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Linear plus fractional multiobjective programming problem with 
homogeneous constraints using fuzzy approach 

 
      Sanjay Jain1 and Kailash Lachhwani2 

 
We develop an algorithm for the solution of multiobjective linear plus fractional 
programming problem (MOL+FPP) when some of the constraints are homogeneous in 
nature. Using homogeneous constraints, first we construct a transformation matrix T 
which transforms the given problem into another MOL+FPP with fewer constraints. Then, 
a relationship between these two problems, ensuring that the solution of the original 
problem can be recovered from the solution of the transformed problem, is established. 
We repeat this process of transformation until all the homogeneous constraints are 
removed. Then, we discuss the multi objective programming part, for which fuzzy 
programming methodology is proposed which works for the minimization of perpendicular 
distances between two hyper planes (curves) at the optimal points of the objective 
functions. A suitable membership function is defined with the help of the supremum 
perpendicular distance. A compromised optimal solution is obtained as a result of the 
minimization of the The supremum perpendicular distance. The corresponding optimal 
solution to the original problem is obtained using the transformation matrix. Finally, an 
example is given to illustrate the proposed model.  

 
Key words: Linear plus fractional functional, Transformation matrix, Distance function,    
Membership function. 

 
1.  Introduction 

Decision-making problems occuring in the real world are generally multi criteria decision-making 
(MCDM) problems. Many researchers such as Wallenius [12], Hanan [6], Feng [4], Chanas [1] and 
Rommelfanger [10] used and or modified the concept of decision making in fuzzy environment. 
They discussed different approaches to deal with the multiobjective programming problems. Also, 
many iterative algorithms have been studied as given by Charnes and Cooper [2], Swarup [11], 
Martos [9], Jain and Mangal [7] for solving fractional programming problems. Jain and Lachhwani 
[8] discussed a solution methodology for multiobjective linear fractional programming problem, in 

which the objective function in of the form 
( )
( )

f X
g X

. Here, we address form which we denote by 

MOL+FPP. 
      A multiobjective linear plus fractional programming problem (MOL+FPP) seeks to optimize 

more than one objective functions of the form ( ) ( )
( )

g X
f X

h X
+ 1, that is the sum of a linear and a 

quotient function, where  ( )f X , ( )g X and ( )h X are linear functions subject to linear 
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constraints under the assumptions that the set of the feasible solutions is a convex polyhedron with 
a finite number of extreme points and that the denominators of the fractional part of the objective 
functions are nonzero on the feasible set.  

    We present an algorithm that performs to be better than other iterative methods as it needs 
computing time for the optimization process and obtains an optimum solution for a set of objective 
functions of such a linear plus fractional form. 

    The remainder of the paper is organized as follows. In Section 2, a transformation matrix T is 
constructed. In the Section 3, the relationship between the original problem and the transformed 
problem is given. In Section 4, we develop fuzzy programming model for the problem by 
minimizing the perpendicular distances between two hyper planes iZ (x) =  iZ , and i iZ (x) = Z  

where i  and ZiZ are the maximum and minimum values of the function iZ (x)  in the feasible 

region, respectively. Suitable membership functions are defined and a compromise optimal solution 
is obtained. In Section 5, a pseudo program is given for the construction of the transformation 
matrix T.  An example is worked out in Section 6 to explain the model. Particular cases and 
conclusions are given in Section s 7 ad 8, respectively.  

 
 

2. Development of transformation matrix 
Consider the problem, 

{ }1 2Maximize ( ), ( ),..., ( )kZ X Z X Z X                              (1) 

where,                              ( )0( )                         1, 2,...,i oi
i i i

i oi

C X cZ X L X l i k
D X d

+
= + + ∀ =

+
  

               subject  to       ,AX b=  
                      and              0X ≥  

with   1 1 2 2 .... 0i i in na x a x a x+ + + = ,  for some i.                                                        (2)             
Here, iL , iC and  ( 1, 2,..., )iD i k= are row vectors with n components,  X and b  are column 

vectors with n and m components,  respectively, 1 2( , ,..., )nA A A A= is an m by n matrix and the 

