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Computing the Capacity of Sum-networks with 

Dependent Sources 

 
Mehdi Ghiyasvand1,,  Sepideh Ghazvineh2 

A sum-network is a directed acyclic network with multiple sources and multiple sinks, where each 

sink demands the sum of the independent information generated at the sources. The coding capacity 

of sum networks with independent sources has been investigated in Tripathy and Ramamoorthy 

(2015). This paper shows that dependencies between the sources can change the upper bound of 

the coding capacity of sum-networks. We prove that the upper bound of the coding capacity of a 

sum network with dependent sources is greater than 1 which is different from the results in Tripathy 

and Ramamoorthy (2015). It is also shown that a non-solvable sum-network with independent 

sources can be converted to a solvable sum-network when the sources have arbitrary dependencies. 
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1. Introduction 

The work in the area of function computation over a communication network has been received 
attention in the last years [12, 13, 14, 18, 21]. In a function computation problem, each sink wants to 
compute some function of a subset of source messages. In recent years, the concept of network coding 
was proposed in the area of function computation problems [31, 32, 33]. The sum-network problems 
are a special kind of function computation problems because they need a simple function such as the 
sum [17, 30, 32, 34]. A sum-network is considered as a communication network with multiple sources 
and multiple sinks such that each sink requires the sum of all the messages generated at the source 
nodes. The first work in this area was done by Ramamoorthy in [32]. He showed that, for sum-
networks with at most two sources or two sinks, the sum of source messages can be communicated 
to the sinks if and only if each source-sink pair is connected. 
One of the fundamental problems in network coding problems is to characterize the capacity region 
of them. In [2], the weighted Hamming distance to measure the modification of the arc capacities is 
considered. Network routing capacity, network coding capacity and channel coding capacity were 
investigated in [4, 9, 11, 10, 15, 26]. In [1], it was shown that the network coding capacity of a 
multicast network is the minimum of the min-cuts from the source to the individual sinks. Li et 
al.(2003) showed that 1 the capacity of multicast networks is achieved by linear network codes. By 
the assumption that sources are independent, the network coding capacity of multi-source multi-
terminal networks was studied in [5, 20, 16, 38]. 
Some factors can change the coding capacity of communication networks. For multiple unicast 
networks, Cannons et al. (2006) proved that the coding capacity is independent of the using alphabet 
[4]. Also, the linear coding capacity of networks over ring and module alphabets has been considered 
in [6]. Furthermore, under the assumption that sources are dependent, the capacity region of multi-
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source multi-terminal network coding problems and line networks were investigated in [4, 19, 22]. In 
[23], the edge-removal problem and its connections to the δ-dependent problems is investigated. 
For sum-networks with independent sources, the capacity region has been studied extensively and 
some bounds on the network coding capacity of these networks were presented in [7, 24, 27, 28, 29, 
36, 37]. In [8, 27, 28, 37], sum-networks with arbitrary capacities were constructed. In [28], a ratio 
m/n (where m and n are non-negative integers) was considered and a sum-network with capacity m/n 

was constructed that has 2�� − � sources and 2�� − � + 1 sinks. In [27, 37], the work of [28] was 
generalized and sum-networks of smaller size was constructed that had capacity m/n. Tripathy et al. 
(2015) showed that the coding capacity of the sum-networks depends on the characteristic of finite 
field F used as the message alphabet [36]. Moreover, they constructed a sum-network with 
independent sources that the coding capacity of it is at most 1. 
 
Main contributions: 

 
This paper considers sum-networks whose capacities depend on the dependency or independence of 
information generated by the sources. It constructs a sum-network which the upper bound of its 
capacity is 1 as the sources are independent, and it can be (strictly) greater than 1 as the sources are 
dependent. Also, an example of a non-solvable sum-network with independent sources is presented, 
it becomes solvable when the sources are dependent. 
 

