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Linear plus fractional multiobjective programming problem with
homogeneous constraints using fuzzy approach

Sanjay J ain' and Kailash Lachhwani’

We develop an algorithm for the solution of multiobjective linear plus fractional
programming problem (MOL+FPP) when some of the constraints are homogeneous in
nature. Using homogeneous constraints, first we construct a transformation matrix T
which transforms the given problem into another MOL+FPP with fewer constraints. Then,
a relationship between these two problems, ensuring that the solution of the original
problem can be recovered from the solution of the transformed problem, is established.
We repeat this process of transformation until all the homogeneous constraints are
removed. Then, we discuss the multi objective programming part, for which fuzzy
programming methodology is proposed which works for the minimization of perpendicular
distances between two hyper planes (curves) at the optimal points of the objective
functions. A suitable membership function is defined with the help of the supremum
perpendicular distance. A compromised optimal solution is obtained as a result of the
minimization of the The supremum perpendicular distance. The corresponding optimal
solution to the original problem is obtained using the transformation matrix. Finally, an
example is given to illustrate the proposed model.

Key words: Linear plus fractional functional, Transformation matrix, Distance function,
Membership function.

1. Introduction
Decision-making problems occuring in the real world are generally multi criteria decision-making
(MCDM) problems. Many researchers such as Wallenius [12], Hanan [6], Feng [4], Chanas [1] and
Rommelfanger [10] used and or modified the concept of decision making in fuzzy environment.
They discussed different approaches to deal with the multiobjective programming problems. Also,
many iterative algorithms have been studied as given by Charnes and Cooper [2], Swarup [11],
Martos [9], Jain and Mangal [7] for solving fractional programming problems. Jain and Lachhwani
[8] discussed a solution methodology for multiobjective linear fractional programming problem, in
which the objective function in of the form % Here, we address form which we denote by
MOL+FPP.
A multiobjective linear plus fractional programming problem (MOL+FPP) seeks to optimize

9(X)
h(X)

quotient function, where f(X), g(X) and h(X) are linear functions subject to linear

more than one objective functions of the form f (X ) + !, that is the sum of a linear and a
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constraints under the assumptions that the set of the feasible solutions is a convex polyhedron with
a finite number of extreme points and that the denominators of the fractional part of the objective
functions are nonzero on the feasible set.

We present an algorithm that performs to be better than other iterative methods as it needs
computing time for the optimization process and obtains an optimum solution for a set of objective
functions of such a linear plus fractional form.

The remainder of the paper is organized as follows. In Section 2, a transformation matrix T is
constructed. In the Section 3, the relationship between the original problem and the transformed
problem is given. In Section 4, we develop fuzzy programming model for the problem by

minimizing the perpendicular distances between two hyper planes Z.(x) = Z; , and Z,(X) = Z,

where 7‘ and Z, are the maximum and minimum values of the function Z (x) in the feasible

region, respectively. Suitable membership functions are defined and a compromise optimal solution
is obtained. In Section 5, a pseudo program is given for the construction of the transformation
matrix T. An example is worked out in Section 6 to explain the model. Particular cases and
conclusions are given in Section s 7 ad 8, respectively.

2. Development of transformation matrix
Consider the problem,

Maximize {ZI(X), ZQ(X),...,Zk(X)} (D)
where, Z,(X) = (LX 1, )+ =X+ Ca Vi=12,..k
DX +d,
subject to AX =h,
and X2>0
with @, X, +a,X, +....+ 3, X, =0, for some i. 2)

Here, L,,C, and D, (i=1,2,...,k) are row vectors with n components, X and b are column
vectors with n and m components, respectively, A= (A, A,,..., A )is an m by n matrix and the
Coi» Uy (I=12,...,K) are scalars. It is assumed that D,X +d; >0 , over L , where
LI{X :AX =b, X 2 0} .Let X =(X,X,,...,X, ) be an efficient solution of (2). If X, anda, >0,
then it is obvious that there exists at least one X, with@, < 0. Taking this in view, we partition
matrix A as A= {AO JAT A_} , where A is the set of all columns of A , whenever q; = 0, (Let
the number of such columns be r), A" be the set of all columns of A, whenever ; > 0, pin
number, and finally A”be the set of all columns of A, whenever g; < 0,q in number. Thus,
p+q+r=n.

