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Evaluation of healthcare systems, as a key organization providing different health services, is 

essential. This issue becomes more crucial when occurring crises such as a pandemic. They need 

to keep track of their success in the face of the crisis to assess the effects of policy changes and 

their capability to respond to new challenges. The Inverse Data Envelopment Analysis technique 

is an applicable method in order to estimate the input/output levels of decision-making units to 

preserve predetermined technical efficiency scores. In classic studies of Inverse Data 

Envelopment Analysis, decision-Making units as black boxes, ignoring their internal structure. 

This paper estimates input levels and new intermediate products to achieve a predetermined 

efficiency score set by the decision maker. In traditional Inverse Data Envelopment Analysis 

models, precise data are required to determine the input and/or output levels of each decision-

making unit. However, in many scenarios, such as system flexibility, social and cultural contexts 

information may be indeterminate. In these cases, experts’ opinions are used to model 

uncertainty. Uncertainty theory, a branch of mathematics, logically deals with degrees of belief. 

This paper aims to develop an inverse Network DEA model incorporating uncertainty theory. We 

assume that inputs and outputs of decision-making units are based on experts’ belief degrees. To 

demonstrate the model is performance, we explore efficiency of healthcare systems during 

COVID-19 pandemic. 

 

Keywords: Network Inverse Data Envelopment Analysis, Uncertainty, Multi Objective 

Programming, Efficiency. 

 

1. Introduction 

One of the famous techniques for the efficiency evaluation of a set of Decision-Making Units 

(DMUs) with multiple inputs and outputs is Data Envelopment Analysis (DEA). DEA was initially 

introduced by Charnes, Cooper, and Rhodes (CCR) (Charnes et al., 1978) and then was extended by 

Banker, Charnes, and Cooper (BCC) (Banker et al., 1984). In the real world, there are many cases 

that the decision-makers (or managers) of DMUs intend to estimate the appropriate inputs(outputs) 

when the outputs (inputs) are increased such that the efficiency scores are kept constant or set to a 

desired predefined target value. In these cases, DEA is not capable of identifying the appropriate 

inputs or outputs. Hence, to overcome this issue,(Wei et al., 2000) introduced an Inverse Data 

Envelopment Analysis (InvDEA) model to obtain the appropriate inputs or outputs in the presence of 

the predetermined input- or output efficiency scores. In other words, unlike the CCR and BCC 

models, their InvDEA model specifies the required level of inputs or outputs for the DMU under 

evaluation by considering a predetermined efficiency score for it. In this vein, (Lertworasirikul et al., 
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2011) and (Ghiyasi, 2015) developed the InvDEA model for the variable returns to scale (VRS) case. 

Moreover,(Jahanshahloo et al., 2015) modeled InvDEA under the intertemporal dependence 

assumption by utilizing multi-objective programming.(Zhang & Cui, 2016) also developed different 

input- and output-oriented models to extend and integrate the InvDEA model. Besides,(Lim, 2016) 

surveyed an InvDEA problem by considering the expected changes in the production frontier. 

(Ghiyasi, 2017) also provided a new InvDEA model as per the cost and revenue efficiency scores. 

Likewise,(Zhang & Cui, 2020)introduced a general inverse non-radial model using multi-objective 

programming and called it the inverse non-radial DEA model. 

The InvDEA approach has gained increasing popularity in recent years due to its broad range of 

applications in sectors such as business, supply chain management, agriculture, education, 

manufacturing, sustainable production, energy and environment. In fact, InvDEA models can 

complement DEA models, and anywhere DEA models are used, InvDEA models can be used as well. 

In addition, InvDEA models can be used independently for applications such as resource allocation, 

budgeting and planning. For instance, (Moghaddas et al., 2022) presented a network InvDEA model 

to evaluate supply chain sustainability, illustrating the benefits of applying InvDEA models in supply 

chain management and sustainability contexts. (Younesi et al., 2023) introduced an SBM InvDEA 

model for interval data, offering decision-makers additional tools to analyze potential mergers and 

acquisitions by extending InvDEA applications to different data types.(Amin & Boamah, 2023) 

developed a strategic business partnership framework within an InvDEA context to help decision-

makers enhance competitiveness through strategic alliances and partnerships. Furthermore, in the 

domain of environmental efficiency, (Pourmahmoud et al., 2026) applied an uncertain InvDEA model 

to assess CO2 emission efficiency, demonstrating the method's utility in managing uncertain 

undesirable outputs for sustainable production and environmental policy-making. 

In the real world, there are many DMUs (or processes) consisting of two stages. In this case, DEA 

is not properly able to measure the relative efficiency of these two-stage DMUs (or two-stage 

processes) because it does not consider the internal structures of these DMUs. In this situation, 

network DEA (NDEA) can help us to measure the relative efficiency of the two-stage DMUs see, 

e.g., (Färe & Grosskopf, 2000);(Lewis & Sexton, 2004);(Liang et al., 2008) (Cook et al., 

2010);(Castelli et al., 2010); (Yang et al., 2020). (An et al., 2019) suggested a two-stage InvDEA 

model considering undesirable outputs for resource planning of the Chinese commercial banking 

system.(Farzipoor Saen & Seyedi Hosseini Nia, 2020) proposed a network-structured InvDEA model 

to assess the performance and sensitivity analysis of after-sale services in a car company. 

Furthermore, the impact of uncertainty was examined using robust optimization.(Amin & Ibn 

Boamah, 2021) developed a two-stage InvDEA model to investigate potential gains from bank 

mergers. 

The traditional InvDEA employs specified amounts of inputs and outputs. However, in many 

instances, these quantities are not deterministic. Typically, nondeterministic data is treated as 

statistical, with randomness managed using probability theory .Research explains the concept of 

stochastic DEA in three ways:1) one approach develops DEA models to handle observed deviations 

from the frontier as random variations,2) another designs DEA models to manage random noise, and 

3) a third perspective views the Production Possibility Set (PPS) as a random PPS (Olesen & Petersen, 

2016).(Ghomi et al., 2021)explored incorporating stochastic data into InvDEA to address resource 

allocation and investment analysis challenges. Nonetheless, there are situations where our limited 

knowledge is not solely due to randomness. In some cases, data may be ambiguous and vague. Fuzzy 

logic offers a flexible approach to evaluating the degree of uncertainty in such instances. The use of 

fuzzy theory, introduced by (Zadeh, 1996), has gained significant interest in DEA literature for 

addressing inherent ambiguity.(Emrouznejad et al., 2014) conducted an in-depth examination of 

employing fuzzy techniques in DEA. Although significant findings have emerged regarding Fuzzy 

DEA models, they are not without limitations. Some models simplify to linear optimization problems 

only if fuzzy numbers are assumed to be trapezoidal (Hatami-Marbini et al., 2011). Additionally, 
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some models may exhibit unbounded optimal values, and many Fuzzy DEA models are both 

computationally inefficient and costly (Guo & Tanaka, 2008). This issue is prevalent across most 

Fuzzy DEA models (Soleimani-Damaneh et al., 2006).Moreover, using fuzzy methods to address 

nondeterministic issues may lead to inconsistencies and contradictions in certain situations. 
Consider data have been collected from ten different hospitals. A DEA model can be utilized to 

evaluate the performance of these hospitals. One of the inputs might be equipment and 

infrastructure, with values ranging from 60 to 100. If the expert views the input as a fuzzy variable 

with this membership function, the possibility of achieving a "the amount of equipment and 

infrastructure is 80 " is equal to one. 

 

𝜇(𝑥) = {
(𝑥 − 60)/20    60 ≤ 𝑥 < 80
(100 − 𝑥)/20   80 ≤ 𝑥 ≤ 100.

 

 
However, the degree of belief in the "exact amount of 80 for equipment and infrastructures" is 

near zero, and no one can believe that the "exact amount of 80 for equipment and infrastructures" is 

correct. On the other hand, the possibility that the system receives the score of 80 is the same as when 

it does not. This is a contradiction. Therefore, fuzzy logic is not appropriate to model belief degrees. 

Furthermore, in the lack of historical data, probability theory would be unable to generate practical 

results. The uncertainty theory book (Liu, 2017) might be consulted for more information. 

Uncertainty theory is a mathematical approach that aims to model human opinions. This theory 

can be applied in four different scenarios  

1) It can be used to make predictions when there is no available sample or during emergencies like 

war, floods, earthquakes, or a pandemic. In such situations, historical data may not provide 

accurate information. 

