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We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-
integer programming formulation is developed. The inherent uncertainty in processing 
times and due dates as fuzzy parameters, machine-dependent setup times and removal times 
are the special features of this model. The considered bi-objectives are to minimize the 
weighted mean tardiness and weighted mean completion times. After converting the 
original formulation into a single-objective crisp one by using an interactive approach and 
obtaining the Pareto-optimal solutions for small-sized instances, an efficient multi-
objective particle swarm optimization (MOPSO) is proposed in order to achieve a good 
approximate Pareto-optimal set for medium and large-sized examples. This algorithm 
exploits new selection regimes of the literature for the global best and personal best. 
Furthermore, a modified decoding scheme is designed to reduce the search area in the 
solution space, and a local search algorithm is proposed to generate initial particle 
positions. Finally, the efficiency of the proposed MOPSO (PMOPSO) is shown by 
comparing with the common MOPSO (CMOPSO) by the use of the design of experiments 
(DOE) based on three comparison metrics.  
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1. Introduction 
 

     Scheduling consists of an assignment problem and a sequencing problem to produce goods 
and provide services in a system. Among the several kinds of work environments, open shop as 
an interesting and universal problem seems to have received less attention from researchers and 
practitioners. Some applications of open shop scheduling problems (OSSP) are in testing, 
maintenance and teacher-class timetabling problems. The OSSPs are different from job shop 
and flow shop problems, because there is no precedence constraint between the operations of 
each job. It means the processing order of operations is immaterial. Thus, the solution space of 
OSSPs is much larger than other shop scheduling problems. This problem is known to be NP-
hard. Therefore, using a proper meta-heuristic algorithm is necessary to achieve optimal or near -
optimal solutions for medium and large-sized problems. Matta [18] developed two original 
mixed-integer programming (MIP) models (i.e., time-based model and sequence-based model) 
for the proportionate multiprocessor open shop scheduling problem and proposed a genetic 
algorithm (GA) to schedule the shop with the objective of minimizing the makespan.  
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     Sha and Hsu [26] have proposed a new particle swarm optimization (PSO) for the OSSP to 
minimize makespan. In a comparison with the original algorithm, they have modified the 
particle position representation and the particle movement. They have hybridized their PSO 
with beam search. The computational results have shown that their PSO has found many new 
best solutions of the unsolved problems. Andresen et al. [2] have proposed a simulated 
annealing (SA) and a GA for the OSSP to minimize the sum of completion times or mean flow 
time. They have suggested several neighborhoods and used them to test SA, and proposed new 
genetic operators based on the representation of a solution for GA. Blum [4] has proposed a 
hybridizing ant colony optimization with beam search for OSSPs to minimize makespan. Blum 
and Samples [5] have considered group shop scheduling problems including the OSSP and the 
job shop scheduling problem as special cases to minimize makespan. They have proposed a 
neighborhood structure for this problem and developed an ant colony optimization (ACO) 
method that uses strong non-delay guidance for constructing solutions and employs black-box 
local search procedures to improve the constructed solutions.  

     Puente et al. [22] have proposed a method combining heuristic rules and GAs to solve an 
OSSP to minimize makespan. They have considered several dispatching rules taken from the 
literature that produce semi-optimal solutions in a polynomial time. They have designed 
probabilistic algorithms to generate heuristic chromosomes that are inserted in the initial 
population of a conventional GA. Liaw [15] has proposed a hybrid GA for the OSSP to 
minimize makespan. This hybrid algorithm incorporates a local improvement procedure based 
on tabu search (TS) into a basic GA. Prins [21] has developed competitive GAs for OSSP to 
minimize makespan. He has shown that even the simple and fast version of this algorithm can 
compete with the best known heuristics and meta-heuristics because of two key-features, 
namely, a population, in which each individual has a distinct makespan, and a special procedure 
that reorders every new chromosome. Seraj and Tavakkoli-Moghaddam [25] have proposed a 
TS to solve a new bi-objective mixed-integer mathematical programming model for an OSSP. 
This model minimizes the mean tardiness and the mean completion time.  

     In the real world, there is an inherent uncertainty in data and inputs of any systems. The data 
are articulated by linguistic terms such as around, about, less than, more than, etc. This kind of 
data named fuzzy/possibility data. In mathematical programming, when the input data are fuzzy 
or possibility, the mathematical model is transformed into a fuzzy or a possibilistic program. 
Torabi and Hassini [28] have designed a new multi-objective possibilistic mixed integer linear 
program model for supply chain master planning. After use of appropriate strategies to convert 
this possibilistic model into an auxiliary crisp multi-objective linear programming (MOLP) 
model, they have proposed a novel interactive fuzzy programming approach to solve this MOLP 
model and obtain a preferred compromise solution. Jiménez and Bilbao [10] have addressed a 
procedure for solving multi-objective linear-programming problems. They have assumed that 
the decision maker has fuzzy goals for each objective function. Their procedure can obtain a 
non-dominated solution, which is also fuzzy-efficient. Konno and Ishii [12] have designed a 
preemptive OSSP with the fuzzy resource and allowable time. This problem has bi-criteria to be 
maximized, i.e., minimal satisfaction degree with respect to the processing intervals of jobs and 
minimal satisfaction degree of resource amounts used in the processing intervals. They have 
presented a solution procedure based on the network flow algorithm. 

     In scheduling problems, machines often should be prepared between jobs. This process is 
considered as a setup. The setup task of an operation can be separated from its corresponding 
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processing time. Therefore, it can be started in advance when the particular machine is free. 
Roshanaei et al. [24] have considered non-preemptive OSSPs with machine- and sequence-
dependent setup times to minimize makespan. They have proposed two new advanced meta-
heuristics, namely, multi-neighborhood SA search and hybrid SA, to solve this problem. Low 
and Yeh [16] have addressed an OSSP as a 0-1 integer programming model with the objective 
of minimizing the total job tardiness with some assumptions, such as independent setups and 
dependent removal times. They have proposed some hybrid genetic-based heuristics to solve the 
problem in an acceptable computing time. Mosheiov and Oron [20] have addressed batch 
scheduling problems on an m-machine open-shop with identical processing time jobs, machine- 
and sequence-independent setup time assumptions. The objectives were minimize makespan 
and flow time. They have proposed an O(n) time algorithm for the flow time minimization 
problem.  

     Allahverdi et al. [1] have surveyed the literature of setup time or cost in scheduling 
problems. They have classified scheduling problems into those with batching and non-batching 
considerations, and with sequence-independent and sequence-dependent setup times. Fazle Baki 
and Vickson [9] discussed  two different pseudo polynomial dynamic programming recursions 
for each of the open shop and flow shop problems with one-operator, two-machine, and setup 
times for machines minimizing the weighted number of tardy jobs. Strusevich [27] has studied 
the problem of scheduling jobs in a two-machine open shop with group technology to minimize 
the makespan. A batch setup time on each machine is required before the first job is processed 
and when a machine switches from processing a job in some batch to a job of another batch. He 
has proposed a 5/4-approximation heuristic algorithm that creates a group technology schedule. 

     According to the literature review, there is little research using a fuzzy approach in OSSPs. 
Also, a combination of the fuzzy approach with multi-objective optimization in OSSP seems to 
receive less attention. So, in this paper, a bi-objective possibilistic mixed-integer linear 
programming (BOPMILP) model is designed for the OSSP and solved optimally. To solve 
medium to large sized problems, a novel multi-objective particle swarm optimization (MOPSO) 
algorithm is proposed to obtain a good approximate Pareto-optimal set.                                                                       

     The remainder of our work is organized as follows. The designed mathematical 
programming is presented in Section 2, followed by the proposed interactive fuzzy 
programming solution approach in Section 3. Section 4 elaborates the proposed MOPSO. 
Section 5 consists of the numerical examples, computational results and performance analysis. 
Finally, the conclusion is stated in Section 6. 

2. Mathematical Formulation 
 
     Like all kinds of shop scheduling problems, OSSPs examined have are associated with n jobs 
to be processed on at most m machines. Two performance measures (i.e., weighted mean 
tardiness and weighted mean completion times) are considered in this problem and a set of 
feasible solutions are searched to optimize these measures. 

