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A modified hybrid three-term conjugate gradient method 

and its applications in image restoration 

 
Meysam Ranjbar1, Ali Ashrafi 2,* 

 

This paper proposes a modified hybrid three-term conjugate gradient (CG) method for solving 

unconstrained optimization problems. The search direction is constructed by combining the 

Hestenes-Stiefel (HS) and Liu–Storey (LS) CG parameters in a hybrid three-term formula. We show 

that the proposed method satisfies the sufficient descent condition independently of line search 

strategies. A convergence analysis is provided under standard assumptions for general objective 

functions. Numerical experiments on CUTEr test problems and image-denoising tasks indicate that 

the proposed method outperforms existing approaches regarding efficiency, accuracy, and 

robustness, particularly in the presence of high levels of salt-and-pepper noise. 
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1. Introduction 
 

The unconstrained optimization problem is as follows:  

 min�∈ℝ��(
),  

 in which �: ℝ� → ℝ is a smooth function. In unconstrained optimization, particularly when 

minimizing the differentiable function f(x), i.e. min�∈ℝ��(
) CG methods have gained widespread 

adoption. This surge in popularity can be attributed to several factors, notably the simplicity of the 

iterations, minimal memory requirements, and rapid convergence rates. Among these techniques, the 

three-term CG method stands out, and it is determined as follows:  

 �� = � − �� ,  ��     � = 0,− �� + ������ + ��ℎ�,  ��   � ≥ 1.  (1) 

 In this framework, the parameters �� and �� are of significant importance. �� represents the CG 

parameter, while �� is an arbitrary parameter, with various forms of both having been presented. 

Moreover, several choices for ℎ� have been proposed to ensure convergence alongside a sufficient 

descent condition, i.e.  

 ��#�� ≤ − %||��||',   � = 0,1, . . . ,  (2) 
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Where % > 0 is constant, �� represents the gradient of the objective function, and ∥. ∥ denotes the 

Euclidean norm [8, 17, 21, 22]. Currently, the three-term CG method has garnered significant 

attention from researchers across multiple scientific disciplines. For instance, Liu et al. [14] developed 

two sufficient descent CG three-term methods that achieve global convergence when applied with 

Wolfe line search conditions. These methods were utilized to address the *١ − +*' regularization 

problem in sparse signal decoding within the context of compressed sensing. Kim et al. [12] introduce 

a variable three-term CG technique that uses an approximation of the Hessian matrix to improve 

search direction, utilizing a variable step size to enhance convergence stability. To assess the efficacy 

of their approach, they train various artificial neural networks (ANN) on standard datasets for image 

classification and generation. Additionally, they carry out an analogous experiment involving a grasp 

generation and selection convolutional neural network (CNN) designed for intelligent robotic 

grasping. Following evaluations in an environment that is simulated, they also test the grasp 

generation and selection CNN (GGS-CNN) with a physical gripping robot. Ibrahim and Khudhur [11] 

created a CG algorithm featuring three limits based on the Dai-Liao conjugate condition. This new 

algorithm offers global convergence and adequate sufficient descent conditions (2) under certain 

assumptions and was applied to eliminate noise from images. Mousavi et al. [16] proposed two 

effective three-term CG methods aimed at eliminating impulse noise. The approach begins with the 

steepest descent direction, followed by the inclusion of three components: the steepest descent 

direction, the previous direction, and the gradient difference between the preceding and current points. 

The second and third components are adjusted using two distinct step sizes, referred to as CG 

parameters. This adjustment ensures that all components contribute without any of them 

overwhelmingly dominating the others, except in the vicinity of the optimizer, where the first term 

takes precedence. The authors applied these methods to remove noise from medical images to 

demonstrate the effectiveness of their proposed techniques. Recent research by Abubakr et al. [13] 

has advanced by developing three-term formulas for conjugate gradient (CG) methods through a 

reformulation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) direction formula. They went on to 

propose a novel three-term CG formula that meets the necessary descent condition for global 

convergence without relying on a line search. 

     Motivated by the ideas presented in [13, 15, 23], we introduce a hybrid three-term CG method for 

solving unconstrained optimization problems. The direction combines the three-term HS and LS 

directions, and to achieve better numerical results than several other methods, we include an 

additional term. Moreover, the direction closely resembles that of the memoryless Broyden-Fletcher-

Goldfarb-Shanno (BFGS) quasi-Newton method and possesses descent properties. 

The main contributions of this paper are: 

(1) Based on the LBFGS method, we propose a new hybrid three-term CG method for solving 

unconstrained optimization problems. 

(2) The search direction of the proposed method satisfies the sufficient descent property without the 

need for any line search. 

(3) The global convergence of the proposed method is proved using the weak Wolfe line search. 