2) It can be employed to analyze the past in cases where specific measurements are inaccessible, 

such as carbon emissions or social benefits. 

3) It can be used to model certain concepts, like "young" or "warm" which are ambiguous in human 

language. 

4) It can be utilized to model dynamic systems with continuous-time noise, such as stock prices. 

 

In these situations, some domain experts are invited to evaluate the belief degrees and the 

uncertainty theory can be utilized to deal with them (Liu, 2017). Recently, this theory has been studied 

by several researchers in DEA literature .(Lio & Liu, 2018), introduced an uncertain CCR model that 

incorporates uncertain variables for both inputs and outputs. They calculated the expected value of 

these uncertain variables and proposed a crisp model as an equivalent (Pourmahmoud & Bagheri, 

2021),  Providing an uncertain model for evaluating the performance of a basic two-stage system 

developed a basic two-stage model to account for uncertainty in the network structure. During the 

COVID-19 pandemic, probabilistic statistics might not function accurately due to the lack of 

comparable situations.(Pourmahmoud & Bagheri, 2023),used an uncertain model to evaluate 

healthcare system performance during the COVID-19 outbreak. Given the significance of InvDEA in 

the literature, this paper concentrates on efficiency analysis in scenarios where some data are based 

on belief degrees. The model is input-oriented and employs VRS technology. As an example, we 

have analyzed data from 30 hospitals during the COVID-19 pandemic. Additionally, the number of 

deceased patients has been considered as an undesirable output. During the pandemic, since this 

output was not precisely measurable, we determined it with the help of expert opinions. In summary, 

and to the best of our knowledge, this study makes the following contributions. 
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1. To evaluate the sustainability of the healthcare system, we propose a new inverse network 

data envelopment analysis model based on uncertainty theory. Specifically, in this model, 

patient mortality is considered an undesirable uncertain output that should be determined by 

expert opinions and incorporated into the efficiency evaluation of the healthcare system. This 

model is not only methodologically innovative, but also enables policymakers to make 

inverse target-oriented decision rather than merely assessing efficiency. 

2. Unlike the conventional application of InvDEA, which have mainly focused on industrial or 

financial domains, we employ a two-stage network InvDEA model to analyze resource 

allocation in the management of the covid-19 pandemic, where inverse decision making plays 

a vital role in controlling undesirable outcomes arising from mortality. 

3. The proposed inverse network data envelopment analysis model identifies the minimum 

required changes in hospital resources to improve treatment outcomes. This feature helps 

hospital managers achieve the maximum reduction in undesirable outputs(mortality) with the 

lowest possible cost of variable adjustments. Unlike conventional models that merely focus 

on efficiency evaluation, the proposed model is designed for policy targeting. Specifically, it 

enables the determination of the required levels of resources (specialist doctor and active 

beds) needed to achieve specified efficiency level and reduce mortality among covid-19 

patients. 

4. We have validated this approach using a case study. 

This paper is structured as follows: Section 2 will introduce fundamental concepts of InvDEA, basic 

two-stage networks and uncertainty theory. Section 3 will present the uncertain two-stage network 

InvDEA and some theorems are proved. The practical use of the model will be illustrated in 

Section 4, followed by conclusions in Section 5 and a discussion on future research. 

2.  Preliminarily 

In this section the concepts of DEA, Inv DEA, the basic two-stage networks, and uncertain theory 

are reviewed. 

2.1.  Invers Data Envelopment Analysis 

Assume 𝐷𝑀𝑈𝑗 (𝑗 = 1,2, . . . , 𝑛) consumes input vector 𝑋𝑗 =   (𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑚𝑗) to produce 

desirable output vector 𝑌𝑗
𝐷 =   (𝑦1𝑗

𝐷 , 𝑦2𝑗
𝐷 , . . . , 𝑦𝑠𝑗

𝐷 ) and undesirable output 𝑌𝑗
𝑁𝐷 =

 (𝑦1𝑗
𝑁𝐷, 𝑦2𝑗

𝑁𝐷, . . . , 𝑦
𝑠′𝑗
𝑁𝐷). For the evaluated 𝐷𝑀𝑈𝑘 𝑘 ∈ {1,2, . . . , 𝑛} the CCR model is as follow: 

𝑚𝑖𝑛   𝜃𝑘 

𝑠. 𝑡.  ∑ 𝜆𝑗

𝑛

𝑗=1

𝑥𝑖𝑗 ≤ 𝜃𝑘𝑥𝑖𝑘, 𝑖 = 1,2, . . . , 𝑚 

  ∑ 𝜆𝑗

𝑛

𝑗=1

𝑦𝑟𝑗
𝐷 ≥ 𝑦𝑟𝑘

𝐷  , 𝑟 = 1,2, . . . , 𝑠 

  ∑ 𝜆𝑗

𝑛

𝑗=1

𝑦
𝑟′𝑗
𝑁𝐷 ≤ 𝑦

𝑟′𝑘
𝑁𝐷 , 𝑟′ = 1,2, . . . , 𝑠′                                                 (1) 

  𝜆𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛 
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Definition 1: The 𝐷𝑀𝑈𝑘is (weak) efficient when the optimal value of the model 1 is equal to one. 

InvDEA models aim to address queries such as: if 𝐷𝑀𝑈𝑘 𝑘 ∈ {1,2, . . . , 𝑛} alters its output to how 

much input is needed to maintain 𝐷𝑀𝑈𝑘 's relative efficiency? Assume 𝐷𝑀𝑈𝑘 changes its output level 

from ( 𝑦𝑘
𝐷 , 𝑦𝑘

𝑁𝐷)  to (𝛽𝑘
𝐷 , 𝛽𝑘

𝑁𝐷) = (𝑦𝑘
𝐷 + ∆𝑦𝑘

𝐷 , 𝑦𝑘
𝑁𝐷 + ∆𝑦𝑘

𝑁𝐷) .The DEA literature introduces the 

following Multiple Objectives Linear Programming (MOLP) model for calculating this required 

input. 
 

𝑚𝑖𝑛   (𝛼1𝑘, 𝛼2𝑘 , . . . , 𝛼𝑚𝑘) = (𝑥1𝑘 + 𝛥𝑥1, 𝑥2𝑘 + 𝛥𝑥2, . . . , 𝑥𝑚𝑘 + 𝛥𝑥𝑚) 

𝑠. 𝑡.  ∑ 𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑘
∗𝛼𝑖𝑘 , 𝑖 = 1,2, . . . , 𝑚 

  ∑ 𝜆𝑗𝑦𝑟𝑗
𝐷

𝑛

𝑗=1

≥ 𝛽𝑟𝑘
𝐷 , 𝑟 = 1,2, . . . , 𝑠 

  ∑ 𝜆𝑗

𝑛

𝑗=1

𝑦
𝑟′𝑗
𝑁𝐷 ≤ 𝛽

𝑟′𝑘
𝑁𝐷 , 𝑟′ = 1,2, . . . , 𝑠′               (2) 

  𝜆𝑗 ≥ 0,  𝑗 = 1,2, . . . , 𝑛 

Where αik = (𝑥1𝑘 + 𝛥𝑥1, 𝑥2𝑘 + 𝛥𝑥2, . . . , 𝑥𝑚𝑘 + 𝛥𝑥𝑚) represents the required inputs to guarantee the 

unchanged 𝐷𝑀𝑈𝑘 's relative efficiency.𝜆𝑗 (𝑗 = 1,2, . . . , 𝑛) denote the intensity vectors , 

(𝛽𝑟𝑘
𝐷 , 𝛽𝑟′𝑘

𝑁𝐷) 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝑎𝑛𝑑 
*

k  represents the optimal value of the CCR model . 

Definition 2: Let (𝜆, 𝛼) = (𝜆1, 𝜆2, . . . , 𝜆𝑛; 𝛼1, 𝛼2, . . . , 𝛼𝑚) represent a feasible solution for model 2, 

If there is not any feasible solution such as (𝜆̄, 𝛼̄) for model 2 where 𝛼̄𝑖 < 𝛼𝑖 , 𝑖 = 1,2, . . . , 𝑚, then 

(𝜆, 𝛼) is considered a weakly efficient solution for the model. 