2.1. Problem Assumptions 
  
• Each job should be processed on at most m machines.  
• At any time, at most one job can be processed on each machine.  
• The overlap between operations of a job is not allowed. 
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• The processing order of operations is immaterial. 
• The importance levels of the jobs are different and are not necessary to be less than 1. 
• All jobs are available at time 0. 
• No preemption is allowed. It means that the processing of a job on a machine cannot be 

interrupted. 
• The machine breakdown is not permitted. 
• Each job has its specified processing time and due date. 
• Each operation is considered to have machine-dependent setup time and removal time. 

These times are assumed to be separated from their processing times. 
• The setup task can be started in advance when a certain machine is free. 
• All the processing times and due dates are considered to be fuzzy parameters with the 

triangular possibility distribution. A possibility distribution can be stated as the degree of 
occurrence of an event with imprecise data, and it is a common tool for modeling the 
ambiguous parameters.  

 
2.2. Notations 
 
N       Set of jobs to be processed; N= ሼ1,2, … , ݊ሽ; |ܰ| ൌ ݊ 
L        Set of machines; L= ሼ1,2, … , ݉ሽ; |ܮ| ൌ ݉  
i,k      job indices; (i, k = 1,2,…,n)  
j,h      machine indices; (j, h =1,2,…,m) 
M      A large positive number 
 ௜      Tardiness penalty of job iݓ
 ௜       Priority of job iݒ

௜ܱ௝      Operation of job i on machine j ; ݅׊ א ܰ; ݆׊ א  ܮ
௜ܵ௝       Setup time of job i on machine j  

   ෤௜௝       Fuzzy processing time of job i on machine j݌
ܴ௜௝       Removal time of job i on machine j  
ሚ݀௜        Fuzzy due date of job i 

 ௜௝     Starting time of a setup task for operation ௜ܱ௝ݏܶ
௜ܶ     Tardiness of job i 

 ௜         Completion time of job iܥ
 

Y୧୨h ൌ ൝
1,
 

0,
   

 
             

௜ܺ௞௝ ൌ ൝
1,
 

0,
  

       
 
 

2.3. Mathematical Model   
 
     As mentioned in Section 2.1, all processing times and due dates are considered to be fuzzy 
parameters with the triangular possibility distribution as follows: 

෤௜௝݌                                                               ൌ ቀ݌௜௝
௣ , ௜௝݌

௠, ௜௝݌
௢ ቁ,                                                      (1)                               

                                                               ሚ݀௜ ൌ ൫݀௜
௣, ݀௜

௠, ݀௜
௢൯.                                                        (2)                                

Otherwise. 

if O୧୨ precedes O୧୦  for job i 

Otherwise. 

݅׊ א ܰ; ,݆׊ ݄ א ,ܮ ݆ ് ݄ 

if ௜ܱ௝ precedes O୩୨ on machine j 

,݅׊ ݇ א ܰ, ݅ ് ݇; ,݆׊ ݄ א  .ܮ
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The decision maker can specify three parameters ሺ݌௜௝

௣ , ݀௜
௣ሻ,  ሺ݌௜௝

௠, ݀௜
௠ሻ and ሺ݌௜௝

௢ ,݀௜
௢ሻ, which are 

most pessimistic values, most possible values and most optimistic values,  respectively, as 
depicted in Figure 1.  

 
 
 
 
      
 
 

 
 
 

Figure 1. Triangular possibility distribution of fuzzy parameters ݌෤௜௝, ሚ݀௜ 
 
 
The bi-objective possibilistic mixed-integer linear programming (BOPMILP) problem is 
modeled by: 
 
 

Min ܼଵ ൌ
∑ ௜ݓ ௜ܶ

௡
௜ୀଵ

∑ ௜ݓ
௡
௜ୀଵ

 (3)

Min ܼଶ ൌ
∑ ௜ܥ௜ݒ

௡
௜ୀଵ

∑ ௜ݒ
௡
௜ୀଵ

 (4)

s.t. 

௜௝ ൅ݏܶ ௜ܵ௝ ൅ ෤௜௝݌ ൅ ܴ௜௝ ൑ ௜ܥ ; 
݅׊ א ܰ; ݆׊ א (5) ܮ

௜௝ ൅ݏܶ ௜ܵ௝ ൅ ෤௜௝݌ ൅ ܴ௜௝ െ ሺ1ܯ െ ௜ܻ௝௛ሻ ൑ ௜௛ݏܶ ൅ ௜ܵ௛ ; 
݅׊ א ܰ; ,݆׊ ݄ א ,ܮ ݆ ് ݄ (6)

௜௛ݏܶ ൅ ௜ܵ௛ ൅ ෤௜௛݌ ൅ ܴ௜௛ െ ܯ ൈ ௜ܻ௝௛ ൑ ௜௝ݏܶ ൅ ௜ܵ௝ ; 
݅׊ א ܰ; ,݆׊ ݄ א ,ܮ ݆ ് ݄ (7)

௜௝ ൅ݏܶ ௜ܵ௝ ൅ ෤௜௝݌ ൅ ܴ௜௝ െ ൫1ܯ െ ௜ܺ௞௝൯ ൑  ; ௞௝ݏܶ
,݅׊   ݇ א ܰ, ݅ ് ݇; ݆׊ א  ܮ

(8) 

௞௝ ൅ݏܶ ܵ௞௝ ൅ ෤௞௝݌ ൅ ܴ௞௝ െ ܯ ൈ ௜ܺ௞௝ ൑  ; ௜௝ݏܶ
,݅׊  ݇ א ܰ, ݅ ് ݇; ݆׊ א (9) ܮ

௜ܥ െ ሚ݀௜ ൑ ௜ܶ ; ݅׊ א ܰ  (10)

௜ܻ௝௛ ൅ ௜ܻ௛௝ ൌ 1 ;  
݅׊ א ܰ; ,݆׊ ݄ א ܮ , ݆ ് ݄

 
(11)

௜ܺ௞௝ ൅ ܺ௞௜௝ ൌ 1 ; 
,݅׊ ݇ א ܰ, ݅ ് ݇; ݆׊ א (12) ܮ

௜௝ݏܶ  ൒ 0 ݅׊  ;   א ܰ; ݆׊ א ܮ (13)

,࢐࢏࢖ ࢏ࢊ
௜௝݌

௣ , ݀௜
௣ 

, ࢐࢏࢖࣊ ࢏ࢊ࣊  

௜௝݌
௠, ݀௜

௠ ௜௝݌
௢ , ݀௜

௢

1 
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௜ܶ , ௜ܥ ൒ 0 ݅׊  ;  א ܰ (14)

௜ܺ௞௝ ௜ܻ௝௛ א ሼ0,1ሽ ;
,݅׊ ݇ א ܰ, ݅ ് ݇; ,݆׊ ݄ א ,ܮ ݆ ് ݄. (15)

 
 
Two objective functions (i.e., weighted mean tardiness and weighted mean completion time) are 
shown by (3) and (4); ݓ௜and ݒ௜  can be equal or not equal. Constraint (5) describes the 
completion time of job i. Constraints (6) and (7) express that operations Oij and Oih, of job i are 
not required to be consecutive, If operation Oij is operation Oih, then ௜ܻ௝௛ = 1; thus, the starting 
time for processing operation Oih is greater than or equal to the completion time of operation Oij. 
Constraints (8) and (9) characterize the constraint of the operational sequence of the operations 
which are processed on the same machine. Therefore, on machine j, if operation Oij is processed 
before operation Okj, then ௜ܺ௞௝  = 1; the setup task of operation Okj cannot be started until 
machine j has finished the removal task of operation Oij. Constraint (10) describes the tardiness 
for each job i defined by: 

                                             ௜ܶ ൌ ,൫0 ݔܽ݉ ௜ܥ െ ሚ݀௜൯  ; ݅׊  א ܰ                                                  (16)  

Constraint (11) expresses the order of any two operations of a job; if ௜ܻ௝௛ ൌ 1, then ௜ܻ௛௝ = 0; 
otherwise, ௜ܻ௝௛ ൌ 0 and ௜ܻ௛௝  = 1. Constraint (12) expresses the order of any operation pairs 
(Oij,Okj) on the same machine j; if ௜ܺ௞௝ ൌ 1, then ܺ௞௜௝ = 0; otherwise , ௜ܺ௞௝  ൌ 0 and ܺ௞௜௝  = 1. 
Constraint (13) implies that all jobs should be available for scheduling at time 0. Constraints 
(14) and (15) define the continuous and binary decision variables.  