(4) The computational performance of the new method is evaluated on several standard test problems. 

(5) Numerical experiments are conducted to test the proposed method on unconstrained problems, 

including applications in image restoration. 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-1
0-

12
 ]

 

                             2 / 17

http://iors.ir/journal/article-1-850-en.html


A modified hybrid three-term conjugate gradient method and  

 
3 

 

The structure of this paper is outlined below. The subsequent section details the derivation of the 

three-term method and discusses its convergence. In Section 3, we showcase various numerical 

experimental results. In Section 4, we present Challenges in Existing CG Methods and Our 

Contributions. Finally, a conclusion is given in Section 5. 

2. Results from theory and algorithms  
 
The hybrid CG approach proposed by Abubakar et al [13] is presented in the following manner:  

�� = ��#,���- − ∥ ,��� ∥' ��#����-' ,  

- = max01 ∥ ���� ∥∥ ,��� ∥ , ����# ,���, − ����# ����2, 1 > 0,  

�� = 3� ��#����-� , 
3� = min 43̅, max 60, ,���# (,��� − 7���)∥ ,��� ∥' 89 .  

     This approach, independent of the line search, meets the sufficient descent property and 
incorporates a trust region. It achieves global convergence for a broad class of functions when using 
either Wolfe-type or Armijo-type line search. Drawing inspiration from the approach of Abubakr et 
al [1], we present a three-term CG method with a general structure of (1), defined by the following 
parameters:  

�� = ��#,���: − ∥ ,��� ∥' ��#����:' ,                                                               (3) 

 : = max01 ∥ ���� ∥∥ ,��� ∥ , ����# ,���, − ����# ����2 + < ∥ ���� ∥', 1, < > 0,            (4) 

   
 

   �� = 3� ��#����:� ,                                                                        (5) 

     ℎ� = ,���.                                                                                   (6) 
 

 To determine the parameter 3�, we require solving the univariate minimal problem as follows:  min@∈ℝ ∥ (,��� − 7���) − 3,��� ∥' .  

 Assuming A� = ,��١ − 7��١ and B� = A� − 3,��١, we find that       B�B�# = (A� − 3,���)(A� − 3,���)# ,                                               = 3',���,���# − 3[A�,���# + ,���A�#] + A�A�# ,  
 and  3EFB�B�#G = 3' ∥ ,��� ∥'− 3H3EFA�,���# G + 3EF,���A�#GI+∥ A� ∥'        

= 3' ∥ ,��� ∥'− 23,���# A�+∥ A� ∥' .                                           
 By differentiating the expression above concerning t and setting it equal to zero, we acquire  
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3 = ,���# (,��� − 7���)∥ ,��� ∥' ,                                                               (7) 

 

 Afterward, we select 3� as  

3� = min 43̅, max 60, ,���# (,��� − 7���)∥ ,��� ∥' 89                              (8) 

                                

 indicating that 0 ≤ 3� ≤ 3̅ < 1. In (8), 3̅ is a positive constant. 

 The new algorithm can be shown as follows, based on the analysis above. 
 
Algorithm 1: MTTHSLS algorithm 

   
Step 0: Given a starting point 
N ∈ ℝ�, parameters O > 0, 1 > 0, < > 0, 0 < P < Q < 1. Calculate                                              �N = �(
N) and �N = R�(
N). Set �N = −�N, � = 0.  

Step 1: If ||��||S < O, then stop. Otherwise, proceed to step 2.  

Step 2: Compute the step-length +� by the Wolfe line search conditions.  

Step 3: Let 
�T� = 
� + +���, calculate ��T�, �(��T�).  

Step 4: Determine 3�, ��, and �� by (8), (5), and (3) respectively. Compute the search direction by 

(1)  

Step 5: Set � = � + 1, then proceed to step 1. 

  
  The MTTHSLS method calculates the search direction ��T١, and we will now demonstrate its 
sufficient descent property.  

Lemma 2.1  The search direction (1) defined in equation (3) fulfills condition (2) with % = 1 +(�T@U)V
W .  

Proof.  We have,  

                 ��#�� = − ∥ �� ∥'+ ��#,���:� ��#���� − ∥ ,��� ∥':�' (��#����)' + 3� ��#,���:� ��#���� 

= − ∥ �� ∥'+ (1 + 3�) ��#,���:� ��#���� − ∥ ,��� ∥':�' (��#����)' 

     = − ∥ �� ∥'+ 2 X1 + 3�2 ��#Y ,���:� ��#���� − ∥ ,��� ∥':�' (��#����)' 

                             ≤ − ∥ �� ∥'+ (1 + 3�)'4 ∥ �� ∥'+ ∥ ,��� ∥':�' (��#����)' − ∥ ,��� ∥':�' (��#����)'

= −∥ �� ∥'+ (1 + 3�)'4 ∥ �� ∥'= − Z1 + (1 + 3�)'4 [ ∥ �� ∥' 

                           = −% ∥ �� ∥' .  