2.  Preliminaries 

 

2.1. System model 

 
We consider a communication network as a directed, acyclic, and finite graph � = (
, �, 
, �), 

where V is the set of nodes, � ⊆ 
 × 
 is the set of links, 
 ⊂ 
 is the set of source nodes and � ⊂ 
 
is the set of sink nodes. For any link � = (�, �) ∈ �, node � ∈ 
 is called the tail of e, and node � ∈ 
 

is called the head of �, and are denoted by � = ����(�) and � = ℎ���(�), respectively. Moreover, we 
call � an incoming link of � and an outgoing link of �. For two links �, �ʹ ∈ �, link � is an incoming 

link of �ʹ (or �ʹ an outgoing link of �) if ����(�ʹ) = ℎ���(�). The edges are delay-free and the capacity 
of each link is assumed to be one unit. For each � ∈ 
 , the set of incoming edges of � is denoted by 
��(�). We assume that each source process is uniformly distributed over the finite field ℱ. Each source 
node does not have any incoming edge and each sink node does not have any outgoing edge.  

By [36], a network code is an assignment of a local encoding function to each edge and a decoding 

function to each sink. A (!, �) fractional network code is described as follows: 
 

(1) For an edge e with ����(�) = �, a local encoding function is defined as 
 

"#$: ℱ% → ℱ(,               �) � ∈ 
, 
and  

"#$: ℱ(|+,(-)| → ℱ( ,               �) � ∉ 
. 
 

(2) For a sink �/ a decoding function is defined as  
 

012 : ℱ(|+,(12)  → ℱ%. 
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 In a sum-network each sink wants to recover the sum of the !-length vectors produced at the sources. 
If ! source symbols can be transferred to the sinks in � units of time, then a network has a (!, �) fractional 

network code solution over ℱ. The ratio ! �⁄  is called as rate of the (!, �) fractional network code. A rate 
! �⁄  is achievable if there is a (!, �) fractional network code solution for the network. Moreover, the 
supremum of all achievable rates is called the capacity of the network. Also, a network is solvable if it 
has a (1, 1) network coding solution. 

   

2.2.  Constructing a sum-network 

 

 Constructing a sum-network using balanced incomplete block designs (BIBDs) was illustrated in 

[36]. In this section, we briefly explain this procedure. First, by [35], we define a 2 − (�, 5, 6) balanced 
incomplete block design as follows: 

 
Definition 2.1 [35] A 2 − (�, 5, 6) balanced incomplete block design (BIBD) is a set system 7 =
(8, ℬ) with the following two components. 

(1) A set P is formed from � elements that are indexed in arbitrary order as P 
=:;<, ;�, … , ;->, where these � elements are called points. 

(2) A set ℬ of size b whose elements are k-subsets of P such that ℬ = :?<, ?�, … , ?@>. A has 
the following regularity property. For ;/, ;B ∈ 8, � ≠ D, 

EFA ∈ G ∶  IJ ∈ G, IK ∈ GLE = M. 
 
For any ; ∈ 8 and ? ∈ A, by [35], two sets < ; > and < A > are defined as follows: 
< ; >= :? ∈ A ∶ I ∈ G>, < G >=∪I∈G< I >=∪I∈G :GQ ∈ A: I ∈ G′>. 

 

By [36], a sum-network � = (
, �) can be constructed from any BIBD S. At first, the vertex set 
 

is described as 
 = 
 ∪ � ∪ TU ∪ TV, where  
 = FWX ∶ ; ∈ 8L ∪ :WY ∶ ? ∈ ℬ>, � = F�X ∶  ; ∈ 8L ∪
:�Y ∶ ? ∈  A>, TU = :Z<[, Z�[ , … , Z-[> and TV = :Z<1, Z�1 , … , Z-1>. Also, the edge set � is 
denoted as � = T ∪ \, where T contains � unit-capacity bottleneck edges �/ = (Z/1 , Z/[), � ∈
:1, 2, … , �> and the following edges for all ;/ ∈ 8 

 

• ]WX2 , Z/1^ ��� _WY` , Z/1a )b! ��� ?B ∈ < ;/ >, 
• ] Z/[ , �X2^ ��� _Z/[ , �Y`a )b! ��� ?B ∈ < ;/ >. 