Now, we define a transformation matrix T (n by pq+r) such that the i -th equation of
ATw = b will be automatically zero. Here, w is a column vector with pg+ I components. This is

accomplished by defining W, for each pair (k,l)such that A € A"and A, € A".
Now, we partition T = (T,,T,) where T, consists of unit column vectors €; corresponding to

W, . A column corresponding to the W, looks like:
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Thus, T, which has n rows and r + pq CZ)Iumr_ls, can be represented as:
T=T.T,)=[(e;) Viea; =0; (t;) Vke A" nleA],
that is, €, is the j th column of the identity matrix In, and t, = —a,€, +a,€,. 3)

A pseudo code program is also framed for the construction of transformation matrix T in Section 5.

Theorem 2.1 In matrix T of order nx(pq+r), the i— th equation of ATw =b will be

identically zero.
Proof: To prove this theorem, it is sufficient to show that the i-th equation of AT will have all the

zero. Let A'denote the i-th row of A. Forany j € A” it is clear that A'e ; =0, implying thereby
that AiTl = 0. Again for any (k,l), ke A", and | € A", we have AitkI =A (—a,€e, +a,€)
= —a, &, +a, &, =0 .Thus, the left hand side of the i-th equation of ATw will be zero and b, =0.

3. Transformed problem
Using the transformation X = Tw, we define the following problem corresponding to problem (2):
— Cw+C, .
Maximize 2, =(Lw+ 1y )+ =——2  Vi=12,..k 4)
Dw+d,
Subject to Aw=b
and w2>0. %)
In view of Theorem 2.1, the i-th equation in system (5) will be identically zero and hence can be

removed while solving the program (4)-(5). The following theorems are now in order.

Theorem 3.1 If X solves (2), then there exists w (X=Tw) which solves (5).

Proof: Here, constraints and non-negativity restrictions are similar in both original and the
transformed problem for the single objective to generalized problem taken by Chadha [3]. So, the
proof can be seen in Chadha [3].

Theorem 3.2 If X" solves the program (1)-(2), then w™ (X'=Tw") solves the program (4)-(5).
Proof: Theorem 3.1 guarantees the existence of a feasible w',ie, AW = b,W* > 0. Next, since
X* solves the program (1)-(2), then

: C. X" +c, C.X +¢, .
(LX) 4= 2 (L X 4+ )+ =o—" v X eL, i=12,.k
D X +d,, D, X +d,
Or equivalently,
. C.Tw +c, C.Tw +cC, _
(LTw" + 1, )+ e 250 s (L Tw+ 1 )+ =0 v w e G, i= 1,2,k ;
DTw +d, D, Tw +d,,


http://iors.ir/journal/article-1-165-en.html

[ Downloaded from iors.ir on 2026-01-30 ]

44 Sanjay Jain and Kailash Lachhwani

— Cw*+C, — Cw+c,
or, (LIW +|0i)+#2(l_iw+loi)+#, VWEG,
Dw*+d,, Dw +d,,

Thus, W' solves the program (4)-(5).

Theorem 3.3 If w™ solves the program (4)-(5), then there exists X’=Tw" which solves the program
(1)-(2), and the extreme values of the two objective functions are equal.
Proof: w* being a solution of the program (4)-(5) means that