2.4. Equivalent Auxiliary Crisp Model  
 
     To convert fuzzy numbers in the left-hand sides of constrains (5)-(10) into crisp numbers, the 
weighted average method proposed by Lai and Hwang (1992a) is applied for the defuzzification 
process. The equivalent auxiliary crisp constraints are represented by: 

 
௜௝ ൅ݏܶ                         ௜ܵ௝ ൅ ௜௝,ఉ݌ଵݓ

௣ ൅ ௜௝,ఉ݌ଶݓ
௠ ൅ ௜௝,ఉ݌ଷݓ

௢ ൅ ܴ௜௝ ൑ ݅׊;  ௜ܥ א ܰ; ݆׊ א (17)          ܮ                                

௜௝ ൅ݏܶ                   ௜ܵ௝ ൅ ௜௝,ఉ݌ଵݓ
௣ ൅ ௜௝,ఉ݌ଶݓ

௠ ൅ ௜௝,ఉ݌ଷݓ
௢ ൅ ܴ௜௝ െ ሺ1ܯ െ ௜ܻ௝௛ሻ ൑ ௜௛ݏܶ ൅ ௜ܵ௛   

݅׊                                                         א ,݆׊ ;ܰ ݄ א ,ܮ ݆ ് ݄                                                    (18)                                 

௜௛ ൅ݏܶ                     ௜ܵ௛ ൅ ௜௛,ఉ݌ଵݓ
௣ ൅ ௜௛,ఉ݌ଶݓ

௠ ൅ ௜௛,ఉ݌ଷݓ
௢ ൅ ܴ௜௛ െ ܯ  ൈ ௜ܻ௝௛ ൑ ௜௝ݏܶ ൅ ௜ܵ௝           

݅׊                                                         א ,݆׊ ;ܰ ݄ א ,ܮ ݆ ് ݄                                                    (19)                                

௜௝ ൅ݏܶ                        ௜ܵ௝ ൅ ௜௝,ఉ݌ଵݓ
௣ ൅ ௜௝,ఉ݌ଶݓ

௠ ൅ ௜௝,ఉ݌ଷݓ
௢ ൅ ܴ௜௝ െ ൫1ܯ െ ௜ܺ௞௝൯ ൑                ௞௝ݏܶ

,݅׊                                                         ݇ א ܰ, ݅ ് ݆׊ ;݇ א  (20)                                                    ܮ

௞௝ ൅ݏܶ                         ܵ௞௝ ൅ ௞௝,ఉ݌ଵݓ
௣ ൅ ௞௝,ఉ݌ଶݓ

௠ ൅ ௞௝,ఉ݌ଷݓ
௢ ൅ ܴ௞௝ െ ܯ ൈ ௜ܺ௞௝ ൑                   ௜௝ݏܶ

,݅׊                                                          ݇ א ܰ, ݅ ് ݆׊ ;݇ א  (21)                                                   ܮ

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

01
 ]

 

                             6 / 28

http://iors.ir/journal/article-1-148-en.html


A Multi-Objective Particle Swarm Optimization Algorithm                                                       67 
 

 
 

௜ܥ                                       െ ଵ݀௜,ఉݓ
௣ ൅ ଶ݀௜,ఉݓ

௠ ൅ ଷ݀௜,ఉݓ
௢ ൑ ௜ܶ;    ݅׊ א ܰ,                                (22) 

where, ߚ is specified by the decision maker as the minimum acceptable possibility. Meanwhile,  
ଵݓ ൅ ଶݓ ൅ ଷݓ ൌ 1, and ݓଵ,  ଷ denote the weights of the most pessimistic, the mostݓ ଶ  andݓ
possible and the most optimistic value of fuzzy parameters, respectively. By using the most 
likely solution concept proposed by Lai and Hwang (1992b), these parameters can be set as to 
be: ݓଵ ൌ 1/6  , ଶݓ ൌ 4/6  , ଷݓ ൌ 1/6 . In addition, the following constraint is added to the 
model: 

ߚ                                                                  א ሾ0,1ሿ.                                                                  (23) 
 
Thus, the auxiliary crisp bi-objective mixed-integer linear programming (BOMILP) model is 
formulated by: 

min  Z = [ܼଵ, ܼଶ] 
                                                                    s.t.                                                                           (24) 

߭ א  ,ሺజሻܨ
 
Where, ߭ denotes a feasible solution vector consisting of all continuous and binary variables in 
the original model, and ܨሺజሻ represents the feasible area involving crisp constraints (11) - (15) 
and (17) - (23). 

3. Interactive Fuzzy Multi-Objective Decision Making Approach 
 
     Because of the difference between priority and tardiness penalty of each job, two objective 
functions considered in our study are conflicting. Thus, this problem cannot be solved by the 
use of single-objective optimization methods. There are three main groups of optimization 
methods based on the preference information specified by the decision maker for solving multi-
objective decision making (MODM) problems:  

• Priori optimization methods. 
• Progressive optimization methods. 
• Posteriori optimization methods. 
 
Here, an efficient interactive fuzzy programming solution approach, which belongs to the first 
group, is used to obtain the Pareto-optimal solutions of resulting bi-objective crisp model. This 
method is called the TH method proposed by Torabi and Hassini [28]. The steps of the TH 
method are given below.  

Step 1. For the fuzzy parameters, specify triangular possibiliy distributions and design the 
original BOPMILP model for the OSSP.  

Step 2. Convert the fuzzy constraints into the corresponding crisp ones in order to achieve the 
auxiliary crisp BOMILP model, using ߚ,  the given minimum acceptable possibility level for 
fuzzy numbers.  

Step 3. Solve the following MILP models in order to determine the positive ideal solution (PIS) 
and the negative ideal solution (NIS) for each optimization criterion: 
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                                          ܼଵ
௉ூௌ ൌ Min 

∑ ௪೔்೔
೙
೔సభ

∑ ௪೔
೙
೔సభ

         s.t.      ߭ א  ሺజሻ                                         (25)ܨ

 

                                         ܼଵ
ேூௌ ൌ Max 

∑ ௪೔்೔
೙
೔సభ

∑ ௪೔
೙
೔సభ

          s.t.      ߭ א  ሺజሻ                                    (26)ܨ

                                   

                                         ܼଶ
௉ூௌ ൌ Min 

∑ ௩೔஼೔
೙
೔సభ

∑ ௩೔
೙
೔సభ

            s.t.      ߭ א  ሺజሻ                                    (27)ܨ

 

                                        ܼଶ
ேூௌ ൌ Max  

∑ ௩೔஼೔
೙
೔సభ

∑ ௩೔
೙
೔సభ

          s.t.      ߭ א  ሺజሻ.                                    (28)ܨ

 
                                                                               
Obtaining the above ideal solutions requires solving four mixed-integer linear programs. To 
reduce the computing time, the negative ideal solutions can be determined by the use of the 
following heuristic rule: 

                                          ܼ௛
ேூௌ ൌ Max ሺܼ௛ሺυ௞

כ ሻሻ ;    ݄ ൌ 1,2 , K=1, 2.                                    (29) 
 

The results are shown in Table 1 as a payoff table. 

 
Table1. Payoff table 

 
 ܼଵ ܼଶ

߭ଵ
 כ ܼଵ

௉ூௌ ܼଶ
ேூௌ 

߭ଶ
 כ ܼଵ

ேூௌ ܼଶ
௉ூௌ 

 
 
Step 4. Specify a linear membership function for each optimization criterion as follows: 

It should be noted that the membership functions, ߤ௓೓ሺ߭ሻ, denote the satisfaction degree of the h 
th optimization criterion for the feasible decision vector ߭: 

 

௓భሺ߭ሻߤ                             ൌ  

ە
ۖ
۔

ۖ
ۓ

1,             
 

௓భ
ಿ಺ೄି௓భ

௓భ
ಿ಺ೄି௓భ

ು಺ೄ
 

0,             

,                                                                                    (30) 

   
 

௓మሺ߭ሻߤ                                ൌ 

ە
ۖ
۔

ۖ
ۓ

1,             
 

௓మ
ಿ಺ೄି௓మ

௓మ
ಿ಺ೄି௓మ

ು಺ೄ
 

0,             

,                                                                                  (31) 

 
 
Figure 2 represents the graph of such membership functions. 

