
Iranian Journal of Operations Research 
Vol. 3, No. 1, 2011, pp. 89-103 
 

 

A Genetic Algorithm for Choice-Based Network Revenue 
Management  

           F. Etebari1,*, A. Aaghaie2, F. Khoshalhan3 

 
In recent years, enriching traditional revenue management models by considering the customer choice 
behavior has been a main challenge for researchers. The terminology for the airline application is used 
as representative of the problem. A popular and an efficient model considering these behaviors is 
choice-based deterministic linear programming (CDLP). This model assumes that each customer 
belongs to a segment, which is characterized by a consideration set, which is a subset of the products 
provided by the firm that a customer views as options. Initial models consider a market segmentation, in 
which each customer belongs to one specific segment. In this case, the segments are defined by disjoint 
consideration sets of products. Recent models consider the extension of the CDLP to the general case of 
overlapping segments. The main difficulty, from a computational standpoint, in this approach is solving 
the CDLP efficiently by column generation. Indeed, it turns out that the column generation subproblem 
is difficult on its own. It has been shown that for the case of nonoverlapping segments, this can be done 
in polynomial time. For the more general case of overlapping segments, the column generation sub-
problem is NP-hard for which greedy heuristics are proposed for computing approximate solutions.  

       Here, we present a new approach to solve this problem by using a genetic algorithm and compare it 
with the column generation method. We comparatively investigate the effect of using the new approach 
for firm’s revenue.  

 
        Keywords: Customer choice-based revenue management, Choice-based deterministic linear   

programming (CDLP), Segmentation, Genetic algorithm, Airline application. 
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1. Introduction 
 
     Talluri and Van Ryzin [14] defined revenue management as demand management decisions and the 
methodologies and system required to make them. Quantity-based revenue management includes fixed 
and perishable capacity control during a specified period with objective of maximizing the obtained 
revenue. 
 
     Revenue management (RM) models were introduced by Little wood [12] who presented simple 
techniques to solve traditional revenue management models. He presented a solution approach to set a 
booking limit for the number of seats which should be assigned to low fares in airline networks. 
Traditionally, RM systems have been built upon the independent demand model assumption. This 
assumption views demand as a sequence of requests for products, which are insensitive to the capacity 
controls applied by the airline, and to market conditions like price offered by the competition, frequency 
of departures, brand preference of customers, etc. (for further details, see Talluri and Van Ryzin [14]). 
There is a wide agreement nowadays about the limitations of this assumption, based on the observation 
that the sale of a product is indeed the outcome of a customer’s purchase decision subject to market 
conditions.  
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Furthermore, the development of low-cost airlines offering simplified, undifferentiated fare structure, and 
their usual strategy of saturating a market with several flights during the day, have raised the interest in 
formally capturing customer choice behavior in RM systems.  
 
     The earlier work on the choice behavior in network is the passenger origin and destination simulator 
(PODS) studies of Belobaba and Hopperstand [1]. This work focused on understanding the revenue 
management implications of passenger choice behavior on traditional RM methods. Talluri and Van 
Ryzin [4] provided an exact analysis of the optimal control policy for a single leg RM model under a 
general discrete choice model of demand. Zhang and Cooper [19] analyzed choice among parallel flights 
in the same O-D (origin-destination) market. That model assumed that customers choose among the same 
fare class on different flights but not among fare classes. They developed bounds and approximations for 
the resulting dynamic program. 
 
     Cooper and Gupta [5] showed which models that ignore customer choice may lead to the policies that, 
when used repeatedly, drive revenue down, a phenomenon they call the “spiral-down effect”. Chen and 
Homem-de-Mell [4] assumed that each customer has a preference order to describe her behavior 
regarding the order of the classes for which she tries to purchase tickets. If the customer’s first choice is 
not available, she either tries her second choice or decides not to purchase anything and so on. They 
modeled each customer’s decision at each step, trying the next choice or leaving the system, as a 
Bernoulli random variable with known probability. 
 