Aw =b, w=>0;

or
ATw" =b, or AX" =b, (6)
Furthermore, T >0, w" > 0, imply that X" >0 @)
Also, we know that,
— . E *+C. — C_ +C,: .
(Liw +|0i)+#2(gw+lm)+#,VWeG, i=12..k (8
Dw +d,; Dw+d,
And,
. C.X +c, C.X+c¢, _
(LX" +1y )+ =2 > (LX + )+ ———" vV Xel,i=12..k (9
DX +d,, D, X +d,;
For a contradictory argument, let X and not X" solve the program (4)-(5), which means that
= C,X+c, . CX +c, :
(LX # 1y )+ S (X ]y )+ — 0 i=1,2,..k.
D, X+d, D.X +d,
From Theorem 3.1 it follows that
— C.Tw +C,; . CTw +c,
(LiTW + |Oi)+# > (LiTW +1,; )+#, for any i
D,Tw +d,, D.Tw +d,
or,
—_ CW+Cy _ (— Cw +¢,
(LiW +I0i)+#2(hw +I0i)+#.
D w+d,, Dw +d,,

This violates (8) and the contradiction proves the result. Finally, let Z and % be the optimal
values of the objective functions of (1) and (4) at X* and w*, respectively. This means

. . C. X*+c,
Z) =(LX +1, )+ 2o
D X*+d,
" Tw' .
=(LiTW +|Oi)+C,w—*+cO,
D,Tw +d,
T * C_ : C * -
=(Lw JrIOi)Jr#JFO':zi Vi=1,2,.k. (10)
Dw +d,

The result then follows from (5), (6), (8) and (9).

4. Solution of linear plus fractional multiobjective programming problem
Using the transformation X = Tw, the problem (1)-(2) reduces to:

Maximize {Zl (W), Z,(W),..., Z, (W)}
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where, Z,(w) Z(EW + |Oi)+M Vi=L2,..,k
Diw+d,,

subject to Aw =b

and w=>0 . (11)

Problem (11) does not contain homogeneous constraints. This MOFLPP can be reduced to a
fuzzy programming problem. This model is developed to minimize the perpendicular distances

between two parallel hyperplanes z,(w) = Z_I and z,(w) = z,, where Z_I and z; are the maximum

and minimum values of the objective function z, (w). We define the distance function d with unit
weight as:
d, (w) :‘zi ~z (w)‘ Vi=12..k.

This distance depends upon w. At w =w (ideal point in w-space) as, given by Gupta and
Chakraborty [5], d = 0 and at w =W (nadir point in w-space), Z;(W) =12, , and we get the

maximum value of dj(w) as:

d=lz-z| vi=12,.k. (12)

Treating this criterion to be of equal importance, the vector maximum problem (11) may be
modeled as follows:
Find an action w € G , which minimizes

Max {‘z_i—zi w), i =1,2,...,k},

where, G:{w:ﬂw:b, wzo}‘ (13)
We define the membership £ (d» (W)) as follows:

0 if d;(w)>p

24 (di (w)) = %'(W) if 0<d;(w)<p
1 if d;(w)<0

where, p= sup {di} Y i=123,...k.

If A be the minimum of all z, (d- (W)) , then ,

di(W)<—pA+p,ie z—z(w)<—pl+p.

Now, the problem reduces to:

MaxA4
subject to -Z(W)+pA<sp-1z, vi=12,..,k
Aw =b
and A, w 20 (14)

which can be solved by non-linear programming techniques.
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5. Pseudo code program for transformation matrix
The matrix T can be obtained using a program in C, C++ or any other programming language. For
construction of this program, a pseudo code program of the procedure is as follows.

// m is the number. of rows of matrix, n is the number. of columns.

// A [1: m] [1: n] is the two dimensional matrix with m rows and n columns.

/I P is the number of possible elements of matrix A in the i-th row.

// Q is the number of negative elements of matrix A in the i-th row.

// R is the total number. of columns in the transformation matrix.

// &; is the j-the column of the identity matrix

{

FORI:=1tomdo

FOR J:=1tondo
READ A [1: m][1:n];
READ;

// FOR Ax=b where b=0:
FOR J:=1tondo

{

IF (A [1][J]=0) then
{

T[R] =¢;

R=R+1;

}

}
FOR J: =1 ton do

{
IF (A [I] [J] <O0) then
{

P: =P+1;
X[Pl:=1;

}

IF (A [I] [J] >0) then
{

Q: =Q+1;

Y[Ql=1
h

}

FOR K:=1to P do

{

FORL:=1toQ do

{

TR]=-a[IJ[Y [L]]* ey +a [I] [Y [K]]* eypy:

R:=R+1:
!