   ܼଵ ൏ ܼଵ
௉ூௌ 

ܼଵ ൐ ܼଵ
ேூௌ. 

  ܼଵ
௉ூௌ ൑ ܼଵ ൑ ܼଵ

ேூௌ 

   ܼଶ ൏ ܼଶ
௉ூௌ 

ܼଶ ൐ ܼଶ
ேூௌ. 

  ܼଶ
௉ூௌ ൑ ܼଶ ൑ ܼଶ

ேூௌ 
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Figure 2. Linear membership function for ܼଵሺܼଶሻ 

Step 5. Convert the auxiliary BOMILP model into an equivalent single-objective MILP 
Problem by the use of the following auxiliary crisp formulation: 

                                        Max    ߣሺ߭ሻ ൌ ଴ߣߛ ൅ ሺ1 െ ሻߛ ∑ ௓೓ሺ߭ሻ௛ߤ௛ߠ                                        (32) 

                                                    s.t. 

଴ ൑ߣ                                                    ௓೓ሺ߭ሻ  ,   h =1, 2                                                           (33)ߤ

                                                   ߭ א ሺజሻܨ                                                                                    (34) 

,଴ߣ                                                  ߛ א ሾ0,1ሿ.                                                                             (35) 
 
 
According to two optimization criteria of this problem, constraints (33) are written by: 

                                              ܼଵ
ேூௌ െ 

∑ ௪೔்೔
೙
೔సభ

∑ ௪೔
೙
೔సభ

 ൒ ଴൫ܼଵߣ
ேூௌ െ ܼଵ

௉ூௌ൯,                                        (36) 

 

                                              ܼଶ
ேூௌ െ 

∑ ௩೔஼೔
೙
೔సభ

∑ ௩೔
೙
೔సభ

  ൒ ଴൫ܼଶߣ
ேூௌ െ ܼଶ

௉ூௌ൯,                                        (37) 

 
Where, ߤ௓೓ሺܺሻ is the satisfaction degree of the hth objective function and ߣ଴= min௛{ߤ௓೓ሺܺሻ} is 
the minimum satisfaction degree of the objectives. In addition, ߠ௛ denotes the importance level 
of the hth objective function such that ∑ ௛௛ߠ ௛ߠ ,1 =  > 0. The ߠ௛  parameters are determined 
linguistically by the decision maker based on her/his preference. Moreover, γ  is the coefficient 
of compensation. By changing the value of this parameter in the interval [0,1], the TH method 
can obtain both unbalanced and balanced compromised solutions. It means that for higher 
values of γ , the solution method results bigger lower bounds for the satisfaction degrees of 
objectives ሺߣ଴ሻ  for a given sample example. These solutions are balanced compromised 
solutions. These kinds of solutions can be more appropriate when the importance levels of all 
objective functions are equal. On the other hand, for lower values of γ, the solution method 
results in solutions with bigger satisfaction degrees for some objectives with higher importance 

ܼଵሺܼଶሻ
ܼଵ

ேூௌሺܼଶ
ேூௌሻ ܼଵ

௉ூௌሺܼଶ
௉ூௌሻ 

 ௓మሻߤ௓భሺߤ

1 
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levels than others. These solutions are unbalanced compromised solutions. These kinds of 
solutions can be more appropriate when the importance levels of the objective functions are 
different. 

Step 6. Apply the given coefficients ( ௛ߠ ,γ). Solve the equivalent single-objective MILP 
problem. If the decision maker is satisfied with the obtained efficient compromised solution, 
then stop. Otherwise, change the value of some controllable parameters (ߚ and γ), and go back 
to Step 2. 

The validity and efficiency of the proposed OSSP model is checked and shown by the use of 
several numerical instances in Section 5. These instances are generated randomly by the use of a 
classic approach in the literature. 

It should be mentioned that changing the values of controllable parameters of equivalent single-
objective MILP problem (i.e., (32)-(37)) results in obtaining a set of non-dominated solutions as 
Pareto-optimal solutions for the BOMILP model given by (24). It means that each optimal 
solution of the final MILP model is an efficient solution to the BOMILP model.  

4. The Proposed MOPSO 
 
     As mentioned in Section 1, the OSSP studied have belongs to a class of NP-hard problems. 
Thus, to solve medium to large-sized problems, an efficient multi-objective particle swarm 
optimization (MOPSO) algorithm is proposed. 

4.1. Classic PSO  
 
     Particle swarm optimization (PSO) has roots in two main component methodologies. Perhaps 
more obvious are its ties to artificial life (A-life), in general, and to bird flocking, fish schooling, 
and swarming theory in particular. It is also related, however, to evolutionary computing, and 
has ties to both GA and evolutionary programming [11]. 

     A swarm is composed of particles such as birds, fishes, bees, etc. Each particle searches the 
area for food with its velocity and always remembers the best position found. This value is 
called pbest. In addition, each member of the swarm knows the best position found by its best 
informant or by the group globally. This value is called gbest. Therefore, there are three 
fundamental elements for the calculation of the next displacement of a particle: 1) according to 
its own velocity, 2) towards its best performance, and 3) the best performance of its best 
informant. The way in which these three vectors are combined linearly via confidence 
coefficients is the basis of all versions of the “classic” PSO [6]. 

4.2. Advantages of PSO 
 
• The main advantages of PSO are its simplicity (both conceptually, and at the 

implementation level), its ease of use and its high convergence rate. In fact, PSO is a good 
candidate to design an “ultra-efficient” multi-objective evolutionary algorithm [7]. 

• PSO is an evolutionary algorithm, and its population to the population approach enables the 
search to escape from the local optima.  

• The inertia weight in the equations of motion controls the exploration and exploitation. A 
larger ݓ  can prevent particles from becoming trapped in local optima, and a smaller ݓ 
encourages particles exploiting the same search area [26]. 
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4.3. The Proposed MOPSO (PMOPSO)  
 
     To solve the BOMILP model presented in Section 2, an efficient MOPSO is designed as 
follows. 

4.3.1. Solution Representation  
 
     Two kinds of a solution representation are used in this algorithm: (1) Operation-based array 
or permutation list, and (2) Continuous representation. Each particle has these two 
representations simultaneously, each of which is used in different steps of the proposed MOPSO 
(PMOPSO).  

4.3.1.1. Operation-Based Representation 
  
     This kind of representation is typically applied in the literature of OSSP. The operation-
based array or permutation list is a single-row array. Each job should be processed on each 
machine once and the processing order of operations is immaterial (i.e., a feasible sequence) for 
a problem with n jobs and m machines. It is a single-row array consisting of n×m elements that 
is equal to the number of the operations. In this representation, operations are listed in the 
relative order by which they are scheduled. Figure 3 illustrates a permutation list. In this figure, 
p shows the position of an operation in the list. 

p= n×m …  p=4 p=3 p=2 p=1 
Oij  … O13  O22  O16  O43 

 
Figure 3. Operation-based representation/permutation list 

 
 
     The common decoding procedure using a permutation list is as follows. Each operation, 
according to its corresponding relative order, is scheduled at the earliest time the job and the 
machine are both available. For instance, in order to decode the permutation list of Figure 3, job 
4 is first scheduled on machine 3. Then, job 1 is scheduled on machine 6 and so on. It is 
supposed that max൛ܥ௜௝ൟ, ݅׊, is equal to the maximum completion time of jobs on machine j and 
max൛ܥ௜௝ൟ, ݆׊, is equal to the maximum completion time of job i. Thus, the starting time and 
completion time of each operation is calculated by: 

(38) ,                                     } , max൛ܥ௜௝ൟ {0 ,  max൛ܥ௜௝ൟ max ܶݏ௜௝ ൌ  
   

௜௝ܥ                                                   ൌ ௜௝ݏܶ ൅ ௜ܵ௝ ൅ ௜௝݌ ൅ ܴ௜௝.                                                             (39) 
 

     By the use of common decoding procedure, a semi-active schedule is obtained. The set of 
semi-active schedules is very large and has poor quality in terms of the objective functions 
considered in this study. Therefore, designing an effective decoding scheme to decode the 
particle position into a schedule within a smaller schedule set with a better solution quality will 
improve the efficiency of PMOPSO algorithm. So, a modified decoding procedure by an 
operation-based array is proposed. This procedure can achieve an active schedule or a semi-
active schedule with a higher quality in terms of the two objective functions. In fact, this 
heuristic procedure reduces the search area in the solution space but does not exclude the 

݅׊ ݆׊
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optimal solution. Thus, the execution time of the proposed MOPSO algorithm is spent on 
exploiting the solution space appropriately and searching the efficient solutions in a set of high 
quality schedules. The steps of the proposed modified decoding scheme are presented below. 