,  ( 1, 2,..., )oi oic d i k=  are scalars. It is assumed that  > 0i oiD X d+  , over L ,  where 

{ }L= : , 0X AX b X= ≥ . Let 1 2( , ,..., )nX x x x= be an efficient solution of (2).  If kx and 0ika > , 

then it is obvious that there exists at least one lx with 0ila < . Taking this in view, we partition 

matrix A  as { }0 , ,A A A A+ −= , where 0A  is the set of all columns of A , whenever 0ija = , (Let 

the number of such columns be r ), A+  be the set of all columns of A , whenever 0ija > , p in 

number,  and finally A− be the set of all columns of A , whenever 0ija < , q  in number. Thus, 
p q r n+ + = .  
    Now, we define a transformation matrix (  by )T n pq r+ such that the i -th equation of 

wAT b= will be automatically zero. Here, w is a column vector with pq r+  components. This is 
accomplished by defining klw for each pair ( , )k l such that kA A+∈ and -A Al ∈ .  

    Now, we partition 1 2( , )T T T= where 1T  consists of unit column vectors je  corresponding to

klw . A column corresponding to the klw looks like: 
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0

0

0

ij

ik

a

a

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Thus, T, which has n rows and r + pq columns, can be represented as:  
             1 2( , ) [   0;    ]j ij klT T T e j a t k A l A+ −= = ∀ ∈ = ∀ ∈ ∧ ∈ , 

that is, je is the j th column of the identity matrix In, and kl il k ik lt a e a e= − + .               (3) 
A pseudo code program is also framed for the construction of transformation matrix T in Section 5. 

 
Theorem 2.1 In matrix T  of order ( )n pq r× + , the i − th equation of wAT b= will be 
identically zero. 
Proof: To prove this theorem, it is sufficient to show that the i-th equation of AT  will have all the 
zero. Let iA denote the i-th row of A . For any 0j A∈  ,it is clear that 0i

jA e =  , implying thereby 

that 1
iA T = 0. Again for any ( , ),  k l k A+∈ , and l A−∈  , we have  ( )i i

kl il k ik lA t A a e a e= − +
+ =0il ik ik ila a a a= − .Thus, the left hand side of the i-th equation of wAT will be zero and 0ib = . 

 
3.  Transformed problem  
Using the transformation w,X T= we define the following problem corresponding to problem (2): 

                 Maximize    ( )0
w

w + 
w

i oi
i i i

i oi

C c
z L l

D d
+

= +
+

     1, 2,...,i k∀ =                           (4) 

                   Subject to      wA b=   
  and                w 0≥ .                                                                                        (5) 

In view of Theorem 2.1, the i-th equation in system (5) will be identically zero and hence can be 
removed while solving the program (4)-(5). The following theorems are now in order. 

 
Theorem 3.1 If X solves (2), then there exists   w (X=Tw) which solves (5). 
Proof: Here, constraints and non-negativity restrictions are similar in both original and the 
transformed problem for the single objective to generalized problem taken by Chadha [3]. So, the 
proof can be seen in Chadha [3]. 
 
Theorem 3.2 If X* solves the program (1)-(2), then w* (X*=Tw*) solves the program (4)-(5). 
Proof:  Theorem 3.1 guarantees the existence of a feasible w*, i.e., * *w , w 0.A b= ≥  Next,  since  
X* solves the program (1)-(2), then 

             ( ) ( )
*

* 0 0
0 0*

00

,   ,   1, 2,...,i i i i
i i i i

i ii i

C X c C X c
L X l L X l X L i k

D X dD X d
+ +

+ + ≥ + + ∀ ∈ =
++

 

Or equivalently, 

( ) ( )
*

* 0 0
0 0*

00

Tw Tw
Tw  + Tw + ,   w ,  1, 2,...,  ;

TwTw
i i i i

i i i i
i ii i

C c C c
L l L l G i k

D dD d
+ +

+ ≥ + ∀ ∈ =
++
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or,                   ( ) ( )* 0 0
0 0

0 0

w* w
w  + w + ,   w ;

w* w
i i i i

i i i i
i i i i

C c C c
L l L l G

D d D d
+ +

+ ≥ + ∀ ∈
+ +

 

Thus, w* solves the program (4)-(5). 
 