     Gallego et al. [6] provided a customer choice-based deterministic linear programming model (CDLP) 
for network revenue management. They supposed that with a flexible product offering, the firm had the 
ability to provide customers alternative products to serve the same market’s demand. One limitation of 
their market demand model is that it does not allow for any kind of segmentation. Van Ryzin and Liu [9] 
used the analysis of the model provided by Gallego et al. [6] to extend the concept of efficient sets. They 
proved that when capacity and demand are scaled up proportionally, the revenue obtained under the 
choice-based deterministic linear programming problem converges to the optimal revenue under the exact 
formulation. They presented a market segmentation model to describe choice behavior. The segments are 
defined by disjoint consideration sets of products, where a consideration set is a subset of the products 
provided by the firm which customers view as options. Bront et al. [3] considered the CDLP model of 
Gallego et al. [8] and further work done by Van Ryzin and Liu [13]. They extended the model to a more 
general case, where customers can belong to more than one segment according to a Multinomial logit 
model. A new deterministic linear program was offered by Kunnukal and Topaloglu [10] for the network 
revenue management problem with customer choice behavior. They also used randomized linear 
programming in choice based revenue management [14]. Vulcano et al. [18] developed a maximum 
likelihood estimation algorithm in discrete choice models for airline revenue management. Meissner and 
Strauss [14] offered a new heuristic method for specifying bid prices. Regarding the large number of 
variables in a real-size network, they developed a column generation algorithm to solve the CDLP model. 
The subproblem of the column generation algorithm is formulated as a 0-1 fractional programming 
problem, where the sum of several ratios were to be maximized. Because of the NP-hardness of the 
problem, they proposed implementing a greedy heuristic to solve the subproblem in polynomial time. 
 
Ben-Akiva and Lerman[2] and Train [17] analyzed different discrete choice models. A comprehensive 
overview of discrete choice models and application of these models to the airline industry were provided 
by Garrow [17]. 
 
     Inspired by of Bront et al.’s results [3] the extended model of CDLP with overlapping segments are 
considered here. As mentioned, the subproblem of this program is NP-hard, and there is no known 
algorithm for finding a global optimal solution in polynomial time. We present a new metaheuristic 
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method with a good efficiency to overcome the complexity of the fractional linear programming 
subproblem. Of course, how to construct chromosomes and how to design highly efficient evolutionary 
operators, i.e., mutation and crossover, are crucial to a successful implementation of the GA. 
 
     The remainder of this paper is organized as follows. General structure of CDLP and its assumptions 
are described in Section 2. The proposed GA including the chromosomes structure and its operators is 
illustrated in Section 3. Extensive simulation study is reported in Section 4, and conclusions are given in 
Section 5. 
 
2. Choice-Based Revenue Management   
 
     There are two main challenges we are faced with in implementing a choice-based revenue 
management: 
 

 Modeling customer choice behavior and its estimation from available data. 
 Using revenue optimization methods that can deal with complex, choice-based models of 

demand. 
 
2.1. Customer Choice Model 
 
     To model customer choice behavior, we can assume that each customer wishes to maximize her utility 
while her utility for alternatives is a random variable. The firm is offering a set of alternatives 
C={1,2,…,m} for the customer n who has a choice (or consideration) set ܥ௡ with the utility ௜ܷ௡ for each 
alternative ݅ ∈  ௡. This utility, without loss of generality, can be decomposed into a deterministic (alsoܥ
called expected utility) denoted by ߴ௜௡ and a mean-zero random component ߝ௜௡. Hence, we have the 
utility function as follows: 

௜ܷ௡ = ௜௡ߴ + ௜௡ߝ . 
     In many cases, the representative component ߴ௜௡ is modeled as a linear combination of several 
attributes, 

௜௡ߴ = ௜௡ݔ்ߚ , 
where ߚ is an unknown vector of weights to be computed from data and ݔ௜௡ is the  vector of observable 
attributes for alternative ݅ available to customer ݊ at time of purchase, such as time and date of departure, 
price, departure airport, airline brand, and so on. 
A most commonly used model to study how customers make their choice is the multinomial logit (MNL) 
model [16]. In this model, it is assumed that the ߝ௜௡  in the utility functions are independent and 
identically-distributed random variables with a Gumbel distribution. The probability that customer n 
chooses alternative ݅ ∈  ௡ in an MNL model is given byܥ

௡ܲ(݅) = ௘ഁ
೅ೣ೔೙

∑ ௘ഁ೅ೣ೔೙ାଵೕച಴೙
 . 