Assumptions 2.1  The level set \ = {
: �(
) ≤ �(
N)} is bounded. Then, the function � is bounded, 

and its gradient is Lipschitz continuous on \. This indicates that a constant _ > 0 exists such that 

for all 
 and 
̅ ∈ \, ∥ �(
) − �(
̅) ∥≤ _ ∥ 
 − 
̅ ∥.  

Based on Assumptions (2.1), we can conclude that for every 
 ∈ \, there are constants `١ > 0 such 

that ∥ �(
) ∥≤ `�. Furthermore, the sequence {
�} is contained within \ because the values {�(
�)} 
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are non-increasing. Thus, we will assume that Assumptions (2.1) are satisfied. We will now proceed 
to demonstrate the convergence result.  
 
Theorem 2.1  . Assume that the step size +� is acquired through the Wolfe line search conditions[17]. 

If  

aS
�bN

1∥ �� ∥' = +∞,                                                            (9) 

                                                       
 

 then  
  liminf�→S ∥ �� ∥= 0.                                                               (10) 

                                                
Proof.  From (3) and (5), we have  

|��| = g��#,���: − ∥ ,��� ∥' ��#����:' g 
≤ ∥ �� ∥∥ ,��� ∥1 ∥ ���� ∥∥ ,��� ∥ +< ∥ ���� ∥' + ∥ ,��� ∥'∥ �� ∥∥ ���� ∥(1 ∥ ���� ∥∥ ,��� ∥ +< ∥ ���� ∥')' 

≤ ∥ �� ∥∥ ,��� ∥1 ∥ ���� ∥∥ ,��� ∥ + ∥ ,��� ∥'∥ �� ∥∥ ���� ∥(1 ∥ ���� ∥∥ ,��� ∥)'  

                                        = X11 + 11'Y ∥ �� ∥∥ ���� ∥ .                                                                                      (11) 

 Also  

|��| = g3� ��#����:� g ≤ 3̅ ∥ �� ∥∥ ���� ∥:� ≤ 3̅ ∥ �� ∥∥ ���� ∥1 ∥ ���� ∥∥ ,��� ∥ +< ∥ ���� ∥' 

≤ 3̅ ∥ �� ∥∥ ���� ∥1 ∥ ���� ∥∥ ,��� ∥ = 31̅ ∥ �� ∥∥ ,��� ∥ .                                               (12) 

                                
 
 Now, from (1), (11), and (12), we have  ∥ �� ∥=∥ −�� + ������ + ��,��� ∥≤∥ �� ∥ +∥ �� ∥∥ ���� ∥ +∥ �� ∥∥ ,��� ∥                        

 

≤∥ �� ∥ + X11 + 11'Y ∥ �� ∥∥ ���� ∥ ∥ ���� ∥ + 31̅ ∥ �� ∥∥ ,��� ∥ ∥ ,��� ∥                                              
                                      

 

= Z1 + 1 + 3̅1 + 11'[ ∥ �� ∥≤ Z1 + 1 + 3̅1 + 11'[ `�.                                                                 
                                                   

 

Then, we get ∥ �� ∥≤ h where h = (1 + �T@̅i + �iV)`�. This signifies the formation of a relationship 

(10) due to  
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∥ �� ∥≤ h → 1h ≤ 1∥ �� ∥, 
→ 1h' ≤ 1∥ �� ∥', 

→ 1∥ �� ∥' ∥ �� ∥Wh' ≤ ∥ �� ∥W∥ �� ∥', 
→ 1h' aS

�b� ∥ �� ∥W≤ aS
�b�

∥ �� ∥W∥ �� ∥', 
→ 1h' aS

�b� ∥ �� ∥W< ∞, 
→ lim�→S ∥ �� ∥W= 0, 
→ lim�→S ∥ �� ∥= 0.  

 

3. Numerical experiments 

This section includes numerical experiments that assess the effectiveness of MTTHSLS, 
HTTHSLS[13], HTTWYL[23], and HTHP [15]. Details about the test problems, which include 92 
functions from [7], can be found in Tables 1–2. All implementations were carried out using MATLAB 
7.14.0.739 (R2012a) on a desktop equipped with an AMD Ryzen 7 PRO 5850U with Radeon 
Graphics 1 .90 GHz, 16 GB of RAM, and the CentOS 6.2 Linux operating system. 