Two notations should be first introduced before presenting the steps of the procedure.  

 
                     ௜     Earliest time job i is available for the next operationܣܬܶ
 
 ௝    Earliest time machine j is available/free againܣܯܶ
 
Step 1. Consider a permutation list as shown in Figure 3. At first,  ܶܣܬ௜ and ܶܣܯ௝ ,  ݆׊ ,݅׊, are 
equal to 0. 

Step 2. Select the operation that is in the first position (p=1) and schedule it by the use of 
Equations (38) and (39). Select the operations of different jobs and different machines such as 
Oij, and  Okh, according to the corresponding relative order of the operations. Schedule these 
operations by the use of Equations (38) and (39).  

Step 3. Update the ܶܣܬ௜ and ܶܣܯ௝ , ݆׊ ,݅׊, such that 

௜ܣܬܶ ൌ  Max൛ܥ௜௝ൟ ,  ݆׊ ,                                              

௝ܣܯܶ . ݅׊ , ൌ Max൛ܥ௜௝ൟ  
Check the array. If all of the operations are scheduled then stop.  

Step 4. According to the corresponding relative order of the operations, consider an operation 
such as Oij that is not scheduled yet. If  ܶܣܯ௝ ൏  ௜ then go to Step 5; otherwise, schedule thisܣܬܶ
operation by the use of Equations (38) and (39), and go back to Step 3.  

Step 5. Set ܶܣܯ௝ ൌ ௝ܣܯܶ ൅ ௜ܵ௝ and delete ௜ܵ௝ from Equation (39), and schedule this operation 
by the use of Equations (38) and (39), and then go back to Step 3.  

The following instance can show the performance of this procedure. Consider a problem with 
three jobs and three machines. Each job must be processed on every machine once. Thus, there 
are nine operations to be scheduled. Assume that the permutation list illustrated in Figure 4 
depicts a feasible sequence of this example. Figure 5 shows the Gantt chart of a feasible solution 
obtained by the use of the common decoding procedure. Figure 6 shows the Gantt chart of a 
feasible solution obtained by the use of the proposed decoding procedure. The dark color 
represents the setup task and the grey color represents the removal task. The results that indicate 
the schedule obtained by the use of the common procedure has poor quality in terms of two 
performance measures but the schedule obtained by the use of the proposed procedure is an 
active schedule and has a higher quality. 

It is assumed: 

݀1= 10 , ݀2= 7 , ݀3= 12 
 2 =3ݓ , 3 =2ݓ  , 1 =1ݓ
   .1 =3ݒ , 2 =2ݒ , 3 =1ݒ
So, the objective functions values are: 
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4.3.1.2. Continuous Representation 
 
     Continuous representation is a single-row array including n×m real numbers, when there are 
n jobs and m machines. Each of these real values indicates a particle’s position in each 
dimension of the n×m-dimensional space that they move in. For these values, an interval [0, 
Xmax] puts a limit on the minimum and maximum distances each particle is permitted to move in 
each dimension. In our work here, the continuous representation matrix for particle k, ሾܺሿ݇ଵൈ௡௠ 
, is composed of n×m random continuous numbers between [0, Xmax]= [0, 4]. 

     As mentioned before, each particle has two representations simultaneously. The position of a 
particle does not represent a solution for the original problem. This type encoding scheme is 
applied during the execution of the main loop of PSO and should be transformed into an 
operation-based array in order to obtain a solution of the OSSP. Meanwhile, a permutation list 
needs to be transformed into a continuous representation used in PSO. To convert the operation-
based array into the continuous representation, at first, select n×m random numbers between 0 
and 4. Then, sort these numbers in ascending order. Assign the smallest number to p = 1, assign 
the next smallest to p = 2 and so on [23]. Table 2 and Figure 7 show this transformation for the 
array given in Figure 4. In addition, to construct a permutation list, the operation standing on the 
first position (i.e., p=1) is the operation equivalent to the smallest number, the operation stand 
on the second position is the operation equivalent to the next smallest number of the continuous 
representation, and so on.  

 
Table 2. A sample set of random numbers 

No. 
9 

No. 
8 

No. 
7 

No. 
6 

No. 
5 

No. 
4 

No. 
3 

No. 
2 

No. 
1 

3.52 3.240.242.3 1.182.9  2.44 3.8  1.65
 
 

3.8 3.523.242.92.442.3 1.65 1.18 0.24
 

Figure 7. Continuous representation of Figure 4 
 
 
4.3.2. Initialization 
  
     The initial position of a particle can be generated by using some common ways (i.e., random 
generation, local search methods, meta-heuristic algorithms, etc.). In this paper, a simple local 
search is applied to generate the initial set of solutions or the population. The algorithm goes as 
follows. Construct a set of random sequences of operations as permutation lists (as many as the 
number of the particles). Generate all the feasible sequences in the neighborhood of each 
permutation list by using the swapping procedure of two adjacent or non-adjacent operations as 
a movement function. The best feasible solution obtained for each particle using these 
neighborhood searches is a member of the initial population or initial particle positions.  

     The best solution found by solving MODM problems is an efficient solution of the Pareto-
optimal frontier. These Pareto-optimal solutions improve all the optimization criteria 
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simultaneously. They dominate other solutions in the feasible region. Consider the following 
multi-objective model:  

                                                  min ሻݔሺܨ  ൌ ሼ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ௡݂ሺݔሻሽ                                     (40) 
                                                            s.t. 

                                               ݃௞ሺݔሻ ൥
൑
൒
ൌ

൩ 0, ݇ ൌ 1,2, … , ݉                                                        (41) 

ݔ                                                     א  ௡.                                                                                  (42)ܧ
 
    A Solution x is said to dominate a solution ݔො if and only if:  

ሻݔ௜݂ሺ  , ,݅׊                                                                        (43) ൑ ௜݂ሺݔොሻ                                             
  

ሻݔ௝݂ሺ (44)                                                                       ݆׌  . ൏ ௝݂ሺݔොሻ                            
 

By using transformation procedure to build continuous representation described in the previous 
section, each member of the generated population is prepared to be applied in the main loop of 
PSO as the particles, initial positions. 

4.3.3. Generating Initial Velocities  
 
     In PSO, each particle requires the initial velocity equivalent to its initial position in order to 
make a movement in a search space. Since the position matrix of the particles is a single row 
array made of real values, the continuous values are assigned to velocities as well. In this paper, 
the initial velocity matrix is a single-row array made of n×m continuous values between ݒmin and 
  max , which are set to -4 and 4, respectively. Each value is computed byݒ

 (45)                                                   , 1ݎ*(minݒ – maxݒ)+ minݒ  =(݇)ijݒ                                                
 

Where, rl is a random variable between 0 and 1. The range of acceptable velocity values is 
chosen such that |ݒij(݇)|≤ Xmax, where ݒij(݇) is the velocity of job i on machine j for particle k. 

4.3.4. Updating Velocity and Position Values    
   
     For solving multi-objective problems by PSO, the most important item that should be paid 
more attention is the selection procedure of the gbest and pbest for each particle when the 
velocity and position of particles should be updated. 

     The analogy of PSO with evolutionary algorithms makes it evident that using a Pareto 
ranking scheme can be the straightforward way to extend the approach to handle multi-objective 
optimization problems. The historical record of best solutions found by a particle (i.e., an 
individual) can be used to store non-dominated solutions generated in the past, this being similar 
to the notion of elitism used in evolutionary multi-objective optimization. The use of global 
attraction mechanisms combined with a historical archive of previously found non-dominated 
vectors motivate convergence towards Ptrue [7]. 