Bront el al. [3] considered the CDLP model of Gallego et al. [6] and the work of Van Ryzin and Liu [13]. 
They extended the model to a more general case, where customers can belong to more than one segment 
according to the MNL model. 
 
2.2. Choice-Based Deterministic Linear Programming Model 
 
     In order to describe the problem and the corresponding model, we need some definitions: 
 

 Itinerary: A specific sequence of legs on which passengers travel from their origin to their 
ultimate destinations. 

 (1) 

 (2) 

(3) 
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 Fare classes: Different prices for the same travel service, usually distinguished from one another 
by the set of restrictions imposed by the firms. 

 Product: Generally defined by an itinerary and fare-class combination. 
 Consideration set: A subset of products provided by the firm that a customer views as an option. 
 Segment: Customers, based on their preferences, are divided to different segments with each 

segment being defined by a consideration set of products.  
 
     The objective should be to find the set of alternative products for firms to decide to offer to customers 
at the time of the decision. The prices are fixed and the firm aims to maximize its revenue. 
 
To define our model, consider a network with m resources (legs) providing n products. The set 
N={1,2,…,n} denotes the set of products and ݎ௝ is the associated revenue (fare) for product 	݆ ∈ ܰ. We 
study capacity usage by defining the vector ܿ = {ܿଵ,ܿଶ, … , ܿ௠} to denoteing the initial capacities of 
resources (legs). Resource usage according to the corresponding product is presented by defining an 
incidence matrix ܣ = [ܽ௜௝] ∈  ௠×௡. The matrix entries are defined byܤ
 

ܽ௜௝ = ൜1,			݂݅	݁ܿݎݑ݋ݏ݁ݎ	݅	ݏ݅	݀݁ݏݑ	ݕܾ	ݐܿݑ݀݋ݎ݌	݆
 																																					.݁ݏ݅ݓݎℎ݁ݐ݋													,0

 
݅ ௝, the ݆th column of A, denotes the incidence vector for product ݆ and notationܣ ∈  ௝ indicates thatܣ
product j uses resource ݅. Note that one product can use more than one resource. Time has discrete 
periods and runs forward until a finite number T, and it is assumed that we have at most one arrival for 
each period of time and each customer can buy only a single product. 
 
     We divide customers into ܮ different segments. A consideration set ܥ௟, ݈ = 1,2, … ,  is used to ,ܮ
describe each segment. Here, we can make the difference of this model clearer with the existing works on 
customer choice-based modeling. Gallego et al. [6] considered a unique segment ܥଵ = ܰ and unlike Van 
Ryzin and Liu’s approach [13], we can have overlapping segments, that is, ܥ௟ ∩ ′௟ܥ ≠ ∅, for certain ݈ ≠ ݈′. 
 
If we have one arrival, ݌௟ represents the probability that an arriving customer belongs to segment ݈ with 
∑ ௟݌ = 1௅
௟ୀଵ . We consider a Poisson process of arriving streams of customers from segment ݈ with rate 

௟ߣ = ߣ ௟ and total arriving rate of݌ߣ = ∑ ௟௅ߣ
௟ୀଵ . 

 
In each period of time t, the firm should decide about his set of offers (i.e, a subset ܵ ⊂ ܰ of products that 
the firm makes available for customers). If set ܵ is offered, the deterministic quantity ௝ܲ(ܵ) indicates the 
probability of choosing product ݆ ∈ ܵ, and ௝ܲ(ܵ) = 0, otherwise. By total probability law, we have 
∑ ௝ܲ(ܵ) + ଴ܲ(ܵ)௝∈ௌ = 1, where ଴ܲ(ܵ) indicates the no-purchase probability. 
 
     As already stated, we use a multinomial logit (MNL) model to find customer choice probabilities. 
According to an MNL choice model, the vector ߴ௟ ≥ 0 is a customer’s preference vector for available 
products in consideration set ܥ௟ and ߴ௟଴ represents the no-purchase preference. We let ௟ܲ௝(ܵ) denote the 
probability of selling product ݆ ∈ ௟ܥ ∩ ܵ to a customer from segment ݈ when set ܵ is offered. So, customer 
choice probability can be expressed as follows: 
 

௟ܲ௝(ܵ) =
ణ೗ೕ

∑ ణ೗೓ାణ೗బ೓∈೎೗∩ೄ
 . 

