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Facility location and routing problems have attracted significant research attention since the 1960s 

due to their practical relevance and complexity. Efficiently establishing production facilities, 

optimizing vehicle routes, and implementing effective inventory systems are essential for improving 

organizational performance. In this study, we propose an integrated location-routing model for the 

pharmaceutical supply chain, designed to satisfy all retailer demands through an appropriate 

inventory policy, ensuring no demand is unmet. The proposed mixed-integer mathematical model 

considers a four-tier supply chain, including manufacturers, distributors, wholesalers, and 

retailers, with the objective of establishing cost-effective warehouses while fulfilling all demand 

requirements. Demand uncertainty is addressed using a scenario-based probabilistic approach. 

The model is solved using GAMS for a small-scale case study. For larger-scale instances, where 

exact solutions are computationally challenging, a meta-heuristic approach—specifically, a 

genetic algorithm—is employed to efficiently obtain near-optimal solutions. 

 

Keywords: Demand uncertainty, Location routing problem, inventory system, Meta-heuristic 

algorithm, pharmaceutical supply chain. 

 

 

1. Introduction 

 

One of the main goals in shaping a supply chain (SC) is ensuring it responds to consumer demands 

effectively. Responding on time helps businesses to remain competitive in the market, and maximizes 

profits. To achieve these, all parts of the supply chain must be optimized to lower costs, enhance 

customer satisfaction, and rise up overall profits (He et al., 2024). In essence, every supply chain 

consists of various interconnected components and stages, all working towards a common goal. 

Today, the problems in the pharmaceutical supply chain are of global concern due to its importance 

in providing essential products for human health and patient care. What was once a simple process 

with production in a single location has evolved into a complex network involving multiple centers, 

companies, and facilities (Castiglione et al., 2024). These activities are not limited to a specific region 

but are carried out on a large scale. The main challenges in drug production involve making decisions 

about expanding facilities and planning drug production (Shah, 2004). Two factors, namely meeting 

consumer expectations and increasing costs throughout the chain, compel the chain to seek ways to 

enhance its efficiency. Access to important and necessary medications, a fundamental aspect of 

healthcare systems, has led to the consideration of political criteria primarily focused on reducing 

cost growth within the pharmaceutical industry (Eskandari et al., 2022). Supply chain management 

involves overseeing all stages of the chain, starting from the creation of products to their delivery to 

customers (Rachih et al., 2019). This encompasses the entire flow of activities within the network, 

from sourcing raw materials to adding value to the final products. One important topic in supply chain 

analysis is facility location within the network. Facility location issues involve placing a set of 

facilities (resources) to minimize fulfillment costs of a set of customer demands while considering a 

set of constraints. Supply chain management emphasizes the integration of chain members, as 

decisions cannot be considered separately and optimization efforts are needed for efficiency 
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improvement (Olanrewaju et al., 2020). Decision integration is a crucial factor that significantly 

reduces supply chain expenditures and enhances customer satisfaction. Given the essential role of the 

two elements of facility location and routing in the continuity of a SC, the integration of these two 

elements results in an resilient and efficient SC (Tayebi Araghi et al., 2021). In a supply chain, the 

most crucial factor after selecting optimal facility locations is proper routing, which significantly 

reduces transportation costs. In the present times, the presence of pandemic such as COVID-19 can 

bring about disruptions in the pharmaceutical production and distribution system. Therefore, 

providing a suitable solution for integrated decision-making and effective management of the 

pharmaceutical SC is important. Given the uncertainties surrounding the demand for essential 

commodities such as medicines, which follows a highly probabilistic trend, the presentation of a 

systematic approach for integrating location-routing decisions for pharmaceutical items is of utmost 

significance (Shiri et al., 2021).  In today's competitive world, supply chain issues are particularly 

prominent, with the pharmaceutical sector being especially affected. An effective supply chain should 

ensure rapid delivery, increase profitability, and reduce operational costs at all levels (K. Sadeghi R. 

et al., 2024). Managing the supply chain within manufacturing companies involves making ideal 

decisions about production levels, storage quantities, transportation methods, and the selection of 

suppliers. Therefore, this improves a corporate's competitive advantage and leads to increased 

profitability.In developed countries, healthcare expenditures represent a large share of the gross 

national product, while the pharmaceutical industry contributes comparatively less. On the other 

hand, selecting suitable locations for establishing and operating production sites is crucial, as it falls 

under strategic and long-term decisions. Furthermore, optimal routing is crucial for efficiently 

delivering consumer products, ensuring the shortest and best routes are taken among multiple choices. 

Thus, considering the above-mentioned points, presenting a model for location-routing in a 

pharmaceutical SC is essential due to the challenges present in drug production and distribution. This 

research introduces a mathematical model for distribution centers’ (DCs) location within a multi-level 

SC. Pharmaceuticals commodities are sent to DCs and wholesalers after production, then forwarded 

to retail stores, commonly known as pharmacies, before reaching customers. The focus of this 

research is on the routing between these two stages. Among this, the demand for each pharmacy is 

considered uncertain and probabilistic.  Supply chain management is among the most crucial topics 

in industries and organizations. Various elements exist within the supply chain, and by examining 

and managing them, organizations reduce their operational cost which is a important goal. Supply 

chain planning is divided into three stages: (I) strategic, (II) operational, and (III) tactical planning 

(Urain et al., 2022). Location-based issues are of great significance for industries that directly face 

end customers and operate at primary activity levels, such as consumer goods industries. In such 

sectors, market competition, customer loyalty, product pricing, timely product accessibility, and 

product quality are directly linked (Yang et al., 2024). Therefore, a crucial element for profitability 

is delivering a timely and high-quality response to customer demands at the lowest possible cost. 

Lately, extensive studies has been conducted in the location-routing problems’ field, yet many 

challenges remain unaddressed, particularly in the context of pharmaceutical SC management and the 

consumption of pharmaceutical items. The absence or scarcity of medications can pose significant 

threats to human lives. Thus, the formulation of a mathematical model for SC management in the 

realm of location and routing is of extreme importance. Moreover, multi-level location-routing within 

a supply chain, considering uncertain demands and potential transportation disruptions, remains an 

area where researchers have yet to fully investigate. Today, researchers believe that simultaneously 

addressing location-routing issues in a SC plays a significant role in cost reduction related to these 

aspects. 

The research objectives can be succinctly stated as follows, 

 To present a mathematical model for pharmaceutical SC management under crisis conditions. 