Moreover, \ contains the following four groups of unit-capacity direct edges for every ;/ ∈ 8 and 
?B ∈ A, 

 (WXc , �X2) )b! ��� ;( ≠ ;/,  

 (WYc , �X2) )b! ��� ?( ∉ < ;/ >, 
 _WXc , �Y`a )b! ��� ;( ∉ ?B , 
 _WYc , �Y`a )b! ��� ?( ∉ < ?B >. 

 
The next example constructs a sum-network from a given 2 − (3, 2, 1) design. 
 

Example 2.1. Consider a 2 − (3, 2, 1) design D = ({1, 2, 3}, {A, B, C}), where A = {1, 2}, B = {2, 3} 
and C = {1, 3}. We can construct a sum-network G = (V, E) by defining the following sets: 


 = :W<, W�, Wd, We, WY , Wf>, 
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� = :�<, ��, �d, �e, �Y , �f>, 
TU ∪ TV = :Z<[, Z�[, Zd[ , Z<1, Z�1, Zd1>, 

T = :�< = (Z<1, Z<[), �� = (Z�1 , Z�[), �d = (Zd1, Zd[)>. 
 
Also, there are direct edges that connect sources to bottleneck edges and some other direct edges that 

connect bottleneck edges to terminals. A part of the constructed sum-network is depicted in Figure 1. 
 

 

Figure 1. A part of the constructed sum-network from a 2 − (3, 2, 1) design. 

 

2.3.  Dependent sources 

This section introduces some definitions and notations about dependent random variables. We show 
that the upper bound of the coding capacity of constructed sum-networks from BIBDs is increased when 
the sources are dependent. Let S be a 2 − (�, 5, 1) design and � be the constructed sum-network from 

it.   Suppose that there exists a (!, �) fractional network code solution with rate ! �⁄  for constructed sum-
network � over ℱ. Then, !-length vector g/ = (g/,<, g/,�, … , g/,%) is generated at the source W/, where 

g/,B ∈  h for D = 1,2, … , !. We assume that, g/ is uniformly distributed over ℱ% and i(g/) =
! log� |ℱ|, where i(g/) is the entropy function for a random variable g/ . For a subset A⊂ S, the 
notation ge is the vector of source random variables and is denoted as follows: 

ge = (gm ∶ W ∈ n). 
Moreover, let g be the set of all source processes, "$ is the corresponding global encoding function 

for edge � and "$(g) is a �-length vector that is transmitted on edge �. So, for all � ∈ 
 
⁄ , the set 
"+,(-)(g) is defined as follows: 

"+,(-)(g) = :"$(g): � ∈ ��(�)>. 
 
The definition of o-dependent sources is presented as follows: 
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Definition 2.2. [19] For coding at block length Z, information sources gp are said to be o-dependent if 
∑ i(gm) − i(gp) ≤ o!m∈p . Independent random variables are 0-dependent. 

We assume that the source random variables of sum-network � are o-dependent. Similar to [19], for 
o-dependent sum-networks, we can define the probability of decoding error 8$%% as follows: 

Definition 2.3.  For sum-network � with o-dependent sources information, decoding error 8$%% is 
defined as follows: 

8$%% ≜ Pr w∃� ∈ � ∶  01 _"+,(1)(g)a ≠ yz. 
 

By Definition 2.3, all the decoding functions 0� can recover the sum of sources indicated by y =
∑ gX + ∑ gYY∈ℬX∈{  with probability 1 −  |, where | is the upper bound of decoding error Perr. When 

the sources are independent, by [35], y can be evaluated from "+,(1)(g), which means 

i _y}"+,(1)(g)a = 0. If the sources be δ-dependent, then y can be evaluated from "+,(1)(g) with 

probability 1 − ~ , which means i _y}"+,(1)(g)a = 0, for all � ∈  � with probability 1 − � . Thus, we 

suppose that there exists a ((!, �), | , o) fractional network code solution for sum-network �, where | is 
the upper bound of decoding error 8$%%. 

The next proposition and lemma present some properties of the entropy function.  
 

Proposition 2.1. [39] 

(1) For random variables g<, g�, … , g,, the chain rule for entropy is described as 

i(g<, g�, … , g,) = � i(g/|g<, … , g/�< , g/�<, … , g,).
,

/�<
 

(2) Conditioning decreases entropy, which means i(�|g) ≤ i(�), where g and � are two 
random variables. 