     In a general case, as a firm cannot recognize the corresponding segment of an arrival in advance, we 
consider ௝ܲ(ܵ), the probability that the firm sells product ݆ to an arriving customer as 
 

(4) 

(5) 
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௝ܲ(ܵ) = ∑ ௟݌ ௟ܲ௝(ܵ).௅
௟ୀଵ  
 
 

The expected revenue, by offering set ܵ ⊂ ܰ from an arriving customer is given by: 
 

ܴ(ܵ) = ෍ ௝ݎ ௝ܲ(ܵ).
௝∈ௌ

 

Given that we offer set S, let ܲ(ܵ) = ( ଵܲ(ܵ), … , ௡ܲ(ܵ))் be the vector of purchase probabilities and A be 
the incidence matrix of resource used by products. Then, the vector of capacity consumption probabilities 
ܳ(ܵ) is given by 

ܳ(ܵ) =  ,(ܵ)ܲ.ܣ
 
where ܳ(ܵ) = ( ଵܳ(ܵ), … ,ܳ௠(ܵ))், and ܳ௜(ܵ) indicates the probability of using a unit of capacity on leg 
݅, ݅ = 1,2, … ,݉. 
 
The firm’s decision consists of deciding that at any period of time t, which set of products should be 
offered, while it could not distinguish each customer’s related segment in advance. However, as choice 
probabilities are time-homogeneous and demand is deterministic, it only matters how many times each set 
ܵ is offered, knowing that exactly which period is not important, and the variable ݐ(ܵ) represents the 
number of periods during which the set ܵ is offered. Another assumption is that we let variable ݐ(ܵ) be 
continuous as well (i.e., the firm could offer a set ܵ for a whole or a fraction of a period of time). The 
model’s objective is to maximize the firm’s revenue by deciding the number of periods of time for each 
set of products. The formulation of the CDLP problem is: 
 

ܸ஼஽௅௉ = ∑	ݔܽ݉  (ܵ)ݐ(ܵ)ܴߣ
.ݏ (ܵ)ݐ(ܵ)ܳߣ෍.ݐ ≤ ܿ 

෍ݐ(ܵ) ≤ ܶ 
(ܵ)ݐ ≥ 0. 

There are ݉ + 1 constraints in this model, where the first ݉ constraints are related to availability of 
capacity and the last one is for time availability. Because of the number of constraints (݉ + 1), we could 
have a maximum of ݉ + 1 variables with a positive value in the base. There are some remarks to be made 
here about the CDLP model and its optimal solution. 
 
     First, we should decide how to apply the solution of the CDLP model in our real problem and assign a 
starting and an ending time to offer each product. As mentioned before, the CDLP model’s solution does 
not give us a sequence of products and the times. However, to order offer sets, various heuristic 
approaches can help us. Van Ryzin and Liu [13] developed an efficient decomposition heuristic to solve 
this problem. Second, in this problem there are an exponential number of primal variables. This means 
that a problem with ݊ products has 2௡ − 1 possible non-empty subsets of products of set ܰ. Regarding 
the large number of variables in practical networks, they developed a column generation algorithm to 
solve the CDLP model. However, the subproblem of the column generation algorithm is formulated as a 
0-1 fractional programming one where the sum of several ratios should be maximized. Because of the 
NP-hardness of this problem, they proposed implementing a greedy heuristic algorithm to solve the 
subproblem in polynomial time. 
 
 
 
 

(6) 

(7) 

(8) 

(9) 
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3. Designing GA for CDLP Problem 
 
Here, we present a genetic algorithm for solving the linear programming problem whose number of 
variables grow exponentially and the resulted subproblem of the column generation method is NP-hard. 
   
3.1. Genetic Algorithm 
 
     Genetic algorithm was developed by Holland in the 1970s to understand the adaptive processes of 
natural systems [18]. Gas comprise a very popular class of population-based metaheuristics. The 
algorithms start from an initial population of solutions. Then, they iteratively incur the generation of a 
new population and the replacement of the current population. This replacement is based on selection 
methods. 
 