 We considered demand uncertain in this paper. 
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 To provide suitable solutions for solving the model (considering the model's NP-hard nature 

and choosing an appropriate solving method for large instances). 

 To present an integrated location-routing model within the pharmaceutical SC context. 

The studied SC is a 4-tier chain composing of the manufacturer (factories), DCs, wholesalers, 

and retailers (customers). The supply chain operates over multiple periods and handles multiple 

products. The location of production centers, DCs, and wholesalers are not fixed and needs to be 

selected from several potential sites. Moreover, the transportation fleet is heterogeneous, with a 

probabilistic chance of vehicle breakdown and the number and capacity of vehicles are limited. 

Additionally, the demand is considered uncertain. By addressing these objectives, this study aims to 

contribute to the optimization and efficiency enhancement of pharmaceutical SCs, which are of 

importance for ensuring the essential medications availability and the well-being of human 

populations.  

The study is arranged as follows: Section 2 reviews the literature. Section 3 describes the 

notations and assumptions and the formulation of the model. The solution approach is presented in 

section 4. Section 5 provides a numerical analysis of the presented model's parameters and results 

and also serves as a source of managerial insights. We have a conclusion in section 6.  

 

2. Literature Review  

 

A pharmaceutical SC is a complex network of interconnected stages, both direct and indirect, 

dedicated to meeting customer demands (Badejo & Ierapetritou, 2024). In this complex process, raw 

materials begin their journey from suppliers to factories (Sohrabi et al., 2016). Following 

transformation, the finished products embark on a journey through intermediate and distributor 

warehouses, finishing in their arrival at retailers and, eventually, in the hands of enthusiastic 

consumers. This journey highlights the multifaceted nature of the supply chain, where products 

alternate between storage and transportation activities (Langley et al., 2024). At the core of this 

intricate system lie the foundational components of a conventional supply chain: suppliers, raw 

materials, production facilities, distributors, retailers, and the customer (Patrucco et al., 2022). 

However, the scope of the SC extends beyond physical processes, encompassing the intricate flow of 

financial management, information system (J. K. Sadeghi R. et al., 2022), and the exchange of vital 

knowledge (Pattanayak et al., 2024). In today's highly competitive global markets, businesses face a 

critical need to not only meet but exceed customer expectations while delivering unique products 

(Huang, 2021). This pressure has prompted companies to shift their investments towards the 

enhancement of their SCs. In a typical SC system, the process begins with the procurement of raw 

materials, followed by their transformation into finished products within one or more manufacturing 

facilities. These finished products are then temporarily stored in intermediate warehouses before 

sending to retailers or customers (Scott et al., 2011). Therefore, successful supply chain strategies 

must effectively oversee interactions across multiple levels of this supply chain, ensuring a delicate 

balance between cost efficiency and the delivery of exceptional services. Pharmaceutical SC unifies 

suppliers, manufacturers, and pharmacies into an efficient system, enhancing performance by 

reducing lead times (Shahsavar et al., 2021), ensuring product safety, and meeting regulatory 

standards (R. Sadeghi et al., 2023). This integration goes beyond manufacturing; it ensures that 

products are not only produced but also distributed in the right quantities, to the correct locations, and 

at precisely the exact times. All of this is accomplished while minimizing the overall system costs 

and meeting rigorous service level requirements. Effective SC management is essential for reducing 

extra costs, maximizing profits, and meeting the ever-increasing expectations of consumers 

(Govindan, Naieni Fard, et al., 2024). This requires a three-tiered decision-making process: 

operational, tactical, and strategic. At the strategic level, decisions involve factors like facility 
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location, production capacity, transportation methods, and information systems, spanning several 

years into the future (Srinivas et al., 2021). In the medium-term planning stage, the focus shifts to 

decisions related to inventory levels (K. Sadeghi et al., 2024), pricing strategies, and supplier selection 

(J. Sadeghi et al., 2014) for specific markets. Finally, at the short-term planning stage, on-the-ground 

decisions such as product allocation, order completion dates, and truck scheduling come into play. 

The relative importance of each planning horizon may vary depending on the organization's policy 

and scale, but adherence to these operational, tactical, and strategic decisions is crucial for SC success. 

The strategic placement of facilities is a critical factor in an organization's profitability and its broader 

impact on economic, social, cultural, environmental, and regional conditions. This long-term decision 

is less flexible and incurs high costs, but significantly influences service system performance and 

customer satisfaction (Costa & Melo, 2023). Transportation is a cornerstone of economic and societal 

activities, playing a vital role in goods distribution and procurement (Das et al., 2014). Distribution 

costs can inflate product prices significantly, to highlight its significance. Moreover, vehicles can 

handle a substantial percentage of goods transportation, emphasizing the need for efficient routing 

and scheduling. Vehicle routing problems focus on finding optimal routes while considering capacity 

constraints, have gained prominence in service and procurement systems. These problems have 

evolved since their theoretical inception in 1959 with the truck dispatch problem, demonstrating their 

growing importance in supply chains. Despite their complexity, as they are categorized as NP-hard 

problems, they remain a vital research focus (Latorre-Biel et al., 2021). Efficient transportation, 

grounded in data-driven models and spatial relationships, supports integrated approaches to address 

transportation challenges, particularly in modern urban planning, fostering harmonious cities 

(Malekkhouyan et al., 2021). Overall, the intricate interplay between supply chain dynamics, facility 

location decisions, and the optimization of transportation networks is indispensable for modern 

businesses, offering the potential for cost reduction, improved service quality, and competitive 

success. The pharmaceutical supply chain holds plays a vital role in healthcare industry, ensuring the 

uninterrupted availability of life-saving medications and critical healthcare commodities arrives on 

time to patients and healthcare providers (Bhattacharya et al., 2023). Timely and reliable access to 

medications is vital for the effective treatment of diseases, management of chronic conditions, and 

rapid response to healthcare emergencies. Therefore, the pharmaceutical supply chain's resilience and 

efficiency are paramount, making it an indispensable component of global healthcare infrastructure 

(Karamyar et al., 2018).  

 

2.1. Pharmaceutical Supply Chain (PSC) 

 

PSC plays a pivotal role in safeguarding public health by adhering to stringent quality control 

standards and regulatory practices, thereby ensuring the efficacy and safety of pharmaceutical products. 