Theorem 3.3 If w* solves the program (4)-(5), then there exists X*=Tw* which solves the program 
(1)-(2), and the extreme values of the two objective functions are equal. 
Proof: w* being a solution of the program (4)-(5) means that  

                       *w ,   w 0;A b= ≥     
or  
                      * *w ,  or  ,AT b AX b= =                                                                       (6) 

Furthermore, *0,  w 0,T ≥ ≥ imply that * 0X ≥                                                                  (7)  
Also, we know that, 

   ( ) ( )
*

* 0 0
0 0*

0 0

w w
w  + w + ,   w ,  1,2,...,

w w
i i i i

i i i i
i i i i

C c C c
L l L l G i k

D d D d
+ +

+ ≥ + ∀ ∈ =
+ +

       (8) 

And,  

 ( ) ( )
*

* 0 i 0
0 0*

0i 0

C X C X
X  + X + ,   X ,  1, 2,...,

D XD X
i i i

i i i i
i ii

c c
L l L l L i k

dd
+ +

+ ≥ + ∀ ∈ =
++

    (9) 

For a contradictory argument,  let X and not X* solve the program (4)-(5), which   means that   

            ( ) ( )
*

*0 i 0
0 0 *

i 00

C X C X
X + X  + ,           1, 2,...,

D XD X
i i i

i i i i
ii i

c c
L l L l i k

dd
+ +

+ ≥ + =
++

. 

From Theorem 3.1 it   follows that  

            ( ) ( )
*

*0 0
0 0 *

00

Tw Tw
w + w  + ,  

TwTw
i i i i

i i i i
i ii i

C c C c
L T l L T l

D dD d
+ +

+ > +
++

for any i  

 or, 

                         ( ) ( )
*

*0 0
0 0 *

0 0

w w
w + w  + 

w w
i i i i

i i i i
i i i i

C c C c
L l L l

D d D d
+ +

+ ≥ +
+ +

. 

  This violates (8) and the contradiction proves the result. Finally, let 
*
iZ  and 

*
iz  be the optimal 

values of the objective functions of (1) and (4) at X* and w*, respectively. This means      

( )* * 0
0

0

*
X  + 

*
i i

i i i
i i

C X c
Z L l

D X d
+

= +
+

 

( )
*

* 0
0 *

0

Tw
Tw  + 

Tw
i i

i i
i i

C c
L l

D d
+

= +
+

 

                                ( )
*

* *0
0 *

0

w
w  +    1,2,..,

w
i i

i i i
i i

C c
L l z i k

D d
+

= + = ∀ =
+

.                        (10) 

The result then follows from (5), (6), (8) and (9). 
 

4. Solution of linear plus fractional multiobjective programming problem 
Using the transformation X = Tw, the problem (1)-(2) reduces to: 

                         { }1 2Maximize (w), (w),..., (w)kz z z  
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where,                ( )0
w(w) w +                         1, 2,...,
w

i oi
i i i

i oi

C cz L l i k
D d

+
= + ∀ =

+
 

subject to                    wA b=  
 and                             w 0 ≥ .                                                                           (11) 

 
Problem (11) does not contain homogeneous constraints. This MOFLPP can be reduced to a 

fuzzy programming problem. This model is developed to minimize the perpendicular distances 
between two parallel hyperplanes (w)  and z (w) ,i i i iz z z= =  where and i iz z are the maximum 

and minimum values of the objective function (w).iz  We  define the distance function d with unit 
weight as:  

                              (w) (w)i i id z z= −                1, 2,...,i k∀ = . 