     Due to the large diversity of initial populations, P-metaheuristics are naturally more exploration search 
algorithms whereas S-metaheuristics are more exploitation search algorithms. This special characteristic 
of the P-metaheuristics leads us to improved solutions for the problem. Once the selection of individuals 
to form the parents is made, the role of the reproduction phase is the application of variation operators 
such as the mutation and crossover. Mutation operators are unary operators acting on a single individual. 
The probability ௠ܲ defines the probability to mutate each element (gene) of the representation. The 
crossover operator is binary and sometimes n-ary. The role of crossover operators is to inherit some 
characteristics of the two parents to generate the offsprings. The crossover rate represents the proportion 
of parents on which a crossover operator will act. 
 
3.2. Structure of Chromosomes 
 
To begin, the structure of chromosomes should be defined. Chromosomes in this problem are in matrix 
form. Because of the number of constraints (݉ + 1), we will have a maximum of ݉ + 1 variables with a 
positive value in the optimal solution. Therefore, chromosomes will form an (݉+ 1) × ݊ matrix. Each 
row of the chromosome is representing a set of combination of ݊ available products, and columns 
correspond to the products. A gene of the chromosome, denoted by ݃(ݎ, ݆), is associated with an entry of 
the matrix, where  ݃(ݎ, ݆) = 1 means that product ݆ is in set ݎ and ݃(ݎ, ݆) = 0 means product ݆ is not in 
set ݎ. 
Let us consider a very small airline network with three cities, e.g., Tehran, Tabriz and Mashhad, to make 
the problem clearer. A firm is offering two fare classes, low and high, for each flight (leg). Figure 1 
illustrates the network. Eight products have been defined by an itinerary and the fare class combination. 
Table 1 represents a sample chromosome for this problem. This chromosome is decoded as offering 
ܵଵ = {1,3,7}, during ݐ(ܵଵ) periods, ܵଶ = {1,2,3,7}, during ݐ(ܵଶ) periods, ܵଷ = {1,3,4,6,7}, during ݐ(ܵଷ) 
periods and ܵସ = ∅, during ݐ(ܵସ) periods. Then, we have a finite set of products, corresponding to this 
chromosome. Other related inputs for this algorithm are: 

 The capacity usage vector has ݉ + 1 cells and the first ݉ cells denote the initial capacities of legs 
and the last column represents the time horizon. 

 The vector ߣ has ݈ cells (number of segmentations) and each cell denotes the probability of 
having an arrival in a period of time. 

 Resource usage matrix with the dimension ݉ × ݊, with each cell (i,j) denoting a usage of product 
݆ from resource ݅. 

 Revenue vector which has ݊ cells, each cell j denoting revenue (fare) for product ݆. 
 Customer’s preference matrix with the dimension ݈ × (݊+ 1), with each cell (i,j) denoting 

preference of ݈th segment customers to ݆th product. The first column of this matrix indicates no-
purchase preference. 
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3.3.1. Mutation Operator Type Ι 
 
     In order to define this operator, we use the concept of efficient sets [1]. An inefficient set ܶ provides 
strictly less revenue ܴ(ܶ) than do other sets and incurs at least as high a probability of consuming 
capacity ܳ(ܶ). After specifying parents on which a mutation operator will act (according to the mutation 
rate), revenue and capacity consumption for each set will be calculated accordingly and then the 
following ratio will be determined: 
 

(ܵ)ܴܧ  = ܴ(ܵ)
ܳ(ܵ)൘ . 

This ratio will be calculated for all sets in the chromosome. ER is related to efficiency ratio of each set. 
Then, the mutation operator will act on the set that has the minimum ratio. We try to eliminate sets that 
are inefficient. In the determined set, genes will be chosen randomly and their  
 

 
 
 
 
values will be changed to their complements. For instance, assume that theefficiency ratio for the 
4 sets in Figure 3 are 1254, 1356, 897 and 987. 
 
 
3.3.2. Mutation Operator Type ΙΙ 
 
     Although operator type Ι has a specific characteristic, which is intelligence, characteristic of the type II 
operator is randomness. For specified parents on which a mutation operator will act, this operator chooses 
genes randomly and changes their values to their complements. An advantage of operator type Ι is that it 
acts intelligently and tries to move toward an optimal solution, but it has a drawback. The intelligence 
may cause a premature termination and do not give an opportunity for covering all the solution space by 
the chromosomes. 
 
Experimental results show that the type Ι mutation operator produces revenue gains over the type ΙΙ 
mutation operator in the tightly constrained capacity cases. 
 