Taleizadeh et al. (2020) investigated a collaborative approach to ensure that drugs with unexpired usage 

dates could be reused. They considered a reverse SC including a manufacturer, end consumers, and 

third-party companies. The model was also multi-product and focused on entities like pharmacies and 

hospitals as customers. Moreover, they employed a Mulvey approach based on discrete scenarios to 

explore inherent uncertainty regarding low-demand items, linked to imprecise demand in the 

pharmaceutical market. Delfani et al. (2022) proposed a location-allocation-inventory model for PSC 

network design. This model is multi-objective, addressing cost minimization, reduced delivery times, 

and improved transportation system reliability. Moreover, they account for uncertainty in various 

parameters, such as costs and capacity, using a robust fuzzy optimization approach. Furthermore, the 

study introduces an efficient modification of the red deer algorithm for solving the multi-objective 

problem. Zandkarimkhani et al.   (2020)  proposed a bi-objective MILP model for developing a 

perishable PSC network under demand uncertainty. Their model simultaneously minimizes the lost 

demand amount and the total network cost. It is a multi-period, multi-product model encompassing 
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facility location, inventory management, and vehicle routing making it an strategic- operational model. 

Moreover, they consider various factors, including procurement discounts, product lifetimes, time 

windows, lost demand, and storing products for future periods. To solve this model, a novel hybrid 

approach combining goal programming, chance constrained programming, and fuzzy theory is 

introduced. Hosseini-Motlagh et al. (2022) introduced an innovative cost-sharing agreement for the 

environmentally responsible disposal of antibiotics in a two-tier sustainable reverse supply chain for 

pharmaceuticals. This contract maximizes supply chain profitability, improves the social image of 

companies, increases sustainability, and reduces governmental penalties associated with pharmaceutical 

waste disposal. Fatemi et al. (2022) developed a PSC model with three objective functions aimed at 

minimizing unfulfilled demands, total costs, and reducing waiting times at the firm entrance. It proposes 

a nonlinear programming model and employs multi-objective decision-making methodology to address 

conflicting targets. Abdallah and Nizamuddin (2023) propose a decentralized blockchain framework 

for selling pharmaceutical products online, eliminating intermediaries such as hospitals. Ethereum smart 

contracts are used to oversee interactions and record events, ensuring participants stay updated on 

transactions. Furthermore, smart contracts manage seller-consumer interactions by monitoring IoT 

container statuses and notifying consumers. Two mathematical programming models are developed by 

Bhattachary et al. (2023) for routing mobile pharmacies to minimize the mean absolute deviation of the 

stock-out severity index. They also find that focusing exclusively on equity results in high operational 

costs, and show methods to achieve equity with controlled cost increases. Moreover, Bhattacharya et 

al. (2023) present a two-stage framework to minimize costs, with "pre-disaster" decisions made before 

demand is known and "post-disaster" decisions made after. They address demand uncertainty using 

robust optimization and stochastic programming. Goodarzian et al. (2021) present a multi-objective 

optimization method for PSC design to minimize costs and delivery times to hospitals and pharmacies, 

while maximizing transportation reliability. They developed a new MINLP model for production, 

allocation, inventory, distribution, ordering, and routing. Santos et al. (2022) introduces an order-up-to 

replenishment policy combined with inventory routing optimization within a three-echelon SC 

framework. It includes a real-world case study from the pharmaceutical company Hovione 

Farmaciência.  

 

2.2. Location Routing Problem for Pharmaceutical Products 

 

Location routing problems assume a critical role in time management of delivery, especially 

perishable pharmaceutical products. A location-routing model is essential for pharmaceutical logistics 

because it uniquely addresses the industry's critical need for temperature control, product security, and 

urgent delivery, ensuring medication efficacy and patient safety. It strategically optimizes the placement 

of facilities and the routing of vehicles to meet these strict requirements while also improving efficiency 

and reducing costs. Gholipour et al. (2020) focus on designing a green supply chain and developing a 

location-routing-inventory model. The study examines a two-objective mixed-integer model which 

involves the of DCs location and vehicle routing under fuzzy demand. The research addresses the 

facility location, using a limited capacity vehicle routing problem formulation. Moreover, the demand 

is considered as uncertain and a fuzzy solution approach is employed. Wang and Chen (2020) 

investigated the blood supply chain in China. They use robust optimization based on distribution which 

was the key point of their study. Also, they were a pioneer in the context of blood SCs. Suhandi and 

Chen (2023) develop an integrated pharmacy inventory and government decision model for a closed-

loop SC in the pharmaceutical industry. This model addresses environmental, social, and economic 

sustainability by focusing on the reusing of drugs to reduce waste, alleviate the financial burden on 

patients, and examine the influence of government subsidies and incentives. The study highlights the 

feasibility of drug recycling plans and their potential benefits, taking into account the patients' 

receptiveness to utilizing recycled drugs and the role of non-profit pharmacies in obtaining sustainability 
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goals within the circular economy framework. Zarbakhshnia et al. (2020) developed a comprehensive 

multi-objective, probabilistic MILP model for a sustainable reverse and forward logistics network. This 

model considers various dimensions, including environmental impacts, processing time, and social 

responsibility, to address both original and return product flows within an uncertain demand context. 

Additionally, it utilizes probabilistic planning to handle uncertain parameters and employs a NSGA-II 

to obtain Pareto front solutions. Ali et al. (2022) addressed the complexities of the drug SC, 

characterized by high turnover and product corruption. It focuses on integrated vehicle routing, and 

inventory management, aiming to analyze inventory and routing problems in the drug SC, considering 

travel time and perishable products dependencies. The Box-Jenkins predicting method is applied to deal 

with uncertain demand effectively. Wu et al. (2022) presented a hybrid particle swarm intelligence 

heuristic method for solving the complex problem of multi-type vehicle assignment and MIP route 

optimization in pharmaceutical logistics. Shang et al. (2022) studied a supply network configuration 

problem which integrates warehouse selection for inventory policy, vendor-managed inventory, and 

delivery routing optimization. The paper presents both deterministic and robust optimization models, 

including a special model to account for the COVID-19 pandemic's impact on delivery times and 

demand. Fazel et al. (2023) developed a bi-objective mathematical model for shaping a resilient 

pharmaceutical-health relief SC network under disruption, with a focus on minimizing delivery time 

and total costs. The study uses a scenario-based robust optimization method and compares the results 

with and without lateral transshipment, showing that lateral transshipment can enhance supply chain 

performance and reduce shortages during disruptions. Cen et al. (2023) developed a hybrid heuristic 

algorithm for solving the VRP with Cross-Docking and Three-Dimensional Loading Constraints (3L-