Theorem 1: Assume that 𝐷𝑀𝑈𝑘  changes its output level from (𝑦𝑘
𝐷 , 𝑦𝑘

𝑁𝐷) to (𝛽𝑘
𝐷, 𝛽𝑘

𝑁𝐷) = (𝑦𝑘
𝐷 +

∆𝑦𝑘
𝐷 , 𝑦𝑘

𝑁𝐷 + ∆𝑦𝑘
𝑁𝐷). If (𝜆̄, 𝛼̄) is a weak efficient solution of MOLP model (2) then the efficiency score 

of new 𝐷𝑀𝑈𝑘 's stays unchanged. 

Proof. See (Ghiyasi, 2015) 

 
 

      Fig 1. A two-stage system with undesirable outputs. 

 

2.2.  Two-stage InvDEA with undesirable outputs 

Suppose that n DMUs need to be evaluated as shown in Fig1. For each 𝐷𝑀𝑈𝑗 (𝑗 = 1,2, . . . , 𝑛) 

stage 1 consumes m inputs, 𝑋𝑗 =   (𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑚𝑗) , and produces t outputs, 𝑍𝑗 =   (𝑧1𝑗, 𝑧2𝑗, . . . , 𝑧𝑡𝑗) 

,which are called intermediate measures. Afterward, these t intermediate measures are treated as 

inputs in stage 2, which produces s desirable outputs, 𝑌𝑗
𝐷 =   (𝑦1𝑗

𝐷 , 𝑦2𝑗
𝐷 , . . . , 𝑦𝑠𝑗

𝐷 ) , and h undesirable 
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outputs, 𝑌𝑗
𝑁𝐷 =   (𝑦1𝑗

𝑁𝐷 , 𝑦2𝑗
𝑁𝐷, . . . , 𝑦ℎ′𝑗

𝑁𝐷).(An et al., 2019) proposed the input-oriented network-DEA 

model to measure the performance of the two-stage system by undesirable outputs. Their model is 

envelopment-based and can measure the overall efficiency of two-stage system. 

𝑚𝑖𝑛   𝜃𝑘 

𝑠. 𝑡.  ∑ 𝜆𝑗

𝑛

𝑗=1

𝑥𝑖𝑗 ≤ 𝜃𝑘𝑥𝑖𝑘, 𝑖 = 1,2, … , 𝑚 

          ∑ 𝜆𝑗
𝑛
𝑗=1 𝑧𝑑𝑗 ≥ 𝑧𝑑𝑘, 𝑑 = 1,2, . . . , 𝑡   

          ∑ 𝜇𝑗
𝑛
𝑗=1 𝑧𝑑𝑗 ≤ 𝑧𝑑𝑘, 𝑑 = 1,2, . . . , 𝑡 

    ∑ 𝜇𝑗

𝑛

𝑗=1

𝑦𝑟𝑗
𝐷 ≥ 𝑦𝑟𝑘

𝐷  ,  𝑟 = 1,2, . . . , 𝑠 

  ∑ 𝜇𝑗

𝑛

𝑗=1

𝑦
𝑟′𝑗
𝑁𝐷 ≤ 𝑦

𝑟′𝑘
𝑁𝐷 , 𝑟′ = 1,2, . . . , ℎ                                                 (3) 

  𝜆𝑗 ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛 

which optimal 
*

k  represents the overall efficiency score of the two-stage system with undesirable 

outputs. 𝜆𝑗 (𝑗 = 1,2, . . . , 𝑛)𝑎𝑛𝑑 𝜇𝑗( 𝑗 = 1,2, . . . , 𝑛)  denote the intensity vectors corresponding to 

stages 1 and 2. 

Definition 3. If the optimal value 
*

k  of model (3) is unity, then 𝐷𝑀𝑈𝑘 is (weakly) overall efficient. 

If the two-stage system 𝐷𝑀𝑈𝑘increases its undesirable outputs from 𝑦𝑘
𝑁𝐷 to  𝛽𝑘

𝑁𝐷= 𝑦𝑘
𝑁𝐷 + ∆𝑦𝑘

𝑁𝐷 and 

increases its desirable outputs from 𝑦𝑘
𝐷 to  𝛽𝑘

𝐷= 𝑦𝑘
𝐷 + ∆𝑦𝑘

𝐷 without changing its efficiency score
*

k , 

then how many new inputs and new intermediate measures will be produced for 𝐷𝑀𝑈𝑘? 

Suppose that  𝛾𝑗 =   (𝛾1𝑗 , 𝛾2𝑗, . . . , 𝛾𝑡𝑗)   denotes the new intermediate measures of perturbed 

𝐷𝑀𝑈𝑘 .The DEA literature introduces the following two-stage InvDEA model with undesirable 

Outputs for calculating this required input. 

𝑚𝑖𝑛   (𝛼1𝑘, 𝛼2𝑘 , … , 𝛼𝑚𝑘) = (𝑥1𝑘 + 𝛥𝑥1, 𝑥2𝑘 + 𝛥𝑥2, … , 𝑥𝑚𝑘 + 𝛥𝑥𝑚) 

𝑠. 𝑡.  ∑ 𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑘
∗𝛼𝑖𝑘, 𝑖 = 1,2, … , 𝑚 

                                        ∑ 𝜆𝑗
𝑛
𝑗=1 𝑧𝑑𝑗 ≥ 𝛾𝑑𝑘 , 𝑑 = 1,2, . . . , 𝑡   

                                         ∑ 𝜇𝑗
𝑛
𝑗=1 𝑧𝑑𝑗 ≤ 𝛾𝑑𝑘 , 𝑑 = 1,2, . . . , 𝑡 

                                       ∑ 𝜇𝑗

𝑛

𝑗=1

𝑦𝑟𝑗
𝐷 ≥ 𝛽𝑟𝑘

𝐷 ,  𝑟 = 1,2, . . . , 𝑠 

                                     ∑ 𝜇𝑗

𝑛

𝑗=1

𝑦
𝑟′𝑗
𝑁𝐷 ≤ 𝛽

𝑟′𝑘
𝑁𝐷,  𝑟′ = 1,2, . . . , ℎ                      (4) 

                                      𝜆𝑗 ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛  
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2.3.    Uncertainty theory 

Uncertainties arise from a variety of sources that can generally be categorized into uncertainties 

due to the nature of random phenomena and lack of knowledge or cognition. When there is not enough 

historic data, the experts’ opinions are applied. For handling belief degrees Liu introduced uncertainty 

theory in 2007 (Liu & Liu, 2007). He modeled experts’ opinions applying M as an m (Γ, L, M) with 

three axioms (normality, duality, and sub-additivity) is called an uncertainty space. 

Aiming to achieve a product uncertain measure on the product σ-algebra L, the Product Axiom 

was defined by Liu (Liu & Liu, 2007). In the following, some concepts of uncertainty theory are 

presented and some of its features are reviewed. 

Definition 4 :(Liu & Liu, 2007) Uncertain variable is a measurable function ξ from an uncertainty 

space (Γ,L,M) to the set of real numbers such that 

{ξ∈B} ={ 𝛾 ∈ 𝛤 | ξ (𝛾) ∈ B} 

is an event for any Borel set B of real numbers? 

The uncertainty distribution ϕ of an uncertain variable ξ is defined as 

ϕ(x) = M {ξ ≤ x}, ∀x ∈ R 

which is said to be regular if it is a continuous function and strictly increasing with respect to 

x at which 0 <ϕ(x) < 1, lim
𝑥→−∞

𝜙(𝑥) = 0  and lim
𝑥→∞

𝜙(𝑥) = 1.In this case, the inverse uncertainty 

distribution of ξ is the invers function of ϕ and is shown by 𝜙−1(𝛼). When ϕ is regular, the 

expected value of ξ is as follow: 

E [ ξ] = ∫  𝜙−1(𝛼)𝑑𝛼
1

0
 

There are different uncertainty distributions mentioned in the literature (Liu & Liu, 2007) . The 

following 

uncertainty distribution, for example, is called a linear uncertain variable. 

𝜓(𝑥) = {

0 ,                                 𝑥 < 𝑤
𝑥 − 𝑤

𝑣 − 𝑤
                     𝑤 ≤ 𝑥 ≤ 𝑣

1 ,                                   𝑥 ≥ 𝑣

 

where w and v are integers and w < v. 

The inverse uncertainty distribution and the expected value of a function of certain independent 

uncertain variables will be determined by using the following theorem. 