     For each particle, there is a pbest archive that can save all the best positions found by the 
particle. Actually, these positions are non-dominated solutions and each particle has its own 
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approximate Pareto solutions archive. When a new solution is obtained, it is compared with the 
ones in pbest archive based on the domination principle. If this new solution dominates any 
other in the pbest archive, that archived solution is removed from the pbest archive and the new 
solution is placed in the archive. Moreover, there is a gbest archive for the group and the global 
best solutions are saved. This set of Pareto solutions are obtained using the fast non-dominated 
sorting procedure proposed by Deb et al. [8]. Updating the gbest archive is done like updating 
the pbest archive. That is, if a new solution dominates any other in the gbest archive, that 
archived solution is removed from the gbest archive and the new solution is placed in the 
archive.   

     Here, to select the gbest and pbest of each particle for updating velocity and position values, 
a new procedure from the literature is applied [3]. To maintain diversity in the search and 
escape from the local optima, each gbest has a chance to be selected. The steps of this selection 
procedure are presented below: 

Step 1. Divide the number of the particles into the number of the gbest archive.  

Step 2. Consider the remainder. If the remainder is equal to 0, then the number of times for each 
member of gbest can be selected to update the velocity of the particles equal the sub-multiple 
value, and go to Step 4; otherwise, go to Step 3.  

Step 3. Calculate the crowding distance proposed by Deb et al. [8] for each member of gbest. 
Sort these obtained values in descending order and choose the first k members of gbest (as many 
as the remainder value). The number of times each member of gbest except these k members of 
gbest can be selected to update the velocity of the particles is equal to the sub-multiple value. 
However, these k members of gbest have one more chance than other members to be selected. G 
Then, go to Step 4.  

Step 4. Select the gbest and a pbest for each particle. To assign the gbest to a particle, the 
minimum Euclidean distance of that particle from the gbests, which still has a chance to be 
selected, is considered. It means that the nearest gbest to each particle, which still has a chance, 
is chosen. To assign a pbest to a particle, the pbest with the maximum Euclidean distance from 
the gbest assigned to that particle is chosen. Stop.    

     The following numerical example can describe the mentioned steps clearly. Assume that a 
PSO algorithm has 90 particles and the number of members of gbest in the gbest archive is 
equal to 7. If we divide 90 into 7, the sub-multiple value is equal to 12. So, each member of 
gbest can be selected 12 times. However, the remainder does not equal 0. It means that 6 
particles do not have gbest values for updating velocity and position values. In this case, we 
calculate the crowding distance for each member of gbest and sort the resulting numbers in 
descending order. The first 6 members of gbest with large crowding distance values are 
considered. These members can be selected 13 times. 

     Finally, the velocity and position values of each particle with the corresponding selected 
pbest and gbest are updated by the use of the equations of velocity and motion computed by 

 
 [id (t)ݔ-gd (t)݌]2ݎc2+[id (t)ݔ-id (t)݌]1ݎid (t)+ܿ1ݒ(t)ݓ =id (t+1)ݒ

                                                                                                                                           (46) 
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 ,id (t+1)ݒ+id (t)ݔ=id (t+1)ݔ
 
Where, ݓ(t) is the inertia weight representing the particle’s preference to continue moving in 
the same direction it was going in the previous iteration. This value is updated as follows: 
 are respectively 2ݎand  c2 1ݎis a decrement factor. In addition, ܿ1 ߙ where ,ߙ×(1-ݐ)ݓ=(ݐ)ݓ
confidence coefficients in a particle best performance and that of its best  informant, t represents 
the iteration number,  ݎଵ, ݎଶ are the random variables in [0,1], i is the index of the particle and d 
is the index for the search space dimensions.   

     When the PMOPSO is iterated as many as a pre-specified value, the multi-objective 
optimization process is terminated and the set of solutions of the final gbest archive is reported 
as the Pareto/efficient solutions of the BOMILP problem. 

5. Computational Results 
 
     To examine and analyze the validity and efficiency of the mathematical model presented in 
Section 2, the proposed MODM method discussed in Section 3, and the performance of the 
PMOPSO given in Section 4, several small, medium and large size numerical instances are 
generated randomly using a classic approach existing in the literature. Small size problems are 
solved exactly by using the Lingo software in a few minutes and the results obtained by the TH 
method are analyzed. Since for more than 4 jobs and 4 machines Lingo cannot yield an optimal 
solution, even after several hours running, in order to solve medium to large size problems, 
PMOPSO is used. Finally, the performance of this method is compared with the common 
MOPSO (CMOPSO) by the use of the design of experiments (DOEs) based on three 
comparison metrics. These two algorithms are coded in Turbo C++ 4.5. 

5.1. Generating Numerical Examples 
  
     The processing times and due dates are considered as symmetric triangular possibilistic 
distributions calculated by:  

෨ܲ௜௝ ൌ ൫ ௜ܲ௝ െ ,௜௝ݑ ௜ܲ௝ , ௜ܲ௝ ൅   ௜௝൯ݑ
ሚ݀௜ ൌ ሺ݀௜ െ ,௜ݑ ݀௜, ݀௜ ൅  , ௜ሻݑ
 
where ௜ܲ௝ , ݀௜ are  the  most  possible values and ݑ௜௝, ݑ௜ represent the extension values of these 
fuzzy numbers. Here, we use, a classic approach from the literature, proposed by Loukil et al. 
[17], to generate the numerical instances for the scheduling problems: The most possible values 
of processing times and due dates are generated using the uniform distribution of [0,100] and 

ቂܲ ቀ1 െ ܶ െ ோ
ଶ

ቁ , ܲ ቀ1 െ ܶ ൅ ோ
ଶ

ቁቃ , respectively, where ܲ ൌ ሺ݉ ൅ ݊ െ 1ሻ തܲ , with തܲ ൌ
∑ ∑ ௜௝/ሺ݊݌ ൈ ݉ሻ௠

௝ୀଵ
௡
௜ୀଵ  as the mean of most possible values of the processing times. Two 

parameters R and T take their values in the set of {0.2, 0.6, 1} and {0.4, 0.6, 0.8}, respectively. 
The values of  ݑ௜௝ and ݑ௜ are uniformly distributed in the interval [2, 10]. Also, the setup times 
and removal times are random variables between 15 and 55. Finally, the values of priority and 
tardiness penalty, ݒ௜ and ݓ௜, are selected randomly between 1 and 9.  

By the use of the above-mentioned method, to generate small size examples, the number of jobs 
can be 4 or 5 or 6 and the number of machines can be equal to 2 or 3 or 4. Also, to generate 
medium to large size examples, the number of jobs can be equal to 10 or 12 or14 or 20 or 30 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

01
 ]

 

                            17 / 28

http://iors.ir/journal/article-1-148-en.html


78                                                                 Noori Darvish, Tavakkoli-Moghaddam and Javadian 

 
 
and the number of machines can be any value between 5 to 9. For each of these random 
instances, the open shop environment is defined as numbers of jobs×machines. For instance, the 
problem 6×2 indicates an open shop environment with 6 jobs and 2 machines. 

5.2. Parameter Settings and Assumptions  
 
     Several experiments are implemented in different sizes and different sets of controllable 
parameters. From which, the effective values in terms of solution quality and computational 
time are chosen. The parameters of the TH method and those of the generating instances 
approach are as follows. The final MILP model obtained in Section 3 has very little sensitivity 
to the parameter ߚ . Thus, the values of this parameter are set arbitrarily to 0.4 and 0.8. 
Parameter ߛ takes its values in the set {0, 0.1, …, 1}. Also, it is assumed that the preference 
information corresponding to the relative importance of the objective functions are specified 
linguistically by the decision maker as  θ1= θ2 and θ1> θ2. So, the values of these parameters in 
the first case are θ1= θ2= 0.5, and in the second case are θ1= 0.7, θ2= 0.3. The values of the 
controllable parameters R and T are specified later.  