(3)  For two random variables g and � , i(g|�) = i(g, �) − i(�). 
(4)  For two random variables g and � , �(g, �) = i(g) + i(�) − i(g, �), where �(g, �) is the 

mutual information between two random variables g and � . 

The next lemma is a trivial consequence of the definition of o-dependence. 
Lemma 2.1. Let g< and g� be two random variables at blocklength !. If g< and g� are o-dependent, 

then i(g<) − i(g<|g�) ≤ o! and i(g�) − i(g�|g<) ≤ o!. 
Proof: By Definition 2.2, we get 

i(g<) + i(g�) − i(g<, g�) ≤  o!.             (1) 
By Part (3) of Proposition 2.1, we have 

i(g<, g�) =  i(g<|g�) +  i(g�),              (2) 
 
also, 

i(g<, g�) =  i(g�|g<) +  i(g<).              (3) 
 

Hence, by (1) and (2), i(g<) − i(g<|g�) ≤ o!. Moreover, by (1) and (3), we get 
                           i(g�) − i(g�|g<) ≤ o!,  
which concludes the claim. 
 
Tripathy et al. (2015) showed that if all source random variables are independent, then certain partial 

sums can be computed by observing subsets of the bottleneck edges. For example, in Lemma 1 in [36], 
we have 

i(g;/ + ∑ gYY∈�X2� |"$2  (g)) = 0, 
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where "$2(g) is a �-length vector that is transmitted on the bottleneck edge �/ . The next lemma is 

for the case that the sources are not independent. 
 

Lemma 2.2. Let 7 and � be a 2 − (�, 5, 1) BIBD and the constructed sum-network from it, 
respectively. If all source random variables are o-dependent and there exists a ((!, �), |, o) fractional 

network code solution for �, then 
i(gX2 + ∑ gYY�X2 |"$2  (g)) ≤ o!, 

where "$2(g) is a �-length vector that is transmitted on the bottleneck edge �/. 
 

Proof: There exists a ((!, �), |, o) fractional network code solution, so, y can be computed from 
"+,_1�2a(g), for any ;/ ∈ 8 and all � = 1,2, … , � with probability 1 − |, which means 

i(y|"+,(1�2)(g)) = 0 with probability 1 − |, where 

 
y = gX2 + ∑ gX +  ∑ gYY∈�X2�X�X2 + ∑ gYY∉�X2� ,  
and 

"+,(1�2)(g) = :"$2(g) ∶  ;/  ∈  8>  ∪ :g; ∶  ; ≠ ;/>  ∪  :g? ∶  ? ∉ < ;/ >>. 
 
Let 
y< = ∑ gX,X�X2   y� = ∑ gYY∈�X2�  ���  yd = ∑ gYY∉�X2� , 

 

we have i(gX2 + y< + y� + yd|"$2  (g), :g; ∶  ; ≠  ;/>, :gY ∶  ? ∉ < ;/ >>) = 0 with 

probability 1 − |. Since y< and yd are a subset of "+,_1�2a(g), we get 

i(gX2 + y�│"$2  (g), :g; ∶  ; ≠  ;/>, :g? ∶  ? ∉ < ;/ >> ) =  0,                       (4) 

with probability 1 − |. Since all source random variables are o-dependent, by Lemma 2.1, we have 

i(gX2 + y�|"$2  (g)) − i(gX2 +  y�|"$2(g), :g; ∶  ; ≠  ;/>, :gY ∶  ? ∉ < ;/ >>) ≤ o!. 
Thus, by (4), 
i(gX2 + y�|"$2(g)) ≤ o!.  
 
The next example describes Lemma 2.2. 
 