Theorem 2: (Liu, 2017) Let 𝜉1, 𝜉2, … , 𝜉𝑛 , be independent uncertain variables with regular uncertainty 

distributions 𝜙1, 𝜙2, … , 𝜙𝑛 , respectively. If f is strictly increasing with respect to 𝜉1, 𝜉2, … , 𝜉𝑚  and 

strictly decreasing with respect to𝜉𝑚+1, 𝜉𝑚+2, … , 𝜉𝑛  then 

(I) 𝜉 = f (𝜉1, 𝜉2, … , 𝜉𝑛) is an uncertain variable and its invers uncertainty distribution is as 

follow: 

 𝜙−1(𝛼) = 𝑓( 𝜙−1
1

(𝛼), … ,  𝜙−1
𝑚

(𝛼),  𝜙−1
𝑚+1

(1 − 𝛼), … ,  𝜙−1
𝑛

(1 − 𝛼)) 

 

(II) the uncertain variable 𝜉 = f (𝜉1, 𝜉2, … , 𝜉𝑛) has an expected value as follows: 

 [
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E[ξ]=∫ 𝑓(
1

0
 𝜙−1

1
(𝛼), … ,  𝜙−1

𝑚
(𝛼),  𝜙−1

𝑚+1
(1 − 𝛼), … ,  𝜙−1

𝑛
(1 − 𝛼))𝑑𝛼 

 

There are situations where the information should be determined by expert opinion. Uncertain 

theory can be used to evaluate a system in these circumstances. 

 

3. Uncertain two-stage network Inv DEA model 

In this section we propose Uncertain Network Inv DEA model in which inputs and outputs are 

based on expert opinion. Suppose 𝐷𝑀𝑈𝑗 (𝑗 = 1,2, . . . , 𝑛)  stage 1 consumes m inputs, 𝑋̌𝑗 =

 (𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑚𝑗) , and produces t outputs, 𝑍̌𝑗 =   (𝑧1𝑗, 𝑧2𝑗, . . . , 𝑧𝑡𝑗) ,which are called intermediate 

measures. Afterward, these t intermediate measures are treated as inputs in stage 2, which produces s 

desirable outputs, 𝑌̌𝑗
𝐷 =   (𝑦1𝑗

𝐷 , 𝑦2𝑗
𝐷 , . . . , 𝑦𝑠𝑗

𝐷 )  , and h undesirable outputs, 𝑌̌𝑗
𝑁𝐷 =

 (𝑦1𝑗
𝑁𝐷, 𝑦2𝑗

𝑁𝐷, . . . , 𝑦ℎ′𝑗
𝑁𝐷) . To assess the relative efficiency of 𝐷𝑀𝑈𝑘 𝑘 ∈ {1,2, . . . , 𝑛}  under CRS 

technology the following model is considered: 

 

𝑚𝑖𝑛   𝜃𝑘 

𝑠. 𝑡.  ∑ 𝜆𝑗

𝑛

𝑗=1

𝐸(𝑥𝑖𝑗) − 𝜃𝑘𝐸(𝑥𝑖𝑘)  ≤ 0 , 𝑖 = 1,2, … , 𝑚 

         - ∑ 𝜆𝑗
𝑛
𝑗=1 𝐸(𝑧̌𝑑𝑗) + 𝐸(𝑧̌𝑑𝑘) ≤ 0, 𝑑 = 1,2, . . . , 𝑡   

          ∑ 𝜇𝑗
𝑛
𝑗=1 𝐸(𝑧̌𝑑𝑗) − 𝐸(𝑧̌𝑑𝑘) ≤ 0, 𝑑 = 1,2, . . . , 𝑡 

    − ∑ 𝜇𝑗

𝑛

𝑗=1

𝐸(𝑦̌𝑟𝑗
𝐷 ) + 𝐸(𝑦̌𝑟𝑘

𝐷 )   ≤ 0 ,  𝑟 = 1,2, . . . , 𝑠 

        ∑ 𝜇𝑗

𝑛

𝑗=1

𝐸(𝑦̌
𝑟′𝑗
𝑁𝐷) − 𝐸(𝑦̌

𝑟′𝑘
𝑁𝐷)  ≤ 0 , 𝑟′ = 1,2, . . . , ℎ         (5) 

          𝜆𝑗 ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛 

Traditional Network InvDEA models cannot provide accurate results. to address this gap in the 

literature, an Uncertain Network InvDEA (UNInvDEA) model will be introduced in the following 

section. Model 5 is an uncertain model. To make Model 5 deterministic, the Theorem 3 is introduced 

in the following manner. 

 

Theorem3: suppose  𝑋̌𝑗 =   (𝑥1𝑗, 𝑥2𝑗, … , 𝑥𝑚𝑗) , 𝑍̌𝑗 = (𝑧̌1𝑗, 𝑧̌2𝑗, … , 𝑧̌𝑡𝑗)   

, 𝑌̌𝑗
𝐷 (𝑦̌1𝑗

𝐷 , 𝑦̌2𝑗
𝐷 , … , 𝑦̌𝑠𝑗

𝐷 ) , 𝑎𝑛𝑑 𝑌̌𝑗
𝑁𝐷 =   (𝑦̌1𝑗

𝑁𝐷, 𝑦̌2𝑗
𝑁𝐷 , … , 𝑦̌ℎ′𝑗

𝑁𝐷) are independent uncertain input, 

intermediate ,desirable output, and undesirable output variables respectively with regular distribution  

𝜙𝑗 =   (𝜑1𝑗, 𝜑2𝑗, … , 𝜑𝑚𝑗)   , 𝛧𝑗 =   (𝜉1𝑗, 𝜉2𝑗, … , 𝜉𝑡𝑗)  , 𝛹𝑗 =   (𝜓1𝑗, 𝜓2𝑗, … , 𝜓𝑠𝑗), 𝑎𝑛𝑑 𝛤𝑗 =

 (𝛾1𝑗, 𝛾2𝑗, . . . , 𝛾ℎ𝑗) for inputs, intermediate, desirable outputs, and undesirable outputs. The crisp form 

of Model 5 is as follow. 
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𝑚𝑖𝑛   𝜃𝑘 

𝑠. 𝑡.  ∫ [
1

0

∑ 𝜆𝑗

𝑛

𝑗=1

𝜑𝑖𝑗
−1(𝛼) − 𝜃𝑘 𝜑𝑖𝑘

−1(1 − 𝛼)]𝑑𝛼 ≤ 0 , 𝑖 = 1,2, … , 𝑚 

        ∫ [
1

0
 - ∑ 𝜆𝑗

𝑛
𝑗=1 𝑧𝑑𝑗

−1(1 − 𝛼) + 𝜉𝑑𝑘
−1(𝛼)]𝑑𝛼 ≤ 0, 𝑑 = 1,2, . . . , 𝑡   

          ∫ [
1

0
∑ 𝜇𝑗𝑧𝑑𝑗

−1𝑛
𝑗=1 (𝛼) − 𝜉𝑑𝑘

−1(1 − 𝛼)]𝑑𝛼 ≤ 0, 𝑑 = 1,2, . . . , 𝑡 

    ∫ [
1

0

− ∑ 𝜇𝑗

𝑛

𝑗=1

𝜓𝑟𝑗
−1(1 − 𝛼) + 𝜓𝑟𝑘

−1(𝛼)]𝑑𝛼  ≤ 0  , 𝑟 = 1,2, . . . , 𝑠 

    ∫ [
1

0

∑ 𝜇𝑗𝛾𝑟′𝑗
−1(𝛼)

𝑛

𝑗=1

− 𝛾𝑟′𝑘
−1(1 − 𝛼)]𝑑𝛼  ≤ 0 , 𝑟′ = 1,2, . . . , ℎ         (6) 

            𝜆𝑗 ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛 

Proof: see (Pourmahmoud & Bagheri, 2021). 