VRPCD). This algorithm outperforms the traditional MILP-based method in terms of computational 

efficiency and solution quality, particularly for medium to large-scale instances. Their paper also 

introduces a storage-pool-based strategy to enhance the heuristic's search process and reduce 

computational burden. Additionally, it analyzes and discusses the influences of various properties, such 

as loading conditions, on the 3L-VRPCD solutions. Altinoz and Altinoz (2023) addressed the 

capacitated VRP with urgency, considering factors like infectiousness rates and travel times as critical 

issues. It employs multi-objective optimization algorithms, including NSGAII, SPEA2-SDE, GrEA, 

HypE, and reference points-based evolutionary algorithm, to optimize two objectives: minimizing travel 

time and reducing infectiousness rates for vehicles serving medical facilities with urgency levels. Barma 

et al. (2023) introduced a bi-objective capacitated VRP that considers two types of consumers based on 

priority, aiming to reduce total distance traveled by customers' and vehicles’ average latency. It explores 

three scenarios for average latency calculation, including priority and non-priority customers. Jalal et 

al. (2023) addressed the integrated location-transportation problem with uncertain demand, specifically 

in the context of a pharmaceutical logistics network in Brazil. The paper introduces a mathematical 

model with multi-time scales, accounting for practical aspects like fleet sizing, safety constraints, and 

tax considerations. To tackle uncertainty, a robust counterpart and Fix-and-Optimize heuristics are 

presented. Using real data, the heuristics demonstrate a significant reduction (40%) in logistics costs 

and taxes compared to the MIP model. Al Theeb et al. (2024) introduce a multi-objective MILP model 

that integrates the two-echelon VRP with the vaccine SC, aiming to reduce the number of undelivered 

doses. They propose solving this complex model using a heuristic approach based on greedy random 

search. Moreover, Peivastehgar et al. (2023) propose a model for nitrous oxide SC decisions, 

introducing a single-product multi-line production routing problem with time-dependent setups. The 

model investigates direct and indirect emissions, considering a heterogeneous fleet to minimize 

greenhouse gas emissions and costs. Furthermore, Shen et al. (2024) present a bi-level optimization 

model to reduce transportation risks time-window penalties, transportation costs, and site selection costs 

in the face of uncertainties. The paper also uses the lognormal distribution to model the uncertainty in 

medical waste production. Govindan et al. (2024) introduce a MILP model for creating a robust 

infectious waste management reverse network amid the COVID-19 pandemic. The results illustrate the 

model's effectiveness in shaping a resilient waste management system during health crises.  Moreover, 
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Govindan et al. (2024) combines the lexicographic optimization method with the TH method to create 

an effective multi-objective solution for the bi-objective MILP model. Furthermore, it employs an 

information-sharing system to manage waste generation uncertainties.  

In this research, the significant problem of pharmaceutical distribution, which is among practical issues 

closely related to the real world, is studied within a four-level supply chain. The focus is on a 

pharmaceutical manufacturing company, which proposes to distribute its products from multiple 

production centers to distribution centers, then to warehouses, followed by wholesalers, and ultimately 

to retailers. The company aims to make decisions regarding the establishment of production centers and 

transportation systems in a way that minimizes costs. A summary of this study in comparison with 

previous studies are shown in Table 1.  

Table 1. Literature review 

Author Objective Type of product Approach 

Stellingwerf et al. 

(2018) 
Minimizing total emissions Drugs Fico Xpress Mosel 

Yang et al. (2021) Minimizing costs Vaccines 
Disaggregation-and-merging 

algorithm 

Li et al. (2022) Minimizing costs Commodities Multi-objective algorithms 

Moadab et al. (2023) 

Minimizing costs, negative 

societal impact caused by 

shortages, and environmental 

impact 

COVID Test 
Multiple Choice Goal 

Programming 

Fallahi et al. (2024) 
Minimizing the total cost and 

total carbon emission 
Blood plasma ɛ-Constraint 

Machiani et al. 

(2025) 

Minimizing total SCN costs, 

environmental effects, social 

impacts, and maximizing the 

reliability of demand delivery 

Medical 

protective 

equipment 

Augmented ε-Constraint, Multi-

objective algorithms 

This paper 
Minimizing costs and delivery 

time 

Pharmaceutical 

commodities 
Genetic algorithm 

 

 

3. Problem Definition 

 

Location-routing problem includes the placement of factories, distribution centers, transportation 

issues, and routing, which affects to the routing of product transfers from factories to distribution 

centers, from DCs to wholesalers, and from there to retailers (customers). The location-allocation 

problem, when integrated with the discussed topic, addresses the distribution of products from 

wholesalers to retailers (customers). As a result, the investigation involves a mixed-integer problem 

that combines elements of location, routing, and allocation. In the proposed mathematical model, 

retailer (customer) demand is uncertain. However, based on historical data, customer demand can 

be estimated through multiple scenarios. At the beginning of the planning horizon, experts estimate 

potential demand. Based on the projected demand and factors such as warehouse storage capacity, 

available transportation options, and more, the optimization of supply and demand for each time 

period must be determined. Products manufactured in factories are transported to distribution 

centers, and from there, they are dispatched to designated warehouses for further distribution. Upon 

arrival at the warehouses, products are stored to prevent potential demand loss. They are then 
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transported from the warehouses to wholesalers and, ultimately, to retailers. This study examines a 

mixed-integer model within a four-level supply chain scenario. 

The proposed mathematical model try to simultaneously determine the optimal locations and 

transportation flows across the entire system, while minimizing overall costs. 

3.1. Assumptions 

The assumptions employed in modeling the problem are outlined as follows: 

1. The SC is a four-tiered chain, consisting of manufacturers (factories), distribution centers, 

wholesalers, and retailers (customers). 

2. The SC is multi-period and multi-product. 

3. The locations of manufacturing centers are not specified; they need to be selected from 

several potential active/initiated centers. 

4. The locations of distribution centers are not specified; they need to be selected from several 

potential active/initiated centers. 

5. The locations of wholesalers are not specified; they need to be selected from several 

potential active/initiated centers. 

6. The locations of retailers are specified. 

7. The transportation fleet is heterogeneous, and there is a probability of vehicle breakdown. 

8. The capacity vehicles is limited. 

9. Production capacity is limited. 

10. Each DC is assigned to a maximum of one manufacturing center. 

11. Each wholesaler is assigned to a maximum of one DC. 

12. Time available is limited. 

13. The number of available vehicles is specified. 

14. Three levels of routing are considered: from manufacturing centers to DCs, from 

distribution centers to wholesalers, and from wholesalers to retailers. 