WRITE T [1: R]; // output transformation matrix.
H

6. Numerical example

Example. The following example explains the algorithm.
Maximize {Z1 (X), Z,(X )}

2X, +6X X, + X
where, Z,(X)=2x +——= and Z,(X)=2X, + ———
X + X, +1 X =X, +1
subject to, X\ +X +X =4
3X,+%X, —-X, =6
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and

X =% +0x,+0x, =0
X, Xy, %5, X, 2 0.

The solution procedure using our proposed methodology can be well explained stepwise, as given
in tabular form Table 1.

Table 1. Solution of example 1

The equivalent problem without homogeneous constraints is given by

Step 1. Maximize { z,(w),z, (W)}
— C,w CT 8w
where 21:(L|W+|01)+_1 :(LTw+|01)+—W:2W3+ s
D,w+1 DTw+1 2w, +1
and Z, = 4w,
subject to Aw =b or ATw =b,
and w >0
Using the given pseudo code and consequently constructed C-program, we obtain:
Step 2.
0 0 1
0 0 1
T=
1 00
010
Using transformation matrix T, our problem becomes:
Step 3. W
Maximize { 2w, + ———, 4w,
2w, +1
subject to w, +2w, =4
W, +4w, =6
and  w, w,,w, >0
over region G = {W :Aw =b, w> 0} :
Step 4. Here,weﬁndz_1=6 520, Z=6 Z_2=0 and p=sup{d_i}:6.
Then, the given problem reduces into vector maximum problem,
Step 5. Max. A
8w,
subject to 64 <2w, + 3
2w, +1)
64 < 4w,
w, +2w, =4
-W, +4w, =6
and W, W,, W;, 4 >0
Solving this nonlinear programming problem, the compromise optimal solution of
Step 6. | transformed problem is obtained as:
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w,=0, W, =2, w, =2, Azl%s.

The solution of the original problem (X* = Tw) is given as:

X 0 0 1 0 2

X, _ 0 0 1 5= 2

X | |10 o) 110 ’

Xy 01 0 2
That is, the compromise optimal solution of (2.1) is:

X, =2,% =2, X =0, X,=2 and Zl*=%, 7, =8.

7. Particular cases

1. If we take L, =0, V i=1,2,...,K, and take only a single objective function with homogeneous
constraints, then our problem is reduced to LFPP. This discussion is also given by Chadha [3].

2. Ifwetake D, =0, Vi=12,..k, then Bi= 0, and it our problem is reduced to a MOLPP.

This discussion is also given by Gupta and Chakraborty [5], by defining the distance function
1

el

d, (w) with the weight

%

N

Figure 1. Selection of ideal point

8. Conclusions

When an MOFPP has more than one homogeneous constraints, then we_can extend our approach
for its solution. In general, T(s) is determined only when AT(1), AT(2),...,AT(s-1), have been
computed. This algorithm reduces the number of constraints.
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Compromised solution depends on the choice of nadir point (lowest justifiable value) of the
objective function. When the justifiable value changes, the compromised solution also changes. As
seen in Figure, if Z is the ideal point and N and N’ we the two different minimum aspiration levels
then their compromised solution are P and P’, respectively, because NZ and N'Z are the direction in
which the decision parameter A is increased. In our methodology, to find minimum aspiration level,
we used minimum value of each objective function. This point is the ideal point for the vector
minimization problem of the same objective functions with the same constraints, which generally
lies outside the feasible region. Knowing the nadir point (worst point), and zenith point (ideal
point) we can find the direction of the decision parameter A in which A is increased. Considering
the region by taking the lowest justifiable value each objective function gets equal importance in
the optimization process.
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