 In our implementations, we chose P = 0.0001 and Q = 0.99 for the strong Wolfe line search 

conditions [17]. Furthermore, we set the method parameters to the values of 3̅ = 0.2, < = 0.8, and 1 = 0.02. Furthermore, the algorithms were terminated when either � > 10000 or ||��|| <10�j(1 + |��|) met certain termination criteria. Additionally, the algorithm’s efficiency was 
evaluated using the performance profile introduced by Dolan and Moré [5], focusing on the total 
number of function and gradient evaluations (TNFGE), as defined in [9], along with CPU time 
(CPUT), by the nomenclature from [3]. The findings are shown in Figures 1 and 2; it is clear that 
MTTHSLS surpasses the three other methods. 

 
 
 
 
 
 
 
 
 
 
 

Table 1. Numerical results for all methods. 
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 Function k MTTHSLS HTTHSLS HTTWYL HTHP 

    TNF   TIME   TNF   TIME   TNF   TIME  TNF   TIME 

     ARGLINA  2  12   1.24E-01   12   7.65E-02   12   7.68E-02   12   9.58E-02  

 BDEXP  6  16   6.76E-02   16   5.71E-02   16   5.45E-02   16   5.30E-02  

 BDQRTIC  7  40129   1.27E+01   17561   4.06E+00   25805   6.14E+00   18651   4.45E+00  

 BIGGSB١  8  40157   6.94E+00   40400   4.79E+00   40332   5.28E+00   38743   4.63E+00  

 BQPGABIM  150  219   2.04E-02   272   3.19E-02   427   3.82E-02   424   3.10E-02  

 BQPGASIM  151  219   2.81E-02   272   2.76E-02   427   3.20E-02   424   3.21E-02  

 BROWNAL  11  18127   2.64E+00   7946   1.07E+00   8942   1.20E+00   5123   7.37E-01  

 BROYDN٧D  12  40076   3.07E+01   40132   2.89E+01   40141   2.93E+01   40392   2.90E+01  

 BRYBND  13  1161   5.52E-01   3239   1.35E+00   3066   1.57E+00   3647   1.50E+00  

 CHAINWOO  14  40085   1.05E+01   40588   8.82E+00   41658   9.31E+00   42051   9.07E+00  

 CHENHARK  155  14577   2.59E+00   11636   2.05E+00   4152   7.95E-01   528   1.35E-01  

 CHNROSNB  57  31544   1.37E+00   39810   1.62E+00   42221   1.79E+00   31030   1.27E+00  

 CLPLATEB  157  40093   1.35E+01   40293   1.17E+01   40408   1.21E+01   40199   1.16E+01  

 COSINE  15  57   1.32E-01   53   1.21E-01   60   1.31E-01   55   1.20E-01  

 CRAGGLVY  59  803   5.05E-01   953   5.71E-01   854   5.33E-01   1306   7.59E-01  

 CURLY١٠  61  5055   2.27E+00   6720   2.93E+00   5291   2.35E+00   40189   1.27E+01  

 CURLY٢٠  62  16693   9.67E+00   27368   1.28E+01   18875   9.19E+00   5472   2.75E+00  

 CURLY٣٠  63  40090   2.63E+01   40668   2.49E+01   40436   2.55E+01   35652   2.18E+01  

 DECONVU  64  40117   1.90E+00   40892   1.91E+00   40780   1.95E+00   15649   7.13E-01  

 DIXMAANA  16  36   5.03E-02   36   4.58E-02   36   4.52E-02   36   5.07E-02  

 DIXMAANB  17  37   5.10E-02   32   5.13E-02   32   5.15E-02   32   4.21E-02  

 DIXMAANC  18  37   5.02E-02   37   4.51E-02   32   5.09E-02   37   5.16E-02  

 DIXMAAND  19  47   5.41E-02   42   5.75E-02   42   4.75E-02   46   4.56E-02  

 DIXMAANE  20  12402   2.15E+00   16866   2.78E+00   34644   5.74E+00   10953   1.36E+00  

 DIXMAANF  21  9420   1.65E+00   16395   2.73E+00   21890   3.48E+00   13072   1.64E+00  

 DIXMAANG  22  12431   2.18E+00   14780   2.43E+00   30800   4.54E+00   29220   3.68E+00  

 DIXMAANH  23  7796   1.45E+00   20027   3.40E+00   23933   3.60E+00   5314   6.74E-01  

 DIXMAANI  24  40074   6.80E+00   42794   5.36E+00   43932   5.65E+00   41215   5.15E+00  

 DIXMAANJ  25  11773   2.06E+00   11251   1.90E+00   28908   4.48E+00   6647   8.45E-01  

 DIXMAANK  26  8506   1.51E+00   7765   1.32E+00   7473   1.32E+00   31574   4.65E+00  

 DIXMAANL  27  3339   6.28E-01   7586   1.30E+00   40614   6.54E+00   13287   1.69E+00  

 DIXON٣DQ  71  40100   9.94E+00   40701   8.15E+00   40312   8.74E+00   41774   8.31E+00  

 DMN15102  163  40102   7.07E+01   40828   7.11E+01   41474   7.23E+01   41054   7.15E+01  

 DMN15103 164  40064   9.03E+01   40084   8.98E+01   40374   9.06E+01   42663   9.50E+01  

 DMN37142 165  40135   7.07E+01   40188   7.00E+01   40390   7.13E+01   42018   7.31E+01  

 DMN37143  166  40080   9.02E+01   44103   9.79E+01   40366   9.04E+01   43588   9.96E+01  

 DQDRTIC  28  641   2.56E-01   3224   9.83E-01   3427   1.10E+00   3789   1.14E+00  

 DQRTIC  29  4   3.86E-02   4   3.74E-02   4   3.67E-02   4   3.95E-02  

 DRCAV1LQ  167  4   7.54E-02   4   8.05E-02   4   8.46E-02   4   8.69E-02  

 DRCAV2LQ  168  4   7.72E-02   4   8.05E-02   4   7.13E-02   4   7.65E-02  

 DRCAV3LQ  169  4   1.03E-01   4   8.05E-02   4   7.08E-02   4   7.18E-02  

 EDENSCH  73  522   1.37E-01   474   1.20E-01   82   5.60E-02   310   9.96E-02  

 EG2 30  23   2.51E-02   23   1.69E-02   23   2.34E-02   23   2.61E-02  

 EIGENALS  74  40067   5.59E+01   40395   5.43E+01   40540   5.49E+01   40485   5.43E+01  

 EIGENBLS  75  40057   5.57E+01   40527   5.46E+01   40396   5.47E+01   41800   5.62E+01  

 EIGENCLS  76  40329   5.99E+01   41052   5.92E+01   42405   6.13E+01   44153   6.33E+01  

                                           
 

Table 2. Numerical results for all methods. 
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 Function k MTTHSLS HTTHSLS HTTWYL HTHP 