15. Demand is considered uncertain. 

The parameters and notations are used in mathematical model are as follows: 

3.2. Sets and Indices 

Index for factories : � 

Index for distribution centers : � 

Index for wholesale centers : � 

Index for retail centers : � 

Index for vehicles : � 

Index for time period : � 

3.3. Parameters 

Cost of establishing/launching factory �. ��	
� 

Setup costs of distribution centers. ���	
� 

Setup costs of wholesale centers. 
��	
� 

Holding Cost per Product Unit at DC 	 in Period 
. ���	
�� 

Holding Cost per Product Unit at Center � in Period 
. ���	
�� 

Capacity of Wholesale Center � in Period 
. ������ 

Capacity of DC 	 in Period 
. 
����� 

Cost of transporting each unit of product from production centers f to DC 	 in 

period 
. 

���	
��� 
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3.4. Decision Variables 

The quantity of products manufactured in factory � in period 
. : ��� 

The quantity of products stored at DC 	 in period 
. : ���� 

The quantity of products stored at wholesale center � in period 
. : �
�� 

The quantity of goods going from factory f to DC 	 in period 
. : ����� 

The quantity of goods going from DC s to wholesale center � in period 
. : ����� 

The quantity of goods going from wholesale center d to retail center w in period 
. 

: ����� 

The quantity of goods transported from factory � to DC 	 by vehicle v in period 
. 

: �1���� 

The quantity of goods transported from DC s to wholesale center d by vehicle 

v in period 
. 

: �2���� 

The quantity of goods transported from wholesale center d to retail center w by 

vehicle v in period 
. 

: �3���� 

If the production center � is established, it equals 1; otherwise, it is 0. : �1� 

If the DC 	 is established, it equals 1; otherwise, it is 0. : �
� 

If the wholesale center � is established, it equals 1; otherwise, it is 0. : ��� 

If the retail center � is established, it equals 1; otherwise, it is 0. : �2�   
If vehicle v moves from production center � to DC 	 in period 
, it is 1; 

otherwise, it is 0. 

: ������ 

Cost of transporting each unit of product from DC 	 to wholesale centers � in 

period 
. 

 ��	
��� 

Cost of transporting each unit of product from wholesale centers � to retail centers � for sales in period 
. 

���	
��� 

Cost of vehicle breakdown v. �!�	
��"# 

The duration of vehicle breakdown v from production center f to DC 	 in period 
. �1���� 

The duration of vehicle breakdown v from DC 	 to wholesale center � in period 
. �2���� 

The duration of vehicle breakdown v from wholesale center d to retail w in period 
. 

�3���� 

Capacity of vehicle v. �!����"# 

Cost per unit of fuel consumption. !�$"% 
Fuel consumption per unit of distance by vehicle v. &� 

The distance between the production center f and DC 	. ��'	�� 

The distance between the DC and the wholesale center. (�'	�� 

The distance between the wholesale center d and the retail center �.  )�'	�� 

A very large number *'+, 

The probability of vehicle v breaking down. �� 

The maximum number of potential production centers f that can be established in 

potential locations. 
-1.��� 

The maximum number of potential DC 	 that can be established in potential 

locations. 

-2.��� 

The maximum number of potential sales centers d that can be established in 

potential locations. 
-3.��� 

The time for vehicle v transportation from factory f to DC 	 in period 
. 
'.(1���� 

The time for vehicle v transportation from DC 	 to wholesale center � in period 
. 
'.(2���� 

The time for vehicle v transportation from the wholesale center d to the retail center � (customer) in period 
. 


'.(3����
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If vehicle v moves from DC 	 to wholesale center � in period 
, it is 1; 

otherwise, it is 0. 

: ������ 

If vehicle v moves from wholesale center � to retail center � (customer) in 

period 
, it is 1; otherwise, it is 0. 

: �&���� 

If vehicle / is allocated from production center � to DC 	 in period 
, it is 1; 

otherwise, it is 0. 

: �
���� 

If vehicle / is allocated from DC 	 to wholesale center � in period 
, it is 1; 

otherwise, it is 0. 

: �(���� 

If vehicle / is assigned from wholesale center � to retail center � in period 
, 

it is 1; otherwise, it is 0. 

: ������ 

3.5. Model  

0'1'.')( !�	
: = 4�!�
'�1 !�	
 +  ��6� !�	
 4�!�
'�1 !�	
 (�18)  = : 
��	
�� ��� + : ��	
��1�� + : ���	
�� �
� (1) 

��6� !�	
 �(1;)  = : �
�����	
���� + : �������	
����  
(2) 

 

Now, let's combine (1) and (2), resulting in the total cost being equal to: 

 0'1 �1 =  (�18) +  �(1;)= : 
��	
�� ��� + : ��	
��
�� + : ���	
�� �1�
+ : �
�����	
���� + : ������	
����  

(3) 

0'1 �2 =  <: ������
'.(�������� + : ������
'.(�������� + : �&����
'.(�������� = (4) 

�&*>(!
 
�:  ����� ≤ *'+,������ ∀	،�،v،
 (5) 

����� ≤ *'+,������   ∀	،�،v،
 (6) 

����� ≤ *'+,�&��B� ∀ �،�،v،
 (7) 

: ������� ≤ *'+,�
� ∀
 
(8) 

: ������� ≤ *'+,��� ∀
 
(9) 

: ������� ≤ *'+,�� ∀
 
(10) 

�
���� ≤ �
� ∀ 	،�،/،
 (11) 

�(���� ≤ ���  ∀ 	،�،/،
 (12) 
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������ ≤ �2�  ∀�،�،/،
 (13) 

: �1����������� ≤ �!����"# ∀	،/،
 (14) 

: �2����������� ≤ �!����"# ∀ �،/،
 (15) 

: �3�����&����� ≤ �!����"# ∀ �،/،
 (16) 

���� + ����� ≤ 
����� ∀ �،	،
 (17) 

�
�� + ����� ≤ ������ ∀ �،	،
 (18) 

: ���� ≤ -3.���  (19) 

: �
�� ≤ -2.���  (20) 

: ��� ≤ -1.���  (21) 

��� , �
�, �� , ������ , ������, �&����, �
���� , �(����, ������ ϵ {0،1} (22) 

���� , �1���� , �2����, �3����, ��� , �
�� , ����� , �����, ���� ≥ 0 

Equation (1) defines the location costs for three sections of the supply chain, which are part of 

long-term decision-making. Once a section is established and operational, it incurs specific costs. 