 

Now if the two-stage system 𝐷𝑀𝑈𝑘 𝑘 ∈ {1,2, . . . , 𝑛} perturbs its uncertain desirable Outputs  𝑦𝑘
𝐷 

to  𝛽̌𝑘
𝐷 = 𝑦̌𝑘

𝐷 + ∆𝑦̌𝑘
𝐷  and uncertain undesirable outputs 𝑦̌𝑘

𝑁𝐷  to  𝛽̌𝑘
𝑁𝐷 = 𝑦̌𝑘

𝑁𝐷 + ∆𝑦̌𝑘
𝑁𝐷 . The InvDEA 

models determine the uncertain input level and intermediate measures required to maintain the 

previous efficiency despite the mentioned perturbation. the Uncertain Network MOLP (UNMOLP) 

problem is proposed as a multi-objective problem as follows: 

 

𝑚𝑖𝑛   𝐸(𝛼̌1𝑘 , 𝛼̌2𝑘, … , 𝛼̌𝑚𝑘) = 𝐸(𝑥1𝑘 + ∆𝑥̌1, 𝑥2𝑘 + ∆𝑥̌2, … , 𝑥𝑚𝑘 + ∆𝑥̌𝑚) 

𝑠. 𝑡.  𝐸(∑ 𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

− 𝜃𝑘
∗𝛼̌𝑖𝑘) ≤ 0, 𝑖 = 1,2, … , 𝑚 

                                       E( − ∑ 𝜆𝑗
𝑛
𝑗=1 𝑧̌𝑑𝑗 + 𝛾𝑖𝑘) ≤ 0, 𝑑 = 1,2, . . . , 𝑡   

                                        E(∑ 𝜇𝑗
𝑛
𝑗=1 𝑧̌𝑑𝑗 − 𝛾𝑖𝑘) ≤ 0, 𝑑 = 1,2, . . . , 𝑡 

                                      𝐸 (− ∑ 𝜇𝑗

𝑛

𝑗=1

𝑦̌𝑟𝑗
𝐷 + 𝛽̌𝑟𝑘

𝐷 ) ≤ 0   , 𝑟 = 1,2, . . . , 𝑠 

                                     𝐸(∑ 𝜇𝑗

𝑛

𝑗=1

𝑦̌
𝑟′𝑗
𝑁𝐷 − 𝛽̌

𝑟′𝑘
𝑁𝐷 ) ≤ 0, 𝑟′ = 1,2, . . . , ℎ                (7) 

                                        𝜆𝑗 ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛  

Assume that all inputs are priced, and the weights are specified values. If 𝑤𝑖 is the weight for the i-th 

input the weighted sum model is proposed as follow: 

 

                                               𝑚𝑖𝑛   𝐸(∑ 𝑤𝑖
𝑚
𝑖=1 𝛼̌𝑖) 

𝑠. 𝑡.  𝐸(∑ 𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

− 𝜃𝑘
∗𝛼̌𝑖𝑘) ≤ 0, 𝑖 = 1,2, … , 𝑚 

 [
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                                       E( − ∑ 𝜆𝑗
𝑛
𝑗=1 𝑧̌𝑑𝑗 + 𝛾𝑖𝑘) ≤ 0, 𝑑 = 1,2, . . . , 𝑡   

                                        E(∑ 𝜇𝑗
𝑛
𝑗=1 𝑧̌𝑑𝑗 − 𝛾𝑖𝑘) ≤ 0, 𝑑 = 1,2, . . . , 𝑡 

                                      𝐸 ( − ∑ 𝜇𝑗

𝑛

𝑗=1

𝑦̌𝑟𝑗
𝐷 + 𝛽̌𝑟𝑘

𝐷 ) ≤ 0 ,  𝑟 = 1,2, . . . , 𝑠 

                                     𝐸(∑ 𝜇𝑗

𝑛

𝑗=1

𝑦̌
𝑟′𝑗
𝑁𝐷 − 𝛽̌

𝑟′𝑘
𝑁𝐷 ) ≤ 0, 𝑟′ = 1,2, . . . , ℎ                (8) 

                                       𝜆𝑗 ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛  

 
Model 8 is nondeterminate. To obtain a deterministic representation of the model, the following 

theorem is proposed proposition. 

 

Theorem4: suppose  𝑋̌𝑗 =   (𝑥1𝑗, 𝑥2𝑗, … , 𝑥𝑚𝑗)  , 𝑍̌𝑗 =   (𝑧̌1𝑗, 𝑧̌2𝑗, … , 𝑧̌𝑡𝑗)  , 𝑌̌𝑗
𝐷 =

(𝑦̌1𝑗
𝐷 , 𝑦̌2𝑗

𝐷 , … , 𝑦̌𝑠𝑗
𝐷 ) , 𝑌̌𝑗

𝑁𝐷 =   (𝑦̌1𝑗
𝑁𝐷, 𝑦̌2𝑗

𝑁𝐷, … , 𝑦̌ℎ′𝑗
𝑁𝐷) , 𝛼̌𝑘 =   (𝛼̌1𝑘 , 𝛼̌2𝑘, … , 𝛼̌𝑚𝑘), 𝑎𝑛𝑑 𝛽̌𝑘 =

 (𝛽̌1𝑘, 𝛽̌2𝑘, . . . , 𝛽̌𝑚𝑘)  are independent uncertain input, uncertain intermediate ,uncertain desirable 

output, uncertain  undesirable output variables , increasing the level of uncertain inputs, and 

increasing the level of  uncertain outputs respectively with regular distribution 𝜙𝑗 =

 (𝜑1𝑗, 𝜑2𝑗, … , 𝜑𝑚𝑗)   , 𝛧𝑗 =   (𝜉1𝑗, 𝜉2𝑗, … , 𝜉𝑡𝑗)  , 𝛹𝑗 = (𝜓1𝑗, 𝜓2𝑗, … , 𝜓𝑠𝑗), 𝛤𝑗 =

 (𝛾1𝑗, 𝛾2𝑗, . . . , 𝛾ℎ𝑗), 𝛶𝑘 =   (𝜐1𝑘, 𝜐2𝑘, . . . , 𝜐𝑚𝑘) , and 𝛨𝑘 =   (𝜂1𝑘 , 𝜂2𝑘, . . . , 𝜂𝑠𝑘) . The equivalent of 

Model 8 is as follow: 

 
 

𝑚𝑖𝑛   ∫ [∑ 𝑤𝑖

𝑚

𝑖=1

1

0

𝜐𝑖𝑘
−1(𝛼)]dα 

𝑠. 𝑡.  ∫ [
1

0

∑ 𝜆𝑗

𝑛

𝑗=1

𝜑𝑖𝑗
−1(𝛼) −  𝜃𝑘

∗𝜐𝑖𝑘
−1(1 − 𝛼)]𝑑𝛼 ≤ 0 , 𝑖 = 1,2, … , 𝑚 

        ∫ [
1

0
 - ∑ 𝜆𝑗

𝑛
𝑗=1 𝜉𝑑𝑗

−1(1 − 𝛼) + 𝜉𝑑𝑘
−1(𝛼)]𝑑𝛼 ≤ 0, 𝑑 = 1,2, . . . , 𝑡   

          ∫ [
1

0
∑ 𝜇𝑗𝜉𝑑𝑗

−1𝑛
𝑗=1 (𝛼) − 𝜉𝑑𝑘

−1(1 − 𝛼)]𝑑𝛼 ≤ 0, 𝑑 = 1,2, … , 𝑡 

    ∫ [
1

0

− ∑ 𝜇𝑗

𝑛

𝑗=1

𝜓𝑟𝑗
−1(1 − 𝛼) + 𝜂𝑟𝑘

−1(𝛼)]𝑑𝛼  ≤ 0 ,  𝑟 = 1,2, … , 𝑠 

    ∫ [
1

0

∑ 𝜇𝑗𝛾𝑟′𝑗
−1(𝛼)

𝑛

𝑗=1

− 𝜂𝑟′𝑘
−1(1 − 𝛼)]𝑑𝛼  ≤ 0 , 𝑟′ = 1,2, … , ℎ              (9) 

     𝜆𝑗 ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛 

Proof: Consider the following relationships: 

 

  𝑓1(𝛼̃𝑖) = ∑ 𝑤𝑖
𝑚
𝑖=1 𝛼̃𝑖                                                                                                                      (10) 

𝑓2(𝜆𝑗, 𝑥̃𝑖𝑗 , 𝛼̃𝑖) = ∑ 𝜆𝑗𝑥̃𝑖𝑗
𝑛
𝑗=1 − 𝜃𝑘

∗𝛼̃𝑖                                                                                                (11) 
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𝑓3(𝜆𝑗, 𝑧̃𝑑𝑗, 𝛾̃𝑖𝑘) = − ∑ 𝜆𝑗𝑧̃𝑑𝑗
𝑛
𝑗=1 + 𝛾̃𝑖𝑘                                                                                                                     (12)        

𝑓4(𝜇𝑗, 𝑧̃𝑑𝑗, 𝛾̃𝑖𝑘) = ∑ 𝜇𝑗𝑧̃𝑑𝑗
𝑛
𝑗=1 + 𝛾̃𝑖𝑘                                                                                             (13)     