Example 2.2. Consider the constructed sum-network depicted in Figure 1. Since all source random 
variables are o-dependent and there exists a ((!, �), |, o) fractional network code solution for �, we get 

i(y|"+,(1��)(g)) = 0 with probability 1 − |, where 

y = g< + ge + gf + g� + gY + gd, 
and  

"+,(1��)(g) = :"$�(g) ∶  ;< ∈ 8> ∪ :g�,  gd> ∪ :gY>. 
By the definition of set < ; >, we have < ;< > =  :n, �>. So, y� = ge + gf , yd = gY and y< =

∑ gX =X�X� g� + gd. Thus, i(g< + ge + gf|"$�(g), :g�, gd>, :gY>) = 0 with probability 1 − |. All 

source random variables are o-dependent, so 

i(g< + ge + gf|"$�(g)) − i(g< + ge + gf|"$�(g), :g�, gd>, :gY>) ≤ o!. 

Hence, 

i(g< + ge + gf|"$�(g)) ≤ o!. 
 
Let i(n) be the entropy function for a random variable n and define, for any � >  1, 

i(n<, n�, . . . , n-) = i(:n<, n�, . . . , n->) = i(:n/><-). 
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Lemma 2.3. For each � ∈ :1, . . . , �>, assume i(n/|n/Q) ≤ o!, where n/ and n/Q  i are o −dependent 

random variables. Then i(:n/><-  |:n/Q><-) ≤ �o!. 

 
Proof: We proof the lemma by induction on �. For � = 1, it is obtained by the assumption. Suppose 

that it holds for � = 5. We show  that it is also true for � = 5 + 1. Then, 
 

i(:n/><-�<|:n/Q><-�<) = i(:n/><- ,  n-�<|:n/Q><-�<), = i(:n/><-  |:n/Q><-�<) + i(n-�<|:n/><- , :n/Q><-�<),
≤ i(:n/><-  |:n/Q><-) + i(n-�<|n-�<Q ), 

 ≤ �o! + o!,  
= (� + 1)o!. 

 
Note that by Parts (1) and (2) of Proposition 2.1, the second equality and first inequality are 

concluded. 
 

Corollary 2.1. Let D be a 2 − (�, 5, 1) BIBD and � be the constructed sum-network from it. If all 
source random variables are o-dependent and there exists a ((!, �), |, o) fractional network code 

assignment for �, then  
i(:gX2 + ∑ gYY∈�X2� ><- |:"$2(g)><-) ≤ �o!.  
 

Proof: By Lemmas 2.2 and 2.3, the claim is concluded. 
 

Lemma 2.4. Let \ be a 2 − (�, 5, 1) BIBD and � be the constructed sum-network from it. If all random 

variables in ::gX2><- ∪ :gY`><�> are o-dependent, then there exists a oQ such that the random variables 

g/Q = gX2 + ∑ gY Y∈�X2�   are oQ -dependent, for � ∈ :1, . . . , �>. 
 

Proof: Since all random variables in ::gX2><- ∪ :gY`  ><�> are o −dependent and 

 g/Q = gX2 + ∑ gYY∈�X2� , 
for � ∈ :1, . . . , �>, we conclude that the random variables g/Q are dependent for � ∈ :1, . . . , �>. Thus, 

i(:g/Q><-) < � i(g/Q)
-

/�<
. 

Then, under ((!, �), |, o) fractional network code, there exists a oQ such that 
 

� i(g/Q)
-

/�<
− i(:g/Q><-) < oQ!, 

which concludes the claim. 

In the following, we show that how does oQ depend on o. 
 

Corollary 2.2. 

 1. By [36], when all source random variables are independent and uniformly distributed over ℱ%, 

then g/Q are also independent and uniformly distributed over ℱ%. Thus, if o = 0, then oQ= 0. 

 
2. Since g/Q are uniformly distributed over ℱ%, by Lemma 2.4, we get oQ can not be large. Then, we 

have not a loose upper bound. 
 

Example 2.3. Consider three binary random variables  
                     g< = (��, �<), g� = (��, ��) and gd = (�<, ��),  
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such that they are uniformly distributed over ℱ� , where |ℱ| = 2. 
We see that g< and g� are 1 2⁄ −dependent. Similarly, we can show that g� and gd are also 

1/2 −dependent. Let g<Q = g< + g� and g�Q = g< + gd, so g<Q = (�� + ��,  �< + ��) and g�Q = (�� +
�<,  �< + ��). Thus, g<Q  and g�Q  are dependent because i(g<Q ) = i(g�Q ) = 2 and i(g<Q , g�Q ) = 3. Hence 

i(g<Q ) + i(g�Q ) − i(g<Q , g�Q ) = 4 − 3 = 1 < �
d (2) which concludes oQ = 2/3. 