 
3.4. Selection Method 
 
     The selection method is a main search component in GAs. The selection strategy determines which 
individuals are chosen for mating (reproduction) and how many offsprings each selected individual 
produces. In this problem, the roulette wheel selection mechanism with elitism is used. We assign a 
selection probability to each individual that is proportional to its relative fitness and selection is done 
based on this probability. We consider an elitism rate in the beginning of the algorithm which denotes the 
percent of individuals that are directly transformed into the next generation. The population of the old 
generation is replaced with the new offsprings and the selected elites.  
 

1 0 1 0 0 1 0 1 0 1 0 0 1 0
1 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 0 1 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

(11) 

Figure 3. Example for mutation operator 
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3.5. Stopping Criterion 
 
     We use an adaptive condition for the stopping criterion. Maximum number of iterations (generations) 
without improvement is used in this algorithm. 
 
3.6. Parameter Tuning 
 
     A specific systematic approach is needed for tuning the parameters. The design of experiment 
methodology is used for the tunings. Design of experiments is a process of planning the specific 
experiments and running them for collecting appropriate data and analyzing the data by statistical 
methods. One most popular design for tuning parameters is the factorial design, which we adopt to use 
here. For this purpose, three critical values for each factor are selected. Fractional experiments are used to 
specify the level combinations to be used. 
 
4. Computational Results 
 
     Here, we test our algorithm to solve the network revenue management problem when customers 
belong to overlapping segments in accordance with the MNL model and then compare the obtained 
results with the ones produced by the column generation algorithm. We assess the convenience of each 
model based on the quality of the solutions in term of the revenue obtained. 
 
We consider different capacities by multiplying a scale factor ߙ to the capacity of lags. Values	of	ߙ =
0.6, 0.8, 1, 1.5	and	2 are used to solve the problem. We alter the preference in the choice behavior by 
varying the no-purchase performance vector ߴ଴ = ( ଶ଴ߴ,ଵ଴ߴ , … ,  .(௟଴ߴ
 
Results for a small network are obtained with 50 instances having populations of size 200 for each 
instance as well as 40 instances with populations of size 100. 
 
4.1. A Small Airline Network 
 
     First, we start evaluating the heuristic algorithm within column generation method and metaheuristic 
solution in a small network airline network. This example is also considered with different details by Liu 
and van Ryzin [13] and Bront et al. [3]. Consider a network with 4 airports and 7 flight legs. The 
capacities of the legs are ܥ = (100,150,150,150,150,80,80). The firm offers two high (H) and low (L) 
fares on each leg. Considering local and connecting itineraries, customers can choose among 22 available 
products defined by itineraries and fare class combinations. The problem consists of finding a policy 
which leads to prepare a set of products at any period of time during the booking horizon to offer to the 
customers while the revenue of the firm is to be maximized. The airline network is illustrated in Figure 4 
and Tables 2 and 3 describe available products and customer segmentation in the network. 
 

 

A

B

C

H
Leg 2 (C=150)

Leg 3 (C=150)

Figure 4. A small airline network  
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In Table 3, column 3 and 4 specify the corresponding consideration set and the preference values for the 
indicated products. The probability of a customer arrival for the corresponding segment is given in the 
last column. Booking horizon of this problem consists of 1500 periods of time. Table 4 summarizes the 
revenue obtained with two different algorithms. 
 
 

Products Legs Class Fare Products Legs Class Fare
1 1 H 1000 12 1 L 500
2 2 H 400 13 2 L 200
3 3 H 400 14 3 L 200
4 4 H 300 15 4 L 150
5 5 H 300 16 5 L 150
6 6 H 500 17 6 L 250
7 7 H 500 18 7 L 250
8 {2,4} H 600 19 {2,4} L 300
9 {3,5} H 600 20 {3,5} L 300
10 {2,6} H 700 21 {2,6} L 350
11 {3,7} H 700 22 {3,7} L 350