𝑓5(𝜇𝑗, 𝑦̃𝑟𝑗
𝐷 , 𝛽̃𝑟𝑘) = − ∑ 𝜇𝑗𝑦̃𝑟𝑗

𝐷𝑛
𝑗=1 + 𝛽̃𝑟𝑘

𝐷                                                                                        (14)   

𝑓6(𝜇𝑗, 𝑦̃
𝑟′𝑗
𝑁𝐷 , 𝑦̃

𝑟′𝑘
𝑁𝐷) = ∑ 𝜇𝑗

𝑛
𝑗=1 𝑦̃

𝑟′𝑗
𝑁𝐷 − 𝛽̃

𝑟′𝑘
𝑁𝐷                                                                                     (15) 

According to the initial section of Theorem 2, the inverse uncertainty distributions of the uncertain 

variables mentioned above are as follows: 

𝑓1
−1(𝛼) = ∑ 𝑤𝑖

𝑚
𝑖=1 𝜐𝑖𝑘

−1(𝛼)                                                                                                                (16)    

 𝑓2
−1(𝛼) = ∑ 𝜆𝑗𝜙𝑖𝑗

−1(𝛼)𝑛
𝑗=1 − 𝜃𝑘

∗𝜐𝑖𝑘
−1(1 − 𝛼)                                                                                 (17)      

 18)     )                                                                          - ∑ 𝜆𝑗
𝑛
𝑗=1 𝜉𝑑𝑗

−1(1 − 𝛼) + 𝜉𝑑𝑘
−1(𝛼)  =𝑓3

−1(𝛼) 

𝑓4
−1(𝛼) = ∑ 𝜇𝑗𝜉𝑑𝑗

−1𝑛
𝑗=1 (𝛼) − 𝜉𝑑𝑘

−1(1 − 𝛼)                                                                                        (19)    

 𝑓5
−1(𝛼) = − ∑ 𝜇𝑗𝜓𝑟𝑗

−1𝑛
𝑗=1 (1 − 𝛼) + 𝜁𝑟𝑘

−1(𝛼)                                                                       (20)        

𝑓6
−1(𝛼) = ∑ 𝜇𝑗𝛾𝑟′𝑗

−1(𝛼)

𝑛

𝑗=1

− 𝜂𝑟′𝑘
−1(1 − 𝛼)                                                                                         (21) 

 

Furthermore, based on the latter part of Theorem 2 we can consider the following relationships: 

1
1

1
0

1

( ) ( )
m

i ik

i

E f w d  −

=

 
=  

 
                                                                                                 (22)        

𝐸(𝑓2) = ∫ [∑ 𝜆𝑗𝜙𝑖𝑗
−1(𝛼)

𝑛

𝑗=1

− 𝜃𝑘
∗𝜐𝑖𝑘

−1(1 − 𝛼)]
1

0

𝑑𝛼 𝑖 = 1,2, … , 𝑚                                              (23) 

𝐸(𝑓3) = ∫ [− ∑ 𝜆𝑗
𝑛
𝑗=1 𝜉𝑑𝑗

−1(1 − 𝛼) + 𝜉𝑑𝑘
−1(𝛼)]

1

0
𝑑𝛼 𝑑 = 1,2, . . . , t                                 (24)        

𝐸(𝑓4) = ∫ [∑ 𝜇𝑗𝜉𝑑𝑗
−1𝑛

𝑗=1 (𝛼) − 𝜉𝑑𝑘
−1(1 − 𝛼)]

1

0
𝑑𝛼 𝑑 = 1,2, . . . , 𝑡                                     (25)          

𝐸(𝑓5) = ∫ [− ∑ 𝜇𝑗𝜓𝑟𝑗
−1

𝑛

𝑗=1

(1 − 𝛼) + 𝜁𝑟𝑘
−1(𝛼))]

1

0

𝑑𝛼 𝑟 = 1,2, . . . , 𝑠                                             (26) 

𝐸(𝑓6) = ∫ [∑ 𝜇𝑗

𝑛

𝑗=1

𝛾𝑟′𝑗
−1(𝛼) − 𝛾𝑟′𝑘

−1 (1 − 𝛼)]
1

0

𝑑𝛼  𝑟′ = 1,2, . . . , 𝑠′                                                   (27) 
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Therefore, Model 9 is the equivalent crisp form of Model 8. 

Definition 5. Suppose that (𝛼𝑖𝑘
∗ , 𝜆𝑗

∗, 𝜇𝑗
∗, 𝛾𝑖𝑘

∗ ) is a feasible solution model (8). If there is no feasible 

solution (𝛼̅𝑖𝑘 , 𝜆̅𝑗, 𝜇̅𝑗, 𝛾̅𝑖𝑘) such that 𝛼̅𝑖𝑘 <   𝛼𝑖𝑘
∗      for i=1,2,…,m in model (8),then   (𝛼𝑖𝑘

∗ , 𝜆𝑗
∗, 𝜇𝑗

∗, 𝛾𝑖𝑘
∗ )         

is a weak pareto optimal solution for model (8). 

We then check whether the efficiency of the perturbed 𝐷𝑀𝑈𝑘is consistent with that of the initial 

𝐷𝑀𝑈𝑘. Suppose that 𝐷𝑀𝑈𝑘+1 represents the perturbed 𝐷𝑀𝑈𝑘. The efficiency of 𝐷𝑀𝑈𝑘+1  can be 

estimated by the following model. 

 

 Min  𝜃𝑘 

          𝑠. 𝑡.  𝐸[∑ 𝜆𝑗𝑥𝑖𝑗 + 𝜆𝑛+1𝛼𝑖𝑘
𝑛
𝑗=1 − 𝜃𝑘𝛼𝑖𝑘  ] ≤ 0 , 𝑖 = 1,2, … , 𝑚                            

          E[-  ∑ 𝜆𝑗
𝑛
𝑗=1 𝑧𝑑𝑗 − 𝜆𝑛+1𝛾𝑖𝑘 + 𝛾𝑖𝑘] ≤ 0, 𝑑 = 1,2, . . . , 𝑡   

          E[ ∑ 𝜇𝑗
𝑛
𝑗=1 𝑧𝑑𝑗 + 𝜇𝑛+1𝛾𝑖𝑘 − 𝛾𝑖𝑘] ≤ 0, 𝑑 = 1,2, . . . , 𝑡 

      𝐸 [− ∑ 𝜇𝑗

𝑛

𝑗=1

𝑦𝑟𝑗
𝐷 − 𝜇𝑛+1𝛽𝑟𝑘

𝐷 + 𝛽𝑟𝑘
𝐷  ] ≤ 0   , 𝑟 = 1,2, . . . , 𝑠 

      𝐸 [ ∑ 𝜇𝑗

𝑛

𝑗=1

𝑦𝑟′𝑗
𝑁𝐷 + 𝜇𝑛+1𝛽𝑟′𝑘

𝑁𝐷 − 𝛽𝑟′𝑘
𝑁𝐷] ≤ 0  , 𝑟′

= 1,2, . . . , ℎ                            (28) 
         𝜆𝑗 ≥ 0, 𝜇𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛 + 1 

 

Model 28 is also nondeterminate. To obtain a deterministic representation of the model similar to 

the previous model, it can be derived. 

 

Theorem 5. Suppose that 𝜃𝑘
∗ is the optimal efficiency of model (5) for 𝐷𝑀𝑈𝑘, that the desirable 

outputs increase from  𝑦𝑟𝑘
𝐷  to  𝛽̌𝑟𝑘

𝐷 = 𝑦̌𝑟𝑘
𝐷 + ∆𝑦̌𝑟𝑘

𝐷  (∆𝑦̌𝑟𝑘
𝐷 ≥0 and∆𝑦̌𝑟𝑘

𝐷 ≠ 0), and that the undesirable 

outputs increase from 𝑦𝑟′𝑘
𝑁𝐷 to  𝛽𝑟′𝑘

𝑁𝐷= 𝑦𝑟′𝑘
𝑁𝐷 + ∆𝑦𝑟′𝑘

𝑁𝐷 ( ∆𝑦𝑟′𝑘
𝑁𝐷 ≥0 and ∆𝑦𝑟′𝑘

𝑁𝐷 ≠0). If (𝛼𝑖𝑘
∗ , 𝜆𝑗

∗, 𝜇𝑗
∗, 𝛾𝑖𝑘

∗ ) is 

a weak Pareto optimal solution of the MOLP model (8), then the optimal value of model (28) is 

also 𝜃𝑘
∗ . 