    TNF   TIME   TNF   TIME   TNF   TIME  TNF   TIME 

 ENGVAL١  31  71   9.60E-02   67   8.57E-02   63   9.35E-02   76   9.66E-02  

 ERRINROS  78  40064   1.71E+00   40325   1.69E+00   40295   1.75E+00   41730   1.63E+00  

 EXTROSNB  32  40090   3.02E+00   40594   3.02E+00   40997   3.15E+00   40865   2.25E+00  

 FLETCBV٢  33  4   8.21E-02   4   7.09E-02   4   6.97E-02   4   7.05E-02  

 FLETCBV٣  171  160   1.69E-01   160   1.63E-01   160   1.68E-01   160   1.58E-01  

 FLETCHBV  172  156   1.62E-01   160   1.55E-01   156   1.55E-01   156   1.52E-01  

 FLETCHCR  80  31141   2.80E+00   41372   3.65E+00   40990   2.88E+00   14995   9.60E-01  

 FMINSRF٢  81  9853   2.94E+00   12765   3.65E+00   18069   4.14E+00   11693   2.53E+00  

 FMINSURF  82  38713   1.06E+01   41636   9.45E+00   40270   9.56E+00   40342   9.12E+00  

 FREUROTH  83  3938   1.47E+00   5849   2.11E+00   5402   1.98E+00   3624   1.22E+00  

 GENHUMPS 84 4 4.41E-02 4 4.06E-02 4 4.76E-02 4 4.88E-02 

 GENHUMPS 175 4 5.73E-02 4 5.87E-02 4 4.57E-02 4 5.57E-02 

 GENROSE 34 40043 2.63E+00 40325 2.63E+00 40114 2.69E+00 40462 1.96E+00 

 LIARWHD 35 40233 1.01E+01 46752 8.14E+00 50130 9.30E+00 49122 9.08E+00 

 MANCINO 104 458 1.06E+00 458 1.05E+00 453 1.05E+00 453 1.04E+00 

 MANCINO 104 458 1.06E+00 458 1.05E+00 453 1.05E+00 453 1.05E+00 

 MOREBV 107 367 1.51E-01 1878 4.71E-01 26548 6.31E+00 36207 6.63E+00 

 MSQRTALS 108 40078 1.43E+01 40391 1.27E+01 40114 1.28E+01 40294 1.26E+01 

 MSQRTBLS 109 40158 1.43E+01 41043 1.29E+01 40371 1.28E+01 41285 1.29E+01 

 NCB20 110 393 5.15E-01 1053 1.13E+00 1220 1.29E+00 2362 2.37E+00 

 NCB20B 111 221 3.57E-01 873 9.60E-01 867 9.71E-01 913 1.00E+00 

 NONCVXU2 112 4 4.56E-02 4 4.89E-02 4 5.35E-02 4 4.27E-02 

 NONDIA 36 40017 8.79E+00 20858 2.95E+00 103746 1.61E+01 25306 3.63E+00 

 NONDQUAR 113 40092 6.96E+00 40289 5.49E+00 40609 5.52E+00 40915 5.15E+00 

 PENALTY1 37 3197 2.59E-01 2468 1.92E-01 1100 1.11E-01 2561 2.07E-01 

 PENALTY2 38 4 9.92E-03 4 9.21E-03 4 1.56E-02 4 1.29E-02 

 POWELLSG 125 40097 6.64E+00 45446 5.30E+00 50498 6.07E+00 41411 4.95E+00 

 POWER 126 40103 8.46E+00 43750 6.90E+00 40322 6.12E+00 40618 6.62E+00 

 QUARTC 40 4 3.98E-02 4 3.80E-02 4 3.73E-02 4 3.58E-02 

 SCHMVETT 41 92 1.31E-01 77 1.16E-01 73 1.14E-01 81 1.19E-01 

 SENSORS 129 109 2.60E-01 97 2.10E-01 97 2.08E-01 113 2.34E-01 

 SINQUAD 131 221 2.75E-01 85 2.10E-01 208 2.68E-01 169 2.57E-01 

 SPARSINE 134 40030 2.11E+01 41393 1.96E+01 42081 2.01E+01 40274 1.91E+01 

 SPARSQUR 42 605 4.87E-01 597 4.66E-01 602 4.84E-01 597 4.66E-01 

 SPMSRTLS 43 6773 2.42E+00 9215 3.16E+00 10202 3.42E+00 8237 2.13E+00 

 SROSENBR 44 15410 2.85E+00 13790 2.05E+00 11476 1.75E+00 10335 1.40E+00 

 TESTQUAD 135 40039 5.42E+00 40357 4.26E+00 53869 5.08E+00 41714 3.99E+00 

 TOINTGOR 136 970 6.05E-02 1563 8.74E-02 1420 7.97E-02 1905 1.04E-01 

 TOINTGSS 45 169 1.60E-01 356 2.72E-01 147 1.42E-01 212 1.78E-01 

