321 + 76 z1321 + 8 γ1321
+ 48 δ1321 + 107 y2111 + 114 z2111 + 8 γ2111 + 72 δ2111 + 122 y2121+ 137 z2121 + 16 γ2121 + 88 δ2121 + 122y2311 + 152 z2311 + 16 γ2311+ 96 δ2311 + 76y2321 + 99 z2321 + 16 γ2321 + 64 δ2321 + 61 y1312 + 68 z1312+ 8 γ1312 + 40 δ1312 + 61 y1322 + 76 z1322 + 8 γ1322 + 48 δ1322 + 107 y2112+ 129 z2112 + 8 γ2112 + 80 δ2112 + 99y2122 + 114 z2122 + 16 γ2122 + 72 δ2122+ 107y2312 + 114 z2312 + 8 γ2312 + 72 δ2312 + 38y2322 + 53 z2322 + 8 γ2322
+ 32 δ2322 J    

Subject to 

12 (y0/// + y0/0/ +  y0�// +  y0�0/ + z0/// +  z0/0/ + z0�// +  z0�0/ �
+ 415 (δ0/// + δ0/0/ +  δ0�// +  δ0�0/ −  γ0/// −  γ0/0/ −  γ0�// −  γ0�0/ �≤ 35 /0 (y0//0 +  y0/00 + y0�/0 +  y0�00 + z0//0 + z0/00 + z0�/0 +  z0�00 � + �/� (δ0//0 + δ0/00 + δ0�/0 +  δ0�00 −  γ0//0 −  γ0/00 −  γ0�/0 −  γ0�00 � ≤ 45 12 (y/�// +  y/�0/ +  �/�// +  z/�0/ � + 415 (δ/�// + δ/�0/ −  γ/�// −  γ/�0/ �

≤ 12 (70 + y0/// +  y0/0/ + �0/// +  z0/0/ �
+ 415 (δ0/// + δ0/0/ −  γ0/// −  γ0/0/ − 10� 

 
/0 (y/�/0 + y/�00 +  �/�/0 +  z/�00 � + �/� (δ/�/0 + δ/�00 −  γ/�/0 −  γ/�00 � ≤/0 (100 + y0//0 +  y0/00 +  �0//0 +  z0/00 � + �/� (δ0//0 + δ0/00 −  γ0//0 −  γ0/00 + 10� /0 (y/�// + y/�0/ + y0�// +  y0�0/ +  �/�// +  z/�0/ + z0�// + z0�0/ � + �/� (δ/�// + δ/�0/ +δ0�// +  δ0�0/ −  γ/�// −  γ/�0/ − γ0�// −  γ0�0/ � ≥ /0¡�  
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12 (y/�/0 +  y/�00 + y0�/0 +  y0�00 + �/�/0 +  z/�00 + z0�/0 + z0�00 �
+ 415 (δ/�/0 + δ/�00 + δ0�/0 +  δ0�00 −  γ/�/0 −  γ/�00 − γ0�/0 −  γ0�00 �≥ 45 12 (y0/// +  y0�// + y/�// + y0//0 + y0�/0 + y/�/0 +  �0/// +  z0�// + z/�// + z0//0 + �0�/0

+ �/�/0 �+ 415 (δ0/// +  δ0�// + δ/�// +  δ0//0 + δ0�/0 + δ/�/0 −   γ0/// −  γ0�//
− γ/�// −  γ0//0 − γ0�/0 − γ/�/0 � ≤ 70 

/0 (y0/// +  z0/// � + �/� (δ0/// −  γ0/// � ≤ /¡¢�   

12 (y0/0/ +  z0/0/ � + 415 (δ0/0/ −  γ0/0/ � ≤ 65 

12 (y0�// +  z0�// � + 415 (δ0�// −  γ0�// � ≤ 1873  

12 (y0�0/ +  z0�0/ � + 415 (δ0�0/ −  γ0�0/ � ≤ 65 

12 (y0//0 +  z0//0 � + 415 (δ0//0 −  γ0//0 � ≤ 65 

12 (y0/00 +  z0/00 � + 415 (δ0/00 −  γ0/00 � ≤ 65 

12 (y0�/0 +  z0�/0 � + 415 (δ0�/0 −  γ0�/0 � ≤ 65 

12 (y0�00 +  z0�00 � + 415 (δ0�00 −  γ0�00 � ≤ 65 

~]^aR  −  A]^aR , �]^aR  −  ~]^aR , A]^aR , �]^aR ≥  0                            b ∈  Uf , (-, _� ∈  Q, ) = 1, … , [    
With solving this problem using weighted sum method [18], we have, 

0.0627 ~0///  0.0103 ~0�0/  0.0415 ~0�//  

0.0979 �0///  0.0103 �0�0/  0.0198 �0�//  

0 A0///  0.6951 A0�0/  0 A0�//  

0 �0///  0 �0�0/  0 �0�//  

 

0.0481 ~/�0/  0.0322 ~/�//  0.1259 ~0/0/  

0.2467 �/�0/  0.0322 ���//  0.1259 �0/0/  
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0 A/�0/  0 A/�//  0 A0/0/  

0 �/�0/  0.1873 �/�//  0 �0/0/  

 

0.0474 ~0//0  0.0437 ~0�00  0.0208 ~0�/0  

0.087 �0//0  0.0437 �0�00  0.1824 �0�/0  

0.0215 A0//0  0 A0�00  0 A0�/0  

0 �0//0  0 �0�00  0 �0�/0  

 

-0.4967 ~/�00  -0.3316 ~/�/0  -0.1491 ~0/00  

-1.0268 �/�00  -0.3316 �/�/0  -0.1491 �0/00  

0 A/�00  0.3438 A/�/0  0 A0/00  

0 �/�00  0 �/�/0  0 �0/00  

 

6. Conclusion 

    In this paper we introduced a new model for fully fuzzy multiobjective 
multicommodity minimal cost flow problems which there are several commodities to 
transport from sources to destinations and there is more than one conveyance for these 
transporting. We also assume that in each conveyance, there are distinct capacities for 
each commodity. We proposed a method for solving this problem without considering a 
balanced version of that. Our method can be also considered as a generalization of some 
methods for solving fuzzy multiobjective method in the presence of equalities and fuzzy 
inequalities. 
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