Proof: see (An et al., 2019). 

 

4. Application 

 
In COVID-19 pandemic, probabilistic statistics may be unable to perform correctly because there 

have not been any similar circumstances. we applied our model to assess the performance of 

healthcare systems during COVID-19 outbreak. In this section uses the developed model to evaluate 

the efficiency of 30 hospital from Iran, considering deaths of patients as an uncertain undesirable 

output. The data is given in Table 1. The number of operational bed and the number of physicians is 

two indicators which are considered as inputs, patients under treatment as an intermediate product. 

The output can be divided into desirable and undesirable outputs desirable outputs treated patients, 

while undesirable outputs include deaths of patients. 
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Table 1.the data of hospital from Iran 

hospitals 

 

The number 

of operational 

bed(x1) 

The number 

of specialist 

doctor(x2) 

Patients 

under 

treatment (𝑧1) 

Treated 

patients 

(𝑦1
𝐷) 

deaths of 

patients 

(𝑦1
𝑁𝐷) 

1 45 90 820 740 15 

2 38 70 590 530 11 

3 50 100 900 860 7 

4 30 60 480 420 13 

5 60 110 1000 940 10 

6 42 95 780 700 13 

7 35 80 640 590 11 

8 47 85 820 770 9 

9 39 75 620 570 13 

10 55 105 970 900 10 

11 33 65 510 460 16 

12 41 90 750 710 10 

13 48 92 840 790 8 

14 36 68 580 530 12 

15 52 108 960 910 7 

16 40 88 730 690 10 

17 46 100 880 820 9 

18 34 72 600 550 12 

19 37 78 610 570 11 

20 49 98 890 840 8 

21 43 96 770 720 14 

22 32 62 500 450 14 

23 44 94 760 710 10 

24 50 102 950 900 7 

25 38 77 620 580 11 

26 45 97 800 750 9 
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27 36 66 560 510 13 

28 53 106 980 930 8 

29 39 79 630 590 11 

30 40 85 770 710 11 

 

deaths of patients is an uncertain variable that should be determined by experts’ opinions. This study 

uses uncertainty theory to apply experts’ opinions and determine this index. We assume that the 

deaths of patients’ index is an uncertain variable with a linear distribution, when the exact form of 

the uncertain distribution is unknown, the linear uncertain distribution is a standard and widely 

adopted choice in liu's theory. This distribution satisfies the least informative principle and allows the 

expected values of uncertain variables to be derived in closed form, there by preserving the linearity 

and tractability of the proposed models. expert opinions were collected using structured 

questionnaires and/or individual interviews. each expert provided the minimum and maximum 

credible values for each variable, along with their associated belief degrees. A panel of experts with 

comparable expertise was consulted, and the individual belief degrees were aggregated using the 

arithmetic mean to obtain the final uncertain parameters. 

 the endpoints of the uncertain variables can be approximated by ±3 standard deviations around 

the mean value when historical data are available. This approach provides a practical and widely 

accepted method to define credible bounds for uncertain inputs and outputs. In all cases, the intervals 

represent belief-based uncertainty in the sense of Liu’s uncertainty theory, not probabilistic 

confidence intervals. 

 The result is shown in Table 2. We initially evaluate the performance of the 30 hospitals, whose 

data are presented in Table 3, by using the black box model and two-stage model. 

 

Table 2. the uncertain data with linear distribution 

 

hospitals 

 

The number of 

operational 

bed(x1) 

The number 

of specialist 

doctor(x2) 

Patients under 

treatment (𝑧1) 

Treated 

patients (𝑦1
𝐷) 

 

deaths of 

patients (𝑦1
𝑁𝐷) 

1 45 90 820 740 L[12,18] 

2 38 70 590 530 L[8,15] 

3 50 100 900 860 L[5,10] 

4 30 60 480 420 L[10,17] 

5 60 110 1000 940 L[7,13] 

6 42 95 780 700 L[11,16] 

7 35 80 640 590 L[9,14] 

8 47 85 820 770 L[6,12] 
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9 39 75 620 570 L[10,16] 

10 55 105 970 900 L[8,13] 

11 33 65 510 460 L[13,19] 

12 41 90 750 710 L[7,13] 

13 48 92 840 790 L[6,11] 

14 36 68 580 530 L[9,15] 

15 52 108 960 910 L[5,10] 

16 40 88 730 690 L[8,13] 

17 46 100 880 820 L[6,12] 

18 34 72 600 550 L[10,15] 

19 37 78 610 570 L[9,14] 

20 49 98 890 840 L[6,11] 

21 43 96 770 720 L[11,17] 

22 32 62 500 450 L[11,17] 

23 44 94 760 710 L[8,13] 

24 50 102 950 900 L[5,9] 

25 38 77 620 580 L[9,14] 

26 45 97 800 750 L[7,12] 

27 36 66 560 510 L[10,16] 

28 53 106 980 930 L[6,10] 

29 39 79 630 590 L[8,14] 

30 40 85 770 710 L[9,14] 

 

Table 3. The results of black box model and two stage model 

DMU Black box model efficiency Two-stage model efficiency 

Classic model Uncertain model Classic model  Uncertain model 

1 0.9531 0.8605 0.9404 0.9200 

2 1.000 1.000 0.8078 0.8078 

3 0.9467 0.9560 0.9067 0.8530 
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4 0.5932 0.5360 0.4820 0.4320 

5 1.000 1.000 1.000 0.7990 

6 0.9745 0.7982 0.8773 0.8355 

7 1.000 1.000 1.000 1.000 

8 1.000 1.000 1.000 1.000 

9 0.8959 0.7498 0.7164 0.7164 

10 0.9947 0.9333 0.9046 0.8045 

11 1.000 0.5936 0.4554 0.4554 

12 0.9735 0.9725 0.8405 0.8344 

13 0.9311 0.9157 0.9047 0.8820 

14 0.9702 0.9374 0.9188 0.9188 

15 0.9600 0.9541 0.9556 0.8330 

16 0.9788 0.9774 0.8455 0.8441 

17 1.000 0.9889 0.8928 0.8628 

18 1.000 1.000 0.9987 0.9987 

19 0.7312 0.7260 0.6382 0.6382 

20 0.9341 0.9312 0.9281 0.8766 

21 1.000 0.8090 0.8126 0.7549 

22 0.9951 0.9905 0.7274 0.7274 

23 0.7753 0.7743 0.7052 0.7052 

24 1.000 1.000 0.9417 0.9217 

25 0.7875 0.7705 0.6809 0.6809 

26 0.8239 0.8454 0.7761 0.7434 

27 1.000 1.000 0.9763 0.9763 

28 1.000 0.9383 0.8832 0.8832 

29 0.7648 0.7298 0.6506 0.6506 

30 1.000 1.000 1.000 1.000 

 

First, the number of efficient DMUs identified by the black box classic model is 12, which is far 

greater than the number obtained by the two-stage classic model (4 DUM is efficient). This finding 

indicates that the discernment of the black box classical model is not as good as that of the two-stage 

classic model. Therefore, adopting the two-stage classical model to evaluate the efficiency of DMUs 

can obtain more authentic results that help the InvDEA model produce highly reasonable 
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recommendations. second, by comparing the results, the efficiency of DMUs in the black box 

uncertain model is better than in the two-stage uncertain model. we aim to explore the relationship 

between inputs-intermedia, desirable output, undesirable output, and efficiency. It is crucial to note 

that achieving deaths of patients’ reduction may not be feasible in the short term. Therefore, we 

explore two scenarios for deaths of patients’ reduction. we increase the desirable and undesirable 

outputs by different percentages, with the percentage increase of desirable outputs higher than that of 

undesirable outputs. This target is more favored by DMUs given that people always expect to increase 

the desirable outputs as much as possible while minimizing the increase in the undesirable outputs. 

Therefore, we increase the desirable outputs by 15% and the undesirable outputs by 10% and 5%, to 

compare the efficiency in the classical two-stage network model and the uncertain two-stage network 

model. 