These costs are represented by multiplying a fixed value by a binary variable, indicating whether 

the section is active (1) or not (0). Equation (2) optimizes the holding cost per unit of product, 

which is influenced by the volume of stored materials. Equation (4) minimizes the maximum 

delivery time for products. Equations (5) to (7) ensure that at least one vehicle is required for 

product transfer. If no vehicle is deployed, the transfer of products between routes becomes 

impossible. Equations (8) to (10) specify that the corresponding center must be established and 

operational to facilitate product transfer. Equations (11) to (13) define the allocation of products to 

each center. Equations (14) to (16) represent vehicle capacity constraints for product transportation, 

ensuring that each vehicle operates within its designated capacity. Equation (17) defines the storage 

capacity of distribution centers, ensuring that the transferred product volume does not exceed the 

center's capacity. Equation (18) outlines the capacity of major sales centers. Equations (19) to (21) 

define the constraints for the maximum number of centers that can be selected. Equation (22) 

specifies the decision variables. 

 

Definition 3.1. We say that the quadruple I = (�, J, �, /) is admissible if ... . 

 

Theorem 3.2. Each admissible shape of KL� in (2) can be replaced exactly by one admissible 

quadruple I = (�, J, �, /) ∈ N.  
 
Proof. It is enough to introduce an injection correspondence between KL� and N. … .  
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4. Solving Procedure 

The presented model is solved using GAMS software on a small scale. Since the model is an NP-

hard problem, a genetic algorithm is used for larger instances. 

4.1.     Genetic Algorithm 

One of the evolutionary algorithms is the genetic algorithm, which is a non-algebraic optimization 

algorithm and is suitable for functions that are difficult to optimize with algebraic methods. In the last 

decade, the genetic algorithm has been widely used as a simulation algorithm and search for answers in 

different fields (Katoch et al., 2021). The main reason for the increasing use of this algorithm is its high 

applicability in symptoms and the simplicity of its application and general approach. Features of genetic 

algorithm are as follows, 

 The genetic algorithm starts searching from a population of answers and instead of finding a point, 

it identifies a suitable range in the space of variables and by choosing suitable parents, it follows 

an effective search in all the space of variables. 

 In this algorithm, only the calculations related to the objective function are performed, and every 

time the algorithm is repeated and the solution space is searched, only the objective function is 

calculated, and there is no need for other calculations. 

 This algorithm uses probabilistic rules instead of deterministic rules. Unlike many optimization 

methods that start from one point according to a certain rule and move to other points in the search 

space, this algorithm starts with a set of points and calculations will be performed on all of them 

at the same time. Therefore, the probability of being in the wrong place and getting stuck at a 

local point is reduced. 

 The generality and independence of the algorithm's components make it possible to search for the 

answer regardless of the characteristics of the problem and can be used in any problem with any 

type of objective function. 

 In this algorithm, calculations are done accurately and approximations are not used. This 

algorithm does not use any approximate calculations, such as linearization of the objective 

function, rounding of results, conversion of discrete to continuous variables, etc. 

4.1.1.  General Structure of Genetic Algorithm 

The genetic algorithm was the first model developed based on the simulation of genetic systems 

(Katoch et al., 2021). Genetic algorithms belong to the class of random search methods. Despite their 

randomness, they have a goal-oriented structure, classifying them as evolved random algorithms. Unlike 

traditional algorithms, genetic algorithms begin with an initial set of random solutions, referred to as a 

population.Each individual of this population is called a chromosome, which represents a solution to the 

problem. The chromosome is a series of signs that evolve through successive repetitions, which are called 

generations. In each generation, chromosomes are evaluated by measuring fitness. In order to produce the 

next generation, new chromosomes, which are called offspring, are produced in two ways. 

1) Integration of two chromosomes from the current generation using the crossover operator 

2) Changing a chromosome through the mutation operator 

The top chromosomes have a higher chance of selection and after repeating several generations, the 

algorithm converges towards the top chromosomes, which may indicate the optimal or suboptimal 

solution. Genetic operators follow the process of inheriting genes in order to produce offspring in each 

generation, and the evolution operator imitates Darwin's evolutionary process in order to produce a 

population from one generation to another. 
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4.1.2. Crossover 

 

The crossover is considered the main operator in genetic algorithms, which is performed on two 

chromosomes at any time. The simplest method of crossover is to choose a random crossover point so that 

the left side of the crossover point of one parent is connected to the right side of the crossover point of the 

other parent. The efficiency of this method is high by displaying the binary string. The efficiency of genetic 

algorithms is highly dependent on the efficiency of the crossover operator used in them. The crossover 

works as follows, 

First, a crossover point is randomly selected and the right part of the crossover point in the first parent 

is replaced with the right point in the second parent. Suppose, the two chromosomes are as figure 1 and 

consider the crossover point as the border between the light and dark point. 

Parent 1 

 

Parent 2 

 

The children resulting from applying the crossover are as follows. 

Child 1 

 

Child 1 

Figure 1. Example process of the crossover 

4.1.3. Mutation 

The mutation is the secondary operator responsible for injecting new information into the population 

at a low rate and producing random changes in different chromosomes. The main role of the jump operator 

is to identify points in the space that are less likely to be searched and reduce the probability of the 

algorithm getting trapped in the local optimal solution. In genetic algorithms, the mutation plays a decisive 

role. These roles are like replacing missing genes in the population by means of the selection operator or 

producing genes not present in the primary population. The mutation modifies one or more genes based 

on the mutation rate. Suppose the tenth gene of the following chromosome is selected for the mutation. 

Because the tenth gene of this chromosome is equal to zero, it changes to the value of one and the result 

of the operation will be as figure 2. 

 

1 0 1 0 1 1 1 0 1 0 1 0 

 

1 0 1 0 1 1 1 0 1 1 1 0 

Figure 2. Example process of the mutation 

 

The mutation rate is also considered as one of the parameters affecting the population. If this ratio is 

too low, many genes that may be useful will never be produced, and if it is too high, there will be a lot of 

chaos in the population, and the offspring will have little resemblance to their parents, and the algorithm 

loses the ability to learn from the past search. 
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4.1.4. The Suggested Genetic Algorithm 

As mentioned earlier, the genetic algorithm solved the problem in large dimensions. The reason for 

using this algorithm is that the genetic algorithm has been used in most of the articles on positioning-

routing models and secondly, this algorithm has been used in a consolidated manner, which covers the 

shortcomings of non-consolidated algorithms. As the model is bi-objective model, we employ NSGA-II 

algorithm. Figure 3 is the flowchart of the proposed algorithm. 