Segment O-D Con. Set Observed utility Landa
1 A-B {1,8,9,12,19,20} (10,8,8,6,4,4) 0.08
2 A-B {1,8,9,12,19,20} (1,2,2,8,10,10) 0.2
3 A-H {2,3,13,14} (10,10,5,5) 0.05
4 A-H {2,3,13,14} (2,2,10,10) 0.2
5 H-B {4,5,15,16} (10,10,5,5) 0.1
6 H-B {4,5,15,16} (2,2,10,8) 0.15
7 H-C {6,7,17,18} (10,8,5,5) 0.02
8 H-C {6,7,17,18} (2,2,10,8) 0.05
9 A-C {10,11,21,22} (10,8,5,5) 0.02
10 A-C {10,11,21,22} (2,2,10,10) 0.04

Table 3. Customer segmentation in a small network  

Table 2. Products definition in a small network 
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First and second columns respectively correspond to the scale factor and the no-purchase preference 
vector. For instance, the first row in the table represents the case 
଴.଺ܥ = 0.6 × (100,150,150,150,150,80,80) = (60,90,90,90,90,48,48) and ߴ଴ = (5,10), namely the 
weight for the no-purchase option for first segments of each origin-destination are 5 and for second 
segments are 10. Third column is the obtained revenue from column generation algorithm and the next 
column represents the results of the genetic algorithm. Next and last columns are the gap of the results of 
the two algorithms and the average improvement obtained in applying the genetic algorithm. Generally, 
we can observe that that generic algorithm obtains nearly equivalent or better results in comparison with 
the column generation. In case that there is enough capacity, the genetic algorithm generates better results 
and when the capacity is tightened (lower values of ܥ and no-purchase utility), both algorithms produce 
nearly the same results. Consider that the gain of 2% is significant in revenue management. Figure 6 
shows the gap between obtained revenues from the two different algorithms and Figure 5 shows the 
average revenue gaps within different scale factors. 
 

 
 
The arrows represent the direction that customer’s no-purchase preference is increasing. It is obvious that 
as the ܥ and the ߴ଴ increase, the genetic algorithm gives better results than the column generation 
method. This behavior of the genetic algorithm can be justified according to the solution space and its 

Column 
generation 

REV.
GA REV %GA-CG Average

(1,5) 215,793 213,980 -0.84
(5,10) 200,515 199,031 -0.74
(10,20) 170,137 170,137 0.00
(1,5) 266,934 264,549 -0.89
(5,10) 223,173 223,172 0.00
(10,20) 188,574 188,334 -0.13
(1,5) 281,967 282,325 0.13
(5,10) 235,284 237,349 0.88
(10,20) 192,038 193,489 0.76
(1,5) 284,772 285,834 0.37
(5,10) 238,562 238,562 0.00
(10,20) 192,373 195,163 1.45
(1,5) 287,076 290,354 1.14
(5,10) 238,562 243,245 1.96
(10,20) 192,373 192,373 0.00
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Table 4. Computational results for parallel flights 

Figure 6. Revenue gaps in terms of scale factor and 
no-purchase preference  Figure 5. Average revenue gaps in different scale 

factors  
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exploration characteristic. As the scale factor and customer no-purchase preferences are increasing, the 
solution space is expanding and because of the exploration strength (covering all solution space) of 
population-based algorithms, quality of the results is increasing. 
 
4.2. A Railroad Network 
 
     Railroad network is based on specific railroads in Europe, of which we will consider a part of its 
network with five cities and four legs [19]. There are two high (H) and low (L) fare classes on each leg. 
Figure 7 illustrates this railroad network. 
 
In this problem, there are 10 trains with a capacity of 100 passengers going from Paris to Amsterdam. 
Each train stops in Brussels, Rotterdam, Schiptol and Amsterdam. Thus, there are 10 markets shown in 
Table 4. Two fare classes and 10 markets produce a total of 200 products. Table 4 shows the price 
information associated with each market. 
 
Customers are divided into 20 different segments based on their sensitivity to price and their origins and 
ultimate destinations. Table 5 shows each segment’s definition according to our assumptions. We assume 
booking horizon including 1000 time periods. The experiments are done for three scale factors including 
0.5, 1 and 1.5. The no-purchase preference is given in the last coordinate of the preference vector. Table 6 
summarizes the results under different scenarios. 
 
For this computation, different booking horizons are analyzed. Results indicate that similar to the 
previous network, our proposed algorithm has a better performance in comparison with the heuristic 
algorithm and specially the exploration capability of the method helps for obtainment of better results in 
special situations.  
 