Scenarios1: We increase desirable outputs by 15% and undesirable outputs by 10 % and analyze 

the new resource plans. We assume that the weight of each input is 1. Table3 reports the new number 

of inputs and the net percentage increase. The comparison of the results indicates increase in output 

requires increased inputs of all hospital in both models. According to the result, DMU5 is the most 

demanding hospital in the classical model. However, DMU12 is the most demanding hospital 

regarding the uncertain model. On the other hand, in the classical model, DMUs 22 and 11 are the 

least demanding hospital, with an average increase of approximately 0.16 percent while in the 

uncertain model, DMUs 2 and 27 are the least demanding hospitals, with an average increase of 

approximately 0.21 percent. 

Scenarios2: The amount for increasing the desirable outputs by 15% and undesirable outputs by 

5% is shown in Table 4. DMU5 is the most demanding hospital in the classical model. However, 

DMU11 is the most demanding hospital regarding the uncertain model. On the other hand, in the 

classical model, DMUs 22 and 27 are the least demanding hospital, with an average increase of 

approximately 0.20 percent while in the uncertain model, DMUs 4 and 27 are the least demanding 

hospitals, with an average increase of approximately 0.25 percent from the input–output perspective, 

with the same efficiency, having less outputs corresponds to having less inputs. Therefore, the new 

number of inputs in this scenario is less than that in scenario 1. Specifically, the resource amount of 

DMUs 6, 11,21 and 22 are equal or larger than those obtained in scenario 1, thereby suggesting that 

if these three DMUs want to minimize the increase in their undesirable outputs, they need to shoulder 

more costs compared with the other DMUs. Therefore, these DMUs must improve their technologies 

to save costs. 

 

Table 4.  the first scenario, expanding both outputs at different rates 

15 percent expanding desirable output and 

5 percent expanding undesirable output in 

classical model 

15 percent expanding desirable output and 

5 percent expanding undesirable output in 

uncertain model 

 𝜃 ∆𝑥 γ 𝜃 ∆𝑥 γ 

1 0.9404 0.7139 0.6530 0.9200 1.2668 0.6110 

2 0.8078 0.2209 0.2110 0.8078 0.4297 0.2161 

3 0.9067 0.7824 0.8070 0.8530 1.7507 0.8368 

4 0.4820 0.1724 0.1578 0.4320 0.2847 0.1087 

5 1.000 1.000 0.9856 0.7990 2.0323 0.9874 

6 0.8773 0.6566 0.5760 0.8355 1.2441 0.5357 

7 1.000 0.3479 0.3070 1.0001 0.5365 0.3285 
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8 1.000 0.5320 0.6530 1.000 1.0722 0.6677 

9 0.7164 0.3000 0.2690 0.7164 0.6670 0.2913 

10 0.9046 0.9772 0.8840 0.8045 1.8901 0.9121 

11 0.4554 0.1465 0.0572 0.4554 0.2990 0.0841 

12 0.8405 0.5222 0.5190 0.8344 1.2338 0.5543 

13 0.9047 0.7649 0.6920 0.8820 1.2813 0.7049 

14 0.9188 0.2446 0.1920 0.9188 0.3915 0.2161 

15 0.9556 0.9135 0.9230 0.8330 1.7903 0.9307 

16 0.8455 0.4800 0.4800 0.8441 1.1452 0.5172 

17 0.8928 0.6578 0.7690 0.8628 1.4419 0.7616 

18 0.9987 0.1948 0.2300 0.9987 0.4204 0.2542 

19 0.6382 0.3130 0.2500 0.6382 1.0949 0.2913 

20 0.9281 0.7365 0.7880 0.8766 1.4593 0.7987 

21 0.8126 0.7100 0.5770 0.7549 1.2214 0.5729 

22 0.7274 0.0612 0.0380 0.7274 1.3123 0.0655 

23 0.7052 0.7629 0.5380 0.7052 1.2659 0.5543 

24 0.9417 0.8400 0.9030 0.9217 1.5937 0.9121 

25 0.6809 0.3951 0.2690 0.6809 1.0001 0.3099 

26 0.7761 0.7382 0.6150 0.7434 1.3606 0.6296 

27 0.9763 0.1312 0.1530 0.9763 0.3085 0.1798 

28 0.8832 0.9357 0.9610 0.8832 1.7531 0.9878 

29 0.6506 0.4427 0.2880 0.6506 1.1067 0.3285 

30 1.000 0.5181  1.000 0.8956 0.5543 

 

Table 5. the second scenario, expanding both outputs at different rates 

15 percent expanding desirable output and 

10 percent expanding undesirable output 

in classical model 

15 percent expanding desirable output and 

10 percent expanding undesirable output 

in uncertain model 

 𝜃 ∆𝑥 γ 𝜃 ∆𝑥 γ 

1 0.9404 0.5598 0.6324 0.9200 1.2778 0.7479 

2 0.8078 0.2087 0.2728 0.8078 0.4497 0.3529 

3 0.9067 0.8900 0.8903 0.8530 1.9285 0.9706 

4 0.4820 0.1926 0.7057 0.4320 0.4625 0.2531 

5 1.000 0.8262 1.0090 0.7990 2.1301 0.1222 

6 0.8773 0.5246 0.5594 0.8355 1.2441 0.6726 
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7 1.000 0.2453 0.3754 1.000 0.5799 0.4653 

8 1.000 0.6530 0.7137 1.000 1.1253 0.8033 

9 0.7164 0.3000 0.3290 0.7164 0.7117 0.4282 

10 0.9046 0.9000 0.9414 0.8045 2.0131 1.0487 

11 0.4554 0.1048 0.1310 0.4554 0.7759 0.2209 

12 0.8405 0.5170 0.6022 0.8344 2.3277 0.6912 

13 0.9047 0.7649 0.7439 0.8820 1.3398 0.8392 

14 0.9188 0.1670 0.2681 0.9188 0.4625 0.3529 

15 0.9556 0.9079 0.9924 0.8330 1.9213 1.0645 

16 0.8455 0.4753 0.5656 0.8441 1.3609 0.6540 

17 0.8928 0.6578 0.7933 0.8628 1.4973 0.8963 

18 0.9987 0.1928 0.2990 0.9987 0.4689 0.3910 

19 0.6382 0.3130 0.3360 0.6382 1.1215 0.4282 

20 0.9281 0.7365 0.8524 0.8766 1.5044 0.9323 

21 0.8126 0.5673 0.5940 0.7549 1.2214 0.7097 

22 0.7274 0.0417 0.1254 0.7274 1.3123 0.2024 

23 0.7052 0.7629 0.5958 0.7052 1.3135 0.6912 

24 0.9417 0.9030 0.9837 0.9217 1.7733 1.0472 

25 0.6809 0.3156 0.3510 0.6809 2.2273 0.4468 

26 0.7761 0.6868 0.6698 0.7434 1.4132 0.7664 

27 0.9763 0.1252 0.2265 0.9763 0.3749 0.3158 

28 0.8832 0.9200 1.0209 0.8832 1.7976 1.0996 

29 0.6506 0.3706 0.3754 0.6506 2.0618 0.4653 

30 1.000 0.4450 0.5790 1.000 0.9250 0.6912 

 

5. Conclusion 

Effective resource allocation is essential for enhancing performance across industries. Inverse 

Data Envelopment Analysis offers a post-DEA sensitivity analysis tool designed to address such 

allocation challenges. Traditional InvDEA models typically assume deterministic inputs and outputs; 

however, in many practical scenarios, this assumption does not hold due to inherent data uncertainties. 

To address this limitation, we propose an uncertain Inv network DEA model that explicitly 

incorporates undesirable outputs, such as deaths of patients, and accommodates uncertainty by 

replacing uncertain variables with their expected values, as estimated by expert opinions. This 

substitution allows for the conversion of the nonlinear uncertain model into an equivalent linear form, 

making it computationally tractable using standard linear solvers. To demonstrate the applicability of 

this model, we conducted a case study assessing the efficiency of hospital of Iran while considering 

deaths of patients as an undesirable output. Deaths of patients was treated as an uncertain variable 

based on expert assessments. We analyzed two scenarios to create a gradual death of patient’s 
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reduction strategy for the hospital. Furthermore, sensitivity and uncertainty analyses performed on 

the expected-value model allow researchers to quantify the impact of uncertainty on efficiency results. 

Future research could explore alternative uncertainty-handling methods, such as confidence-level or 

robust optimization approaches, to achieve greater precision.it is also possible to use various solution 

methods to solve multi-objective problems, such as uncertain Goal Programming can be studied in 

future work. 
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