 

 
Figure 3. Flowchart of NSGA-II (Thonglek et al., 2022) 

 

5. Validation and Numerical Examples 

 

Given that the model presented in the previous section constitutes an NP-hard problem, obtaining 

exact solutions for large-scale instances within a reasonable computational time is impractical. 

Consequently, a small-scale version of the problem was formulated and solved using exact 

optimization techniques to establish a benchmark. The exact solutions were generated via GAMS 
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software, while the genetic algorithm was implemented in MATLAB. A comparative analysis 

revealed that the solutions obtained from the genetic algorithm closely approximate the exact 

solutions. This observation suggests that the proposed metaheuristic is a promising approach for 

addressing medium- and large-scale instances, as it demonstrates the capability to produce near-

optimal solutions in small-scale test cases. 

5.1. Model Analysis with Genetic Algorithm 

Defining an appropriate solution representation is a key factor in enhancing the efficiency of the 

proposed algorithm. In this study, the adopted solution structure incorporates �)���, where each 

chromosome corresponds to a specific retailer or customer. Each chromosome is represented as a 

vector whose length equals the number of wholesale levels plus one. Each position in the vector 

corresponds to a level, and the value stored in that position denotes the wholesale distribution center 

selected at that level. To illustrate this more clearly, an example is provided: consider a case with six 

wholesale centers, i.e., P = 6 

 

Table 2. Example parameters for the algorithm 

 0r 1r 2r 3r 4r 5r 

d 3 1 5 2 4 d 

The first cell in Table 2 (from the left) indicates that the retailer is initially allocated to wholesale 

center number 3 at the zero level. In the event of a disruption at this center, the customer is reassigned 

to wholesale center number 1. If this center is also disrupted, the retailer is then allocated to the next 

available wholesale center. This process continues sequentially up to the fourth level. The final cell, 

representing the fifth level, must be assigned to the wholesale center designated as the last in the 

allocation sequence. 

Initialization: 

A trial-and-error procedure was employed to identify the near-optimal values of the genetic 

algorithm parameters 1, �R and �S. Various combinations of these parameters, selected from their 

respective predefined ranges, were systematically evaluated. For each combination, the genetic 

algorithm was executed on the problem instance, and the performance was assessed to determine the 

most effective parameter configuration. This approach facilitates the identification of parameter 

settings that achieve a favorable balance between solution quality and computational efficiency. The 

parameter values examined are summarized in Table 3. 

Table 3. Parameter settings considered in the trial-and-error analysis. 

Parameters Values Tested T 40 50 60 UV 0.5 0.6 0.7 UW 0.01 0.02 0.03 

 

Fitness function: In this section, parents are selected according to the relevant selection strategy, and 

crossover and mutation are performed on them, in such a way that pairs that have a lower cost are 

selected. 

Crossover Operation: In alignment with the principles of natural evolution, chromosomes are 

selected as parents and recombined to produce offspring. Within the proposed genetic algorithm, a 

single-point crossover operator is applied in each iteration to generate new solutions. Specifically, a 

crossover point is randomly chosen within the range (1 
� P), and the offspring is constructed by 
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combining the gene segments of both parents according to this point of division. This mechanism 

ensures the exchange of genetic material, thereby enhancing population diversity and promoting 

convergence toward high-quality solutions. 

 

 Parent 1   Parent 2  

 1 0 0 1 1   0 0 1 1 1  

 

 Child 1   Child 2  

 1 0 1 1 1   0 0 0 1 1  

Figure 4. Crossover performance 

 

Mutation: In this study, the applied mutation operator is the transfer mutation operator, which 

enhances solution diversity and prevents premature convergence. This operator randomly selects two 

genes within a chromosome and exchanges their positions, introducing variability without disrupting 

the overall structure of the solution. Such an approach helps maintain genetic diversity in the 

population, which is crucial for exploring the search space effectively. 

 

1 0 1 0 0 0 1 

     

1 0 0 0 0 1 1 

1 0 1 0 1 1 1 0 1 0 1 0 

 

1 0 1 0 1 1 1 0 1 1 1 0 

Figure 5. Mutation performance 

 

To address the proposed optimization problem, a genetic-based solution framework was 

developed to systematically incorporate all scenarios examined in this study. The solution process 

begins with the model initialization phase, during which key structural parameters—such as 

mutation intervals and the number of decision elements—are defined. The framework is designed 

with a high degree of flexibility, enabling dynamic adjustments to the number of factories and 

distribution centers, as well as real-time evaluation and refinement of operational constraints. 

Following initialization, the algorithm progresses to the optimization phase, which integrates 

multiple computational techniques to achieve cost-effective solutions. Specifically, three 

complementary methods were employed: 

1. Traveling Salesman Problem (TSP): to minimize total routing distance and improve 

distribution efficiency. 

2. K-Nearest Neighbors (KNN): to determine the optimal locations for distribution centers 

based on demand clusters. 

3. Simulated Annealing (SA): to enforce production capacity and payment constraints while 

preventing premature convergence. 

The solution process is initiated by specifying the predetermined locations of wholesalers and 

consumers. Subsequently, optimal distribution routes are generated using the TSP algorithm. Based 

on retailer demand density, candidate distribution center locations are selected using KNN, ensuring 

proximity to high-demand areas. Finally, the SA method is applied to refine production and payment 

allocations under operational constraints. The program architecture allows dynamic modifications 

during execution, ensuring adaptability to changes in network structure and constraints. The validity 

and effectiveness of the proposed approach are demonstrated through graphical representations of the 

algorithm’s execution, as shown in the subsequent figures. 
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Figure 6. Locations of wholesalers (customers) and optimal routing 

In the subsequent phase, the algorithm initiates the optimization process by employing a 

neighborhood search procedure to identify the optimal locations for factories and distribution centers, 

as well as the most efficient distribution routes. 