Lemma 2.5. Let 7 = (8, ?) be a set system of a BIBD and 
                              g/Q = gX2 + ∑ gYY∈�X2� ,  

where � ∈ :1, . . . , �>. If all random variables in ::gX2><- ∪ :gY`><�> are o-dependent, then there exists 

a oQ such that i(:g/Q><-) > !(� log� � − oQ). 
Proof : Since all random variables in ::gX2><- ∪ :gY`> <�> are o-dependent, by Lemma 2.4, there exists 

a oQ such that ∑ i(g/Q)-/�< − i(:g/Q><-) < oQ!. Moreover, under a (!, �) fractional network code, we get 

i(g/Q) = ! log� �, for all � ∈ :1, . . . , �>, which means 

                          ∑ i(g/Q)-/�< = �! log� �.  

Hence, 

i(:g/Q><-) > �! log� � − oQ! = !(� log� � − oQ). 
 

3.  The coding capacity of sum-networks with dependent sources 

 
In this section, we obtain an upper bound on the coding capacity of sum-networks when the sources 

are o-dependent. Let 7 be a 2 − (�, 5, 1) design and � be the constructed sum-network using the given 
construction 7. Under the assumption that sources are independent, the capacity of the sum-network � 
is at most 1 [36]. In the following theorem, we obtain an upper bound for the network coding capacity 
of the sum-networks when the sources are o-dependent. 

 
Theorem 3.1. Let S be a 2 − (�, 5, 1) design and � be the constructed sum-network using the given 

construction S. Supposing that all random variables in ::gX2><- ∪ :gY`><�> are o −dependent and g/Q =
gX2 + ∑ gYY∈�X2�  . Then, the upper bound of the network coding capacity of � is at most n =

- ���� �
- ���� ��(-����) , where oQ is used to quantify the dependency among the random variables g/Q . 

 

Proof: Since "$2(g) is a �-length vector that is transmitted on the bottleneck edge �/ , under a 

((!, �), |, o) fractional network code, we have i("$2(g)) ≤ � log� �. Thus, 

i _F"$2(g)L<
-a ≤ � i _"$2(g)a

-

<
≤ �� log� � .                        (5) 

By (3) and (4) of Proposition 2.1, we get 
 

� _F"$2(g)L<
- , :g/Q><-a = i _F"$2(g)L<

-a − i _F"$2(g)L<
-  }:g/Q><-a.              (6) 

Also, we have 
�(:"$2(g)><-  , :g/Q><-) = i(:g/Q> <-) − i(:g/Q> <-|:"$2(g)><-).      (7) 

Hence, by (6) and (7), 
 

i(:"$2(g)><-) = �(:"$2(g)><-  , :g/Q> <-) + i(:"$2(g)><-  |:g/Q><-),
= i(:g/Q> <-) − i(:g/Q><- |:"$2(g)><-) + i(:"$2(g)><-  |:g/Q><-), 

So, by (5), 
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i(:g/Q><-) − i(:g/Q><- |F"$2(g)L<
-) + i(F"$2(g)L<

- |:g/Q><-) ≤ �� log� �. 

Also, by Lemma 2.5 and Corollary 2.1, 
!(� log� � − oQ ) − �!o + i(:"$2(g)><-  |:g/Q><-) ≤ �� log� �. 

By i(:"$2(g)><-  |:g/Q ><-) ≥ 0, we get 

!(� log� � − oQ ) − �Zo ≤ �� log� �. 
Thus, 

 
%
( ≤ - ���� �

- ���� ��(- ����) = n.  
 