     According to the values proposed in the literature [3, 6, 11], the parameters of the PMOPSO 
algorithm (i.e., c1 and c2, ݓ(t), the reducing factor (α), the number of particles/solutions in each 
iteration (N), and the number of iterations; (i.e., stopping criteria) are set to c1 = c2= 2, ݓ(t)= 
 N=100, and the number of iterations is set to 50. Furthermore, each example is  ,0.9 =ߙ ,0.975
solved 10 times independently.   

5.3. Computational Results for Small Size Problems  
 
     Different combinations of jobs and machines in small sizes are considered to make three 
types of sample examples. For each kind of these examples, four numerical instances are 
generated randomly. The characteristic of sample examples and the values of controllable 
parameters for each numerical instance are presented in tables 3 and 4.  

     The values of positive ideal solutions (ܼ௜
௉ூௌ) and negative ideal solutions (ܼ௜

ேூௌ) and the 
computing times (in seconds) for each numerical instance are illustrated in Table 6. It should be 
noted that to solve the final MILP model by the use of Lingo 8, the values of PIS and NIS of 
each objective function is calculated as described in Section 3. തܶ௪ and ܥҧ௩ represent weighted 
mean tardiness and weighted mean completion times, respectively. The final MILP model are 
exactly solved for each numerical example by the Lingo 8 software package, applying the 
obtained values of PIS and NIS corresponding to each optimization criterion. The results of a 
given example (i.e., 4×4-d) are presented in Table 7.  
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Table 3. Characteristic of small size sample examples  

N
o.
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Sa
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ex
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235 120 2 6 6×2 1 
291 145 3 5 5×3 2 
309 152 4 4 4×4 3 

 
 

 
Table 4. Values of controllable parameters for each numerical instance 

Numerical 
instances R T β  

a 0.2 0.8 0.4 
b 0.6 0.6 0.4
c 1 0.4 0.8
d 0.2 0.4 0.8

 
Considering the computational results for small size problems, the following observations are 
made.  

• The TH method performs correctly and efficiently in more cases with different relative 
importance of optimization criteria. It means that, according to the relative importance, the 
solutions found by this method are unbalanced compromised solutions. However, in some 
cases, the TH method does not perform well and the satisfaction degree of the objective 
function with a lower importance is more than that of the objective function with a higher 
importance.  

• When the relative importance is the same, in some cases, the satisfaction degree of the 
objective functions are very close to each other. It means the that solutions found by the TH 
method are approximately balanced compromised solutions.   

• As mentioned in Section 3, each optimal solution of the final MILP model is an efficient 
solution to the BOMILP model. Thus, by changing the values of controllable parameters 
(i.e., ߛ and ߠ) in more cases, two or three Pareto-optimal solutions are found by the TH 
method. Figure 8 depicts the Pareto-optimal frontier of the example 4×4-d.   

 
5.4. Computational Results for Medium to Large Size Problems  
 
     In this section, the performance of the PMOPSO algorithm with the characteristics and 
features described in Section 4 is compared with the CMOPSO algorithm, not having these 
features. Therefore, the differences between the algorithms are as follows:  

• For CMOPSO, the initial population is generated randomly. 
• The common decoding procedure by permutation list is used in CMOPSO. 
• In CMOPSO, the gbest with the maximum crowding distance is selected for updating the 

velocity of particles. 
• The pbest for updating the velocity of particles are selected randomly in CMOPSO. 
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It should be noted that for both PMOPSO and CMOPSO, the fuzzy parameters of OSSPs are 
converted into the crisp parameters by use of the approach discussed in Section 2. Different 
combinations of jobs and machines in medium and large sizes are considered to generate five 
examples randomly. These examples are solved by the PMOPSO and the CMOPSO algorithms. 
The characteristic of the sample examples and the values of the controllable parameters are 
presented in Table 5. By solving the above sample examples, the performance of the PMOPSO 
is compared with CMOPSO by the use of the design of experiments (DOEs) based on three 
comparison metrics.   

 

Table 5. Characteristic and values of controllable parameters of medium to large size example 

N
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5 10 10×5 1 
6 12 12×6 2 
7 14 14×7 3 
8 20 20×8 4 
9 30 30×9 5 

R = 0.2  ,  T = 0.4  , β = 0.8
 

 
5.4.1. Performance Evaluation Metrics   
 
To evaluate the performance of the proposed MOPSO (i.e., PMOPSO) and common MOPSO 
(i.e., CMOPSO), three useful comparison metrics in the literature are taken into account. These 
metrics are described below: 

• Quality Metric (QM): This metric represents the number of Pareto-optimal solutions found 
by each algorithm. Based on this metric, the algorithm that finds more Pareto-optimal 
solutions has a higher quality. However, some Pareto solutions of an algorithm may 
dominate those obtained by other algorithms. So, the number of final non-dominated 
solutions found by each algorithm is noted.  

• Diversity Metric (DM): This metric is applied to estimate the spread of the obtained Pareto-
optimal solution set found by each algorithm and is calculated by 

 
ܦ                                            ൌ ඥ∑ maxሺ|ݔ௜ െ ,|௜ݕ ,Ԧݔ Ԧݕ א ሻ௡ܨ

௜ୀଵ ,                                             (47) 
 

where, F denotes the set of obtained Pareto-optimal solutions and n is the dimension of the 
solution space that is equal to the number of optimization criteria. 

• Spacing Metric (SM): To estimate the uniformity of the spread of the points of the obtained 
Pareto-optimal solution frontier, the spacing metric is applied and calculated by 
 

                                                        ܵ ൌ 
∑ |ௗ೔ିௗത|ಿషభ

೔సభ
ሺேିଵሻௗത

 ,                                                              (48) 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

01
 ]

 

                            20 / 28

http://iors.ir/journal/article-1-148-en.html


A Multi-Objective Particle Swarm Optimization Algorithm                                                       81 
 

 
 

Where, di denotes the Euclidean distance between the consecutive solutions of the obtained 
the Pareto-optimal solution set, ҧ݀ represents the mean value of all Euclidean distances and N is 
the number of obtained Pareto-optimal solutions. 

The computational results corresponding to these three performance metrics for medium to large 
size problems are presented in tables 8-10. 

5.4.2. Design of Experiments  
 
     To analyze the results of solving medium to large size problems, two-factor factorial 
experiments are designed to examine the effect of the two solution methods on five test 
problems with respect to each of the comparison metrics, with 10 times executions. Thus, the 
following statistical linear model [19] can represent the results of tables 8-10: 

௜௝௞ݕ                                        ൌ ߤ ൅ ߬௜ ൅ ௝ߚ ൅ ሺ߬ߚሻ௜௝ ൅ ௜௝௞ߝ ൝
݅ ൌ 1,2            
݆ ൌ 1,2, … ,5   
݇ ൌ 1,2, … ,10

                                 (49) 

 
where, ߤ  is a common effect for the whole experiment, ߬௜  is the effect of the i th solution 
method, ߚ௝ is the effect of the j th  test problem, ሺ߬ߚሻ௜௝ is the interaction of the i th solution 
method and the j th test problem and ߝ௜௝௞ is the random error. 

It should be mentioned that the adequacy of factorial designs is checked first. The hypothesis 
test is considered as follows. The row treatment (i.e., solution methods) effects are equal to 0. 
The column treatment (i.e., test problems) effects are equal to 0. The interactions are equal to 0. 
In addition, the significance level (α) is set to be 0.05. Thus, we set the following tests: 

 
:଴ܪ                                                               ߬ଵ ൌ ߬ଶ ൌ 0                                                           (50) 
:ଵܪ                                                               ߬ଵ ് ߬ଶ  
 
:଴ܪ                                                               ଵߚ ൌ ଶߚ ൌ ڮ ൌ ହߚ ൌ 0                                         (51) 
௝ߚ ଵ: at least oneܪ                                                               ് 0  
 
:଴ܪ                                                               ሺ߬ߚሻ௜௝ ൌ 0                                                             (52) 
ሻ௜௝ߚଵ: at least one ሺ߬ܪ                                                               ് 0  
 
     The ANOVA test is performed by the use of the SAS 9.1 software. Table 11, gives the 
ANOVA results for the QM. Considering the results, the P-Value for the solution method main 
effect is less than α=0.05. So, the solution method effect is significant. It means there is a 
significant difference between the mean values for the two solution methods. However, the test 
problem effect and the interaction are not significant. Figure 9 indicates that more Pareto 
solutions are found by PMOPSO, and this method outperforms CMOPSO.  