 TOINTPSP 138 1027 6.09E-02 2448 1.14E-01 2477 1.22E-01 2589 1.19E-01 

 TOINTQOR 137 146 1.69E-02 143 2.43E-02 144 1.84E-02 138 2.21E-02 

 TQUARTIC 139 40036 8.56E+00 41574 6.60E+00 40005 6.66E+00 40485 6.35E+00 

 TRIDIA 46 40053 6.53E+00 42796 5.32E+00 40261 5.25E+00 41756 4.88E+00 

 VARDIM 47 8 3.94E-03 8 7.77E-03 8 8.56E-03 8 9.52E-03 

 VAREIGVL 48 175 2.02E-02 141 2.53E-02 133 2.14E-02 142 2.40E-02 

 WOODS 49 117 7.43E-02 244 9.57E-02 41860 8.21E+00 24181 3.44E+00 
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Figure 1. Comparison based on TNFGE with the strong Wolfe line search. 

   

 
Figure 2. Comparison based on CPUT (B) with the strong Wolfe line search. 

 

 
We demonstrate applying the suggested techniques to an image reconstruction problem in the 

sections that follow, offering a practical case study. Images frequently suffer from impulse noise 
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caused by faulty sensors or transmission channels. This type of noise is one of the most prevalent 
models, where only a subset of the pixels is affected, resulting in a complete loss of information for 
those specific pixels. To reliably recover the original image, various image-related applications 
typically require effective noise suppression techniques. These issues are often viewed as complex 
optimization challenges due to their nonsmooth structures. Recently, researchers have focused on 
developing nonlinear CG algorithms to tackle such nonsmooth optimization problems; see, for 
instance, [4, 10, 18, 19, 20]. In this section, we address the problem of smooth image reconstruction 
presented in [10]:  

  minl(m),  
where  

  

l(m) = a(n,o)∈p q a(r,�)∈stu\p wx(mno − :r�) + 12 a(r,�)∈stu∩p wx(mno − mr�)z ,  

in which  
  p = {(�, {) ∈ A  |  :n̅o ≠ :no, :no = 7}~�   �E   7}��}.  
 The index set for the noise candidate is denoted as follows: let � represent the true image 

composed of h × � pixels, where �no indicates the gray level at the pixel location (�, {) for all (�, {) ∈A = {1, 2, … , h} × {1, 2, … , �}. The neighborhood around the pixel (�, {) is given by �no = {(�, { −1), (�, { + 1), (� − 1, {), (� + 1, {)}. The observed image, :, reflects the true image � but it is affected 

by salt-and-pepper noise. The image : ̅is derived by applying an adaptive median filter to the noisy 
image :. Additionally, 7}~� and 7}�� represent the minimum and maximum values of a noisy pixel, 

respectively. We utilize the edge-preserving functional wx, defined as wx(3) = √3' + +, based on 
the recommendation in [10]. In our experiments, we set + = 1 due to the satisfactory numerical results 

observed across various choices of + in the set {0.5�}�b��N .  
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                     (a)                                       (b)                                      (c)                                    (d) 