Corollary 3.1. Let S be a 2 − (�, 5, 1) design and � be the constructed sum-network using the given 

construction S. Supposing that all random variables in ::gX2><- ∪ :gY`><�> are o −dependent and g/Q =
gX2 + ∑ gYY∈�X2� . Then, the upper bound of the network coding capacity of G is increased by the factor 

of 
(-���� )

- ���� ��(-����),  where oQ is used to quantify the dependency among the random variables g/Q, for 

� =  1, . . . , �. 
 

Proof: If the sources are independent, then the coding capacity of the constructed sum-network is at 
most 1 [36]. On the other hand, according to Theorem 3.1, if the sources are o −dependent, then the 

coding capacity of the constructed sum-network is upper bounded by
- ���� �

- ���� ��(-����) . 

Thus, by subtracting the value 1 of 
- ���� �

- ���� ��(-����), the claim is concluded. 

 
Therefore, by Corollary 3.1, if the sources are δ-dependent, then the coding capacity upper bound of 

sum-networks is increased. 
 

3.1.  Numerical results  

 

In this section, we present some examples of communication networks with dependent sources. We 
calculate the coding capacity of communication networks with dependent sources, then we compare the 
obtained results with previous works (the coding capacity of communication networks with independent 
sources). We show that a special kind of dependency among the sources can increase the capacity region 
of communication networks. The next two examples show that how dependent sources can increase the 
routing capacity of communication networks. 

 
Example 3.1. Consider network � shown in Figure 2, in which two sources W< and W� produce messages 

g and �, respectively. Also, two sinks �< and �� demand the both of two messages. By [4], the routing 
capacity of this network is 1/2 (for more detail see Example III.2 in [4]). Supposing that the sources 

are dependent such that g = �. Then, �< and �� can receive g and � through two edges (W<, ��) and 
(W�, �<), respectively. Since sinks �< and �� demand both of two messages g and �, it is sufficient that 

only one of those two messages is passed through the edge (�<, ��). Thus, the routing capacity of � is 
1,  which means it is increased by the factor of 1/2. 
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Figure 2. The network �, where only one of the two messages g and � passes through the edge 

(�<, ��). 
 

• The previous example demonstrates a trivial statement. In the following, a much simpler 
example is presented. 

 
Example 3.2. Consider a “�” network with two sources W< and W� on top and one sink t at the bottom 

such that these two sources are connected to the sink through a shared link. Let messages g and � be 
produced with W< and W�, respectively. Moreover, sink � demands the both of two messages. Then, the 

routing capacity of this network is 1/2. Now, supposing that the sources are linear dependent such that 
g = � . Then, the routing capacity of this network is 1. 

In the next example, we consider a sum-network with dependent sources. We show that the capacity 
region of a sum-network change when the sources be linearly dependent. This result is shown by the 
following example. 

 
Example 3.3. Consider a network with two sources W< and W� and two sinks �< and ��. Let two messages 

g and � be produced by W< and W�, respectively. Supposing that this network only has 10 two edges 
(W<, �<) and (W�, ��). When the sources are independent, then the sum-capacity is zero. If g = �, then 

the sum-capacity is 1. Moreover, if g = −�, then the sum-capacity is infinite. 

By [28], the linear coding capacity of sum-network 
d, depicted in Figure 3, is at least �d . We show 

that a special kind of dependency among the sources can increase the capacity lower bound of this sum-
network. 

 
Example 3.4. Consider network 
d shown in Figure 3. Supposing that g/ = (g/,< , g/,�) is generated at 

source si, for � = 1, 2, 3. Consider the following dependency among the sources: 
 

g<,< = g�,<, g<,� = gd,<, g�,� = gd,�. 
 
We define two sums 
�Z< and 
�Z� as follows: 
 


�Z< = 
�Z� = g<,< + g<,� + g�,�. 
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• If ¡¢£¤ + ¡¢£¥ is transmitted to terminals ¦¤ and ¦¥ in the first time slot and ¡¢£¤ +
¡¢£¥ is transmitted to terminal ¦§ in the second time slot, then ¡¢£¤ and ¡¢£¥ can be 
transmitted to all the terminals in two time slots. Thus, the linear coding capacity of the sum-
network ¡§ is at least 1. 

     
    

 

Figure 3. The network 
d. 