     Table 12 shows the ANOVA result outperforms for the DM. Considering the results, the P-
Value for the solution method main effect and that for the test problem main effect is less than 
α=0.05. So, the solution method effect and test problem effect are significant. In addition, the 
test problem effect for diversity is more than the effect of the solution method. However, the 
interaction is not significant. The diversity of solutions found by PMOPSO is more than 
CMOPSO. Thus, PMOPSO performs better than CMOPSO as shown in Figure 10. 
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   The ANOVA result for the SM, which are illustrated in Table 13, shows that the P-Value for 
the solution method main effect and that for the test problem main effect is less than α=0.05. 
Therefore, the effects of the solution method and test problem are significant. Furthermore, the 
solution method effect for spacing metric is more than the test problem effect. Moreover, the 
interaction is not significant. The spacing metric value for solutions found by the PMOPSO is 
less than CMOPSO as shown in Figure 11. So, the performance of PMOPSO is better than 
COMPSO. 

    Considering the above observations, all the three test of hypotheses theses show the 
significant effect and better performance of PMOPSO over CMOPSO based on all comparison 
metrics.  

6. Conclusion 
 
     A, bi-objective possibilistic programming formulation was presented for an open shop 
scheduling problem. An interactive approach proposed by Torabi and Hassini (i.e., the TH 
method) was applied to transform the original model into an auxiliary single-objective one and 
achieve the Pareto-optimal solutions for small size problems. Examining the results, in more 
cases, the TH method performed well according to the relative importance of the objective 
functions, finding two or three Pareto-optimal solutions. To find a good approximate Pareto-
optimal set, an efficient multi-objective particle swarm optimization algorithm (PMOPSO) was 
proposed. This algorithm exploited new selection regimes of the literature for the global best 
(i.e., gbest) and personal best (i.e., pbest). Moreover, a modified decoding scheme was designed 
in order to reduce the search area in the solution space and a local search was proposed to 
generate the initial population. The medium to large size instances were solved by the use of the 
PMOPSO algorithm and the obtained results were compared with the results of the CMOPSO 
not having the features of the PMOPSO. The computational results were analyzed by the use of 
the design of experiments based on three comparison metrics (i.e., QM, DM and SM) as 
response variables. The results of ANOVA showed the significant effect and a better 
performance of PMOPSO over than the CMOPSO. 
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Table 6. Values of positive and negative ideal solutions and the computational times (sec.)
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 7. Computational results and the computational times (sec.) of example 4×4-d 

 

Z2=ܥҧ௩  Z1= തܶ௪ Sample 
example TimeNIS  PIS  TimeNIS PIS  

5 352.18298.1411 370.67312.71 6×2-a 
21 376.4 333.1526 204.1 154.27 6×2-b 
18 551.15397.8225 222.13128.25 6×2-c 
31 361.95346.0549 136.6 87.23 6×2-d 
79 365.18349.64107 229.71225 5×3-a 

101 405.94314.83187 223.54139.32 5×3-b 
219 376.56315.65301 151.86102.57 5×3-c 
415 388.75310.87461 170.44109.11 5×3-d 
387 309.71268.07432 252.63229.5 4×4-a 
407 386.47268.47425 193.41153.59 4×4-b 
354 414.21366.14392 226.4 207.6 4×4-c 
507 180.45138 545 132.73115.67 4×4-d 

θ1 = 0.7  ,  θ2 = 0.3 θ1 = 0.5  ,  θ2 = 0.5 
γ  

Time2µ  1µ Z2 Z1 Time2µ  1µ  Z2  Z1  
434 0.3404 0.8986 166  117.4  499 0.3404 0.8986 166  117.4  0  
507 0.3404 0.8986 166  117.4  456 0.7173 0.5082 150  124.06 0.1 
635 0.3404 0.8986 166  117.4  745 0.7173 0.5082 150  124.06 0.2 
518 0.3404 0.8986 166  117.4  480 0.7173 0.5082 150  124.06 0.3 
546 0.3404 0.8986 166  117.4  588 0.7173 0.5082 150  124.06 0.4 
623 0.3404 0.8986 166  117.4  711 0.7173 0.5082 150  124.06 0.5 
642 0.3404 0.8986 166  117.4  635 0.5653 0.5275 156.45 123.53 0.6 
785 0.3404 0.8986 166  117.4  807 0.5653 0.5275 156.45 123.53 0.7 
804 0.5653 0.5275 156.45 123.53 841 0.5653 0.5275 156.45 123.53 0.8 
741 0.5653 0.5275 156.45 123.53 755 0.5653 0.5275 156.45 123.53 0.9 
873 0.5653 0.5275 156.45 123.53 903 0.5653 0.5275 156.45 123.53 1  

β = 0.8     T= 0.4       R= 0.2 
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Table 8. Computational results of the quality metric 

 
 

 
Table 9. Computational results of the diversity metric  

 
 

Test 5 Test 4Test 3Test 2Test1  Quality Metric 
5  3  2  4  4  

PM
O

PS
O

 
5  7  3  1  4  
1  6  1  5  4  
3  4  1  4  2  
2  6  7  4  3  
4  4  2  3  4  
2  1  3  6  5  
2  2  4  2  5  
3  5  3  2  2  
4  2  1  4  1  
2  3  1  4  4  

C
M

O
PS

O
 

3  2  1  2  3  
2  1  2  3  1  
3  2  2  1  0  
1  2  1  2  3  
3  1  3  5  5  
0  6  3  1  3  
5  1  4  2  3  
3  3  0  4  2  
2  2  2  0  2  

Test 5 Test 4 Test 3 Test 2 Test1  Diversity Metric 
801.15  387.49  461.43  395.28  326.12  

PM
O

PS
O

 

512.98  610.20  418.87  362.89  484.33  
637.03  347.67  585.86  510.92  421.24  
595.08  260.12  243.81  371.45  85.33  
680.45  651.08  677.26  402.18  471.29  
690.49  548.31  624.82  391.04  270.83  
870.59  535.09  532.21  587.88  498.16  
589.54  596.64  486.06  453.82  421.24  
418.75  573.63  537.56  475.80  326.12  
948.07  608.01  645.05  385.28  85.33  
530.84  411.31  612.58  525.89  305.27  

C
M

O
PS

O
 

789.90  470.30  352.59  431.04  244.87  
738.95  577.14  210.97  446.19  258.62  
817.02  374.81  567.02  307.01  72.29  
379.98  111.07  564.82  361.98  252.28  
792.92  460.10  74.02  276.13  306.40  
362.39  565.26  400.90  353.75  428.16  
867.85  338.07  318.90  389.80  326.32  
488.33  602.01  512.88  450.86  254.30  
507.98  144.43  376.03  304.22  283.22  
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Table10. Computational results of the spacing metric 

 
 

 
Table 11. ANOVA result for the quality metric 

P-Value F0 MS  SS  DF Source of Variation 
0.001  11.14  26.01  26.01  1  Method  
0.452  0.93  2.16  8.66  4  Test Problem 
0.838  0.36  0.83  3.34  4  Interaction  

    2.33  210.10  90  Error  
      248.11  99  Total  

 
 

Table 12. ANOVA result for the diversity metric 
P-Value F0 MS  SS  DF Source of Variation 

0.007  7.67  152245  152245  1  Method  
0.000  15.80  313586  1254343  4  Test Problem 
0.879  0.30  5907  23627  4  Interaction  

    19845  1786034  90  Error  
      3216248  99  Total  
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Table 13. ANOVA result for the spacing metric 
P-Value F0 MS  SS  DF Source of Variation 

0.012  6.53  5.13  5.13  1  Method  
0.046  2.52  1.98  7.93  4  Test Problem 
0.457  0.92  0.72  2.88  4  Interaction  

    0.78  70.74  90  Error  
      86.70  99  Total  

 
 
 
 

 
 

Figure 8. Pareto-optimal frontier of example 4×4-d 
 

 
Figure 9. Effect of the solution method for the quality metric 
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Figure 10. Effect of the solution method for the diversity metric 

 
Figure 11. Effect of the solution method for the spacing metric 
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