 
 
 
 
 
 
 
          (e)                                      (f)                                       (g)                                  (h) 
  
 
 
 
 
 
 
          (i)                                       (j)                                        (k)                                  (l)    

   
 
 
 
 
 

 
 

          (m)                                    (n)                                        (o)                                  (p) 

 
 
 
 
 
 
 
     
          (q)                                     (r)                                        (s)                                    (t)  
 

Figure 3: The noisy images corrupted by 25% salt–and–pepper noise: (a)–(d), the restored images 
via HTTHSLS: (e)–(h), HTTWY: (i)–(l), HTHP : (m)–(p), and MTTHSLS: (q)–(t) 
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                     (a)                                      (b)                                     (c)                                     (d) 

 
 
 
 
 
 
 
    
        (e)                                      (f)                                     (g)                                      (h) 

 
 
 
 
 
 
 
 
          (i)                                       (j)                                     (k)                                     (l)    

 
 
 
 
 
 
 
 
          (m)                                     (n)                                     (o)                                    (p) 

  
 
 
 
 
 
 
 
           (q)                                    (r)                                      (s)                                    (t) 

 
Figure 4: The noisy images corrupted by 50% salt–and–pepper noise: (a)–(d), the restored images 

via HTTHSLS: (e)–(h), HTTWY: (i)–(l), HTHP : (m)–(p), and MTTHSLS: (q)–(t) 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-1
0-

12
 ]

 

                            12 / 17

http://iors.ir/journal/article-1-850-en.html


A modified hybrid three-term conjugate gradient method and  

 
13 

 

 
 
 
 
 
 

 
                     (a)                                    (b)                                        (c)                                         (d) 

 
 
 
 
 
 

 
 
                      (e)                                   (f)                                         (g)                                         (h) 

 
 
 
 
 
 
 
 
         (i)                                     (j)                                        (k)                                         (l)    

 
 
 
 
 
 
 
 
         (m)                                   (n)                                       (o)                                         (p) 

 
 
 
 
 
 

 
                       (q)                                   (r)                                        (s)                                         (t) 
 

Figure 5: The noisy images corrupted by 75% salt–and–pepper noise: (a)–(d), the restored images 
via HTTHSLS: (e)–(h), HTTWYL: (i)–(l), HTHP : (m)–(p), and MTTHSLS: (q)–(t) 
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 In this analysis, the images of Lena, Cameraman, and Goldhill, each with dimensions of 256 × 256 pixels and represented in grayscale, have been used as test cases. Additionally, the Wolfe 
line search condition and the methods' stopping criteria have been upheld by those established in the 
first part of our numerical tests. As illustrated in Figures 3–5, all three methods appear to effectively 
reconstruct the images. To quantitatively evaluate the results, we analyze the computation time 
(CPUT in seconds), the relative error (RelErr) [6] expressed as a percentage, and the peak signal-to-
noise ratio (PSNR) [10] measured in decibels (dB) of the restored image. These metrics are defined 
as follows:  

  

��*�EE = 100 ||�∗ − �||||�|| , ���� = 10  log�N 255'1h × � ||�∗ − �||�'
,  

Where �∗ represents the recovered image. The results can be found in Tables 3–5. As seen in Tables 
4 and 5, MTTHSLS is better than the other (image reconstruction) methods from the viewpoints of 
RelErr and PSNR.    

 
Table 3. Image restoration outputs based on CPUT 

 
  Noise  Method Lena Cameraman Goldhill Bird 

   
 25% 
  
  

MTTHSLS 8.1460 8.1256 8.0166 5.5352 

HTTHSLS 6.5480 6.5470 5.0066 5.1289 

HTTWYL 6.5337 6.4952 5.0044 5.0952 

HTHP 6.5017 6.5451 5.0392 5.1363 

   
 50% 
  
  

MTTHSLS 16.5842 16.4290 13.3039 10.4418 

HTTHSLS 13.1580 13.0136 9.9261 10.0028 

HTTWYL 13.1383 13.1547 9.9237 10.0369 

HTHP 12.9794 13.0835 9.9152 10.0384 

   
 75% 
  
  