 
 
 
 
 
 

Amsterdam

Schiptol

Rotterdam

Brussels

Paris

Figure 7. A railroad network 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

31
 ]

 

                            12 / 15

http://iors.ir/journal/article-1-137-en.html


A Genetic Algorithm for Choice-Based Network                                                                                      101 
 
 

 

 

 

 
 
 
 

 
 
 

O-D Low fare High fare
PAR-BRU 200 400
PAR-RTA 300 500
PAR-SCH 350 525
PAR-AMA 350 525
BRU-RTA 150 250
BRU-SCH 175 275
BRU-AMA 200 300
RTA-SCH 50 100
RTA-AMA 175 300
SCH-AMA 50 100

Segment O-D Cons. Set Preference vector
1 PAR-BRU {1,…,20} {10,55,25,15,6,4,3,4,5,6,15,15,20,4,3,2,1,2,2,3,8}
2 PAR-BRU {11,…,20} {8,70,60,10,7,4,4,4,5,40,60}
3 PAR-RTA {21,…,40} (15,30,20,10,3,5,20,25,10,4,4,4,8,2,1,2,2,3,3,2,2}
4 PAR-RTA {31,…,40} {7,40,25,10,4,4,5,15,20,25,45}
5 PAR-SCH {41,…,60} {25,25,20,4,5,5,5,6,6,10,30,2,2,2,3,3,3,4,4,10}
6 PAR-SCH {51,…,60} {7,32,21,3,3,4,5,15,15,20,30}
7 PAR-AMA {61,…,80} {20,20,2,5,5,6,6,7,7,8,15,3,3,4,3,3,4,4,5,4,4}
8 PAR-AMA {71,…,80} {50,25,20,3,3,4,4,8,20,28,35}
9 BRU-RTA {81,…,100} {10,60,50,6,4,4,5,20,22,7,32,10,4,3,2,2,2,3,4,4,15}
10 BRU-RTA {91,…,100} {20,90,45,5,6,2,3,4,30,60,70}
11 BRU-SCH {101,…,120} {5,25,10,5,5,6,6,20,20,10,8,5,4,3,3,3,4,4,5,5,5}
12 BRU-SCH {111,…,120} {10,35,7,6,4,4,5,6,7,35,40}
13 BRU-AMA {121,…,140} {30,24,4,4,3,3,5,6,6,10,10,3,2,2,2,2,3,4,5,5,6}
14 BRU-AMA {131,…,140} {15,8,6,5,4,5,6,7,10,12,10}
15 RTA-SCH {141,…,160} {10,25,20,4,4,3,3,4,5,6,10,4,4,3,2,2,3,3,4,4,4}
16 RTA-SCH {151,…,160} {4,34,36,3,2,2,4,4,5,25,30}
17 PAR-AMA {161,…,180} {20,40,10,5,4,3,4,5,5,6,25,4,2,1,2,2,2,3,4,4,5}
18 PAR-AMA {171,…,180} {5,50,25,25,3,4,5,6,6,35,40}
19 SCA-AMA {181,…,200} {30,32,20,5,4,4,4,5,6,7,20,4,4,3,2,3,3,4,4,5,5}
20 SCA-AMA {191,…,200} {15,40,20,4,4,4,5,6,6,35,60}

Table 4. Products definition in railroad network 

Table 5. Customer segmentation in railroad network 
problem 
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5. Conclusion 
 
We considered a more general form of the choice-based, deterministic, linear programming model for 
overlapping segments. A multinomial logit model for acquiring customer choice was presented and the 
more general case that customers belong to overlapping segments and choose according to the 
multinomial logit model was studied. A linear fractional programming problem was developed by 
introducing a column generation algorithm to solve the model for practical networks. The resulting model 
being NP-hard, a greedy heuristic was proposed to solve it. Experience showed that there were 
circumstances that the greedy heuristic could not find an entering column, and thus mixed integer 
fractional programming was proposed. We proposed a metaheuristic algorithm for solving this problem. 
Two types of mutation operators, according to the size of the solution space of the problem were used in 
the algorithm. According to the results, we observed that increasing the scale factor and customer no-
purchase preferences simultaneously, the solution space was expanding. In accordance with the 
exploration characteristic of population-based algorithms, the obtained results were promising.  
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