Figure 7. Optimum places of firms, distribution centers, and the best route 

Figure 8 illustrates the final stage of the optimization process, where the software determines the 

optimal facility locations and distribution routes. 
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Figure 8. Optimal locations and final optimal route 

5.3. Program Execution and Dynamic Optimization 

During its execution loop, the program continuously evaluates potential locations and routing 

options to minimize the overall cost of the distribution network. It provides recommendations 

regarding both the optimal navigation routes and the location coordinates of distribution centers 

(DCs) and factories. These suggested coordinates are systematically recorded, as exemplified in Table 

4. The iterative process continues until convergence to an optimal solution is achieved. 

The final output, illustrated in the corresponding figure, represents the system’s fitness level, 

which accounts for evaluated scenarios, including center locations and optimal timing, while 

minimizing total distribution costs. Notably, the methodology is fully dynamic, allowing all 

parameters to be adjusted, retested, and reassessed under new data conditions. The resulting 

optimized values for routes and locations are summarized in Table 4. 

Table 4. Optimal amount of centers and cost 
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Table 5. Summary of objective function results 

RUN 1 2 3 4 5 6 7 8 9 

Z1 6432569 6335659 5996336 6012332 5889632 5666532 5789965 5998635 5888932 

Z2 42 32 30 28 30 26 27 20 18 

 

6.  Sensitivity Analysis of The Parameters 

In this section, we demonstrate that how variations in the inputs of the model affect the objective 

function. Given the complexity, scale, and numerous parameters of the model, this paper focus on 

analyzing a subset of parameters. This paper used GAMS software for solving and employing a loop 

to examine parameter values in a small-scale model with 5 repetitions. First, the parameter !�	
��LR
 

is reduced by 35% for two values of �. These values are then analyzed to evaluate the sensitivity of 

the model to these changes. 

 

Table 6. Objective function results with changes in facility location costs 

Objective Function XY XZ 

51068 550 500 

49819 357 325 

49562 232 211 

49407 151 137 

49306 98 89 

49240 63 58 

 

 

 
Figure 9. Sensitivity analysis of facility location costs 

 

Figure 9 illustrates the sensitivity analysis of the first objective function, focusing on costs. We 

adjust the cost-related parameter to a constant value to observe changes in the first objective function, 

which encompasses location, maintenance, and transportation costs. The first objective function 
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relates to costs, thereby the total cost should decrease as individual costs are reduced. With the 

reduction in costs, the first objective function, i.e., the total costs, also decreases. Furthermore, we 

analyze other parameters in 5 repetitions according to the previous method. For distribution centers, 

we increase D1 and D3 by 20% while decreasing D2 and D4 by 10% in each iteration. 

 

Table 7. Objective function results with changes in location costs of distribution centers 

Objective Function [\ [] [Y [Z 

50168 125 175 185 120 

50161 112 210 166 144 

50149 101 252 149 172 

50139 91 302 134 270 

50130 82 362 121 248 

50122 73 435 109 298 

We reduce the location costs for the distribution centers to a fixed ratio, similar to the previous 

method. As we can conclude form the Figure 10, changes in location costs significantly impact the 

main objective function. Moreover, this analysis focuses on costs, showing that as the location costs 

of the distribution centers decrease or increase, objective function 1 will correspondingly decrease or 

increase with the change in the input parameter. The input parameter for location costs is directly 

correlated with objective function 1. 

 
Figure 10. Distribution center location sensitive analysis chart 
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Table 8. Objective function results with changes in vehicle capacity 
 

Objective Function �3 �2 �1 

50168 1750 2000 1500 

50168 1050 1200 900 

50168 630 720 540 

50168 378 432 324 

50168 226 259 194 

50168 136 155 116 

 

 
Figure 11. Objective function results with changes in vehicle capacity 

Figure 11 demonstrates that changes in vehicle capacity do not significantly impact the main 

objective function. This means that whether we increase the vehicle's capacity from 500 units to 1000 

units or reduce it, the costs in objective function 1 are not significantly affected. 

Table 9 demonstrate the production cost parameters for factories 1 and 2 for three products, increased 

by 20% in each iteration. These changes are reflected in the objective function 1. 

 

Table 9. Objective function results with changes in production cost 

Objective Function 1 �;^ �;; �;8 �8^ �8; �88 

50168 20 30 15 25 15 10 

59931 24 36 18 30 18 12 

71646 28 43 21 36 21 14 

93528 35 52 42 43 6 17 

111954 41 62 50 52 31 21 

 

As we anticipated, the production costs for established factories 1 and 2 are positively correlated 

with the input parameter.  The increase or decrease in these costs causes objective function 1, which 
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is related to costs and is cost-natured. In contrast, objective function 2, which relates to time, remains 

unaffected by changes in cost-related inputs. 

 
Figure 12. Objective function results with changes in factory 1 production costs 

 

 
Figure 13. Objective function results with changes in factory 2 production costs 

 

7.  Conclusion 

Providing an effective framework for determining production facility locations, vehicle routing, 

and inventory management significantly enhances organizational efficiency. In modern operations, 

supply chain optimization is a critical factor in reducing costs and increasing productivity. Among 

supply chain challenges, the location-routing problem (LRP) is particularly important, as selecting 

optimal routes and facility locations directly influences operational efficiency and organizational 

competitiveness. 

In this study, a location-routing model is proposed for a four-level supply chain encompassing 

manufacturers, distributors, wholesalers, and retailers (customers). To reflect real-world conditions, 

demand is treated as uncertain and scenario-based, highlighting the stochastic nature of customer 

requirements. The primary objective of the model is to minimize total economic costs, including 

transportation, inventory, and facility establishment expenses. 
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Due to the NP-hard nature of the problem, GAMS software is employed for small-scale instances, 

while a meta-heuristic genetic algorithm is used for larger-scale problems. The model optimizes the 

location of three key components and determines the best routes across three distribution stages. The 

genetic algorithm simultaneously identifies optimal distribution paths and facility placements. Based 

on the results illustrated in previous chapters’ charts and tables, the model provides optimal values 

for decision variables, including warehouse inventory levels, quantities transported per period, 

disposal amounts, and the optimal routing and facility location configurations. 

 

7.1. Suggestions for Further Research 

Based on this research, several directions for future studies can be suggested. First, developing 

new heuristic or meta-heuristic algorithms could improve the efficiency of solving the model. 

Additionally, future work could explore supplier selection using different approaches, such as fuzzy 

logic methods. Incorporating quality control measures would help minimize the costs associated with 

returned goods. Furthermore, the model could be enhanced by including delivery time considerations 

and applied to real-world scenarios with more concrete parameters. Examining alternative 

transportation routes, such as air and rail, and including the locations of retailers (customers) would 

also provide valuable insights. 
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