MTTHSLS 24.2626 28.4363 19.4133 15.0536 

HTTHSLS 23.9058 23.9368 19.5078 14.9095 

HTTWYL 24.0137 24.4501 19.5736 14.9533 

HTHP 23.9225 23.9974 19.6339 14.9803 

                                  
   

Table  4. Image restoration outputs based on RelErr 
 

  Noise  Method Lena Cameraman Goldhill Bird 

   
 25% 
  
  

MTTHSLS 0.7950 0.9598 0.7690 0.3114 

HTTHSLS 0.7996 0.9637 0.7666 0.3177 

HTTWYL 0.7995 0.9637 0.7666 0.3177 

HTHP 0.7995 0.9636 0.7666 0.3177 

   
 50% 
  
  

MTTHSLS 1.4214 1.7816 1.4153 0.5281 

HTTHSLS 1.4240 1.7726 1.4053 0.5507 

HTTWYL 1.4239 1.7722 1.4043 0.5508 

HTHP 1.4240 1.7716 1.4032 0.5507 

   
 75% 
  
  

MTTHSLS 2.2273 2.7163 2.2201 0.8430 

HTTHSLS 2.3435 2.7330 2.3133 0.9136 

HTTWYL 2.3426 2.7316 2.3096 0.9138 

HTHP 2.3440 2.7345 2.3122 0.9136 
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Table 5. Image restoration outputs based on PSNR 
 

  Noise  Method Lena Cameraman Goldhill Bird 

   
 25% 
  
  

MTTHSLS 34.7438 31.6461 33.1316 42.2355 

HTTHSLS 34.7114 31.6200 33.1398 42.1594 

HTTWYL 34.7126 31.6201 33.1398 42.1594 

HTHP 34.7129 31.6217 33.1417 42.1593 

   
 50% 
  
  

MTTHSLS 30.2496 27.6687 29.4931 37.5014 

HTTHSLS 30.2551 27.6842 29.4380 37.2263 

HTTWYL 30.2582 27.6864 29.4422 37.2258 

HTHP 30.2577 27.6879 29.4488 37.2265 

   
 75% 
  
  

MTTHSLS 26.9772 29.4016 26.9604 34.4020 

HTTHSLS 26.7281 29.4380 26.6662 33.8104 

HTTWYL 26.7293 24.4501 26.6780 33.8093 

HTHP 26.7255 24.4426 26.6714 33.8110 

 
                         

4. Challenges in Existing CG Methods and Our Contributions 
 

The findings of this study offer several key insights for practitioners and decision-makers 
involved in computational optimization and image restoration applications: 

MTTHSLS: A Reliable Solution for Noisy Image Restoration: 

The proposed MTTHSLS algorithm demonstrates superior performance in high-noise 
environments, especially in restoring images with up to 75% salt-and-pepper corruption. This makes 
it a reliable choice for applications where data degradation occurs often, such as surveillance, medical 
imaging, or remote sensing systems. Managers overseeing these systems can consider MTTHSLS a 
dependable preprocessing tool to enhance downstream analytics or decision-making quality. 

Reduced computational cost: 

Numerical results on the CUTEr benchmark set show that MTTHSLS outperforms existing three-
term CG methods in terms of convergence speed and total function evaluations. For operations teams 
managing large-scale optimization tasks—such as resource allocation, machine learning training, or 
logistics modeling—this results in lower computational cost, energy consumption, and turnaround 
time. 

Flexibility in implementation: 

Since the proposed method maintains the sufficient descent property independently of line search 
techniques, it allows greater flexibility in tuning or integrating with existing solvers. Managers or 
engineers can deploy this method with minimal structural changes, reducing adoption barriers and 
enabling seamless integration into existing software ecosystems. 

Scalability and reliability: 

The algorithm’s strong theoretical foundations, combined with consistent empirical performance 
across a wide variety of test functions, suggest its applicability to many problems beyond image 
restoration. This positions MTTHSLS as a versatile optimization tool capable of supporting robust 
decision-making in various fields, such as finance, engineering design, and data science. 

In summary, the proposed MTTHSLS method offers a blend of theoretical rigor and practical 
effectiveness. Its adoption can improve both the efficiency and reliability of systems that depend on 
large-scale optimization or sensitive image data reconstruction. 
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5. Conclusions  
 

      Motivated by the research conducted by Abubakr et al. on the creation of three-term formulas for 

CG methods through a reformulation of the BFGS direction formula, we introduce a new three-term 

CG method that guarantees sufficient descent conditions without relying on line search. The global 

convergence characteristics of this method were examined under Wolfe line search conditions. To 

assess the method’s performance in comparison to similar techniques, we carried out numerical 

experiments using the CUTER benchmark problems, as well as for salt and pepper noise reduction. 

The outcomes of these experiments demonstrate that our method delivers notable efficiency.  
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