   

By Example 3.4, the lower bound of the network coding capacity of the sum-network 
d is increased 

from 
�
d to 1 because the sources are dependent. Thus, by Corollary 3.1, we conclude that the dependency 

between the sources can change the capacity region of sum-networks. In the next example, we show 
that dependency among the sources can convert a non-solvable sum-network to a solvable one. 
According to [31], if the sources are independent, then the coding capacity of the network 
dQ  (depicted 

in Figure 3) is 
�
d. Moreover, by [31], the network 
dQ  �s non-solvable, which means all the terminals can 

not receive the sum of sources at rate 1.   
 

Example 3.5. Consider the network 
dQ  depicted in Figure 4. By [31], the network 
dQ  has a (2, 3) 
fractional network coding solution which means it is not solvable. Supposing that the sources are 
dependent such that g< = gd, where g< and gd are the generated messages at two sources 
< and 
d, 

respectively. Then, there exists a network coding scheme for 
dQ  such that all terminals can receive the 
sum of the sources at rate 1. Figure 4 shows this network coding solution. The depicted coding scheme 
in Figure 4 shows that two terminals �< and �� can receive the sum of the source messages through their 

incoming edges. Also, the terminal �d can receive gd and g� + gd through incoming edges. Since g< =
gd, the terminal �d can receive the sum of the source messages. Thus, the network 
dQ  is solvable. 

          
 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-1
0-

13
 ]

 

                            11 / 15

http://iors.ir/journal/article-1-855-en.html


70 Mehdi Ghiyasvand and Sepideh Ghazvineh 
 

 

Figure 4. The network 
dQ  and its corresponding coding scheme. Terminal �d can 

receive message g< through the incoming edge (�<, �d). 
 
 

4. Conclusion 

 

This work considers a sum-network with o −dependent sources. It evaluates the upper bound of the 
coding capacity of this network for the case where o ≠ 0. We conclude that the dependency between 
the sources can alter the capacity region of sum-networks. By Theorem 3.1, if the value of o is increased, 

the capacity upper bound of the sum-network also increases. In more detail, the relationship between o 
and n (the upper bound obtained in Theorem 3.1) is as follows: 

 
• If o = 0, then n = 1. In other words, when the sources are independent, the upper bound of the 

coding capacity is 1, which coincides with the upper bound presented in [36] (see Theorem 1 in [36]). 
   

• If o > 0 and |ℱ| = � ≥ 2, then � log� � > � log� � − (�o + oQ).  Therefore, by Theorem 3.1, we 
have n > 1. Hence, when the sources of the considered sum-network are o −dependent, the upper 
bound of its coding capacity is greater than 1. 

 
This work has investigated the coding capacity of a sum-network employing o −dependent sources. 

Our primary contribution is the characterization of an upper bound on the capacity for the general case 
where o ≠ 0, demonstrating that statistical dependency between sources can significantly alter the 
capacity region of such networks. 

The key insight, formalized in Theorem 3.1, is that the upper bound n is a non-decreasing function 

of the dependency parameter o. Specifically, our analysis reveals the following precise relationship: 

 Independent Sources (o = 0): The upper bound simplifies to n = 1. This result 
perfectly coincides with and reinforces the established bound for independent sources 
given in [35], serving as a sainty check for our generalized model.  
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 Dependent Sources (o > 0): For any finite field size � ≥ 2, the derived upper bound 
yields n > 1. This establishes that any positive source dependency strictly increases 
the upper bound on the coding capacity compared to the independent case. 

These findings imply that the correlation between sources introduces a new dimension to the network 
coding problem, potentially enabling higher achievable rates. This challenges the conventional design 
principle based on the assumption of independent sources and suggests the leveraging source 
dependency could be a powerful tool for enhancing network performance. 

For future research, several directions emerge naturally. First, the tightness of this upper bound 
should be investigated by constructing achievable coding schemes that match it for specific value of o. 
Second, it would be valuable to explore whether similar dependency-exploiting gains in other types of 
network problem beyond sum-networks. Finally, analyzing more complex, non-linaer dependency 
structures between sources presents a challenging but fruitful for the further study.   
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