This distance depends upon w. At w w=  (ideal point in w-space) as, given by Gupta and 
Chakraborty [5], d = 0 and at w w=  (nadir point in w-space), (w)i iz z= , and we get the 

maximum value of di(w) as: 
                                        1, 2,...,i i id z z i k= − ∀ = .                                             (12)  

Treating this criterion to be of equal importance, the vector maximum problem (11) may be 
modeled as follows:  

    Find an action w G∈ , which minimizes    

Max { }(w) ,  1,2,...,i iz z i k− = , 

where, { }w : w ,  w 0G A b= = ≥ ،                                                              (13) 

We define the membership ( )( )wi idµ as follows: 

                ( )( )

( )
( ) ( )

( )

0                  d w
w

w     0 w

1                  d w 0

i

i
i i i

i

if p
p d

d if d p
p

if

µ

≥⎧
⎪ −⎪= < <⎨
⎪
⎪ ≤⎩

  

where, { }  sup           1, 2,3,...,ip d i k= ∀ = . 

If λ  be the minimum of all ( )( )wi idµ , then , 

                                               ( )wid p pλ≤ − + , i.e. (w)i iz z p pλ− ≤ − + . 
 
Now, the problem reduces to: 
                                             Maxλ  
 subject to                  (w) .i iz p p zλ− + ≤ − ,         1, 2,...,i k∀ =  

                                                  wA b=  
and                                        ,  w 0λ ≥                                                                      (14) 

which can be solved by non-linear programming techniques. 
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5.  Pseudo code program for transformation matrix  
The matrix T can be obtained using a program in C, C++ or any other programming language. For 
construction of this program, a pseudo code program of the procedure is as follows. 

// m is the number. of rows of matrix, n is the number. of columns. 
// A [1: m] [1: n] is the two dimensional matrix with m rows and n columns. 
// P is the number of possible elements of matrix A in the i-th row. 
// Q is the number of negative elements of matrix A in the i-th row. 
// R is the total number. of columns in the transformation matrix. 
// ej is the j-the column of the identity matrix   
{ 
FOR I: = 1 to m do 
FOR J: = 1 to n do 
READ A [1: m][1:n]; 
READ I; 
 // FOR Ax=b where b=0: 
FOR    J: = 1 to n do 
{ 
IF (A [I][J]=0) then 
{ 
T[R] = ej; 
R=R+1; 
} 
} 
FOR J: =1 to n do  
{ 
IF (A [I] [J] <0) then  
{ 
P: =P+1; 
X [P]: = J; 
} 
IF (A [I] [J] >0) then  
{ 
Q: =Q+1; 
Y [Q] = J; 
} 
} 
FOR K: =1 to P do  
{ 
FOR L: =1 to Q   do  
{ 
T[R] =- a [I] [Y [L]]* e [K] + a [I] [Y [K]]* eY[L]; 
R: = R+1: 
} 
} 
WRITE T [1: R]; // output transformation matrix. 
} 
 
6.  Numerical example 

 
Example. The following example explains the algorithm. 
                          { }1 2Maximize ( ), ( )Z X Z X  

where,   1 2 1 2
1 1 2 2

1 2 1 2

2 6
( ) 2 , and    ( ) 2

1 1
x x x x

Z X x Z X x
x x x x

+ +
= + = +

+ + − +
 

subject to,                 1 2 3     4     x x x+ + =  

                             1 2 43        6     x x x+ − =  
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                      1 2 3 40. + 0.     0     x x x x− + =  
and                1 2 3 4, , , 0x x x x ≥ . 
 
The solution procedure using our proposed methodology can be well explained stepwise, as given 

in tabular form Table 1. 
Table 1.  Solution of example 1  

 
 

Step 1. 
The equivalent problem without homogeneous constraints is given by  
                     Maximize{ }1 2(w), (w)z z  

where        ( ) ( ) 31
1 1 01 01 3

31

8w ww + w + 2
w+1 2 1D w+1

wC CTz L l LT l w
DT w

= + = + = +
+

 

and                                2 34z w=  

subject to                  w   or  w ,A b AT b= =  
and                             w 0≥  

 
Step 2. 

Using the given pseudo code and consequently constructed C-program, we obtain: 
 

 

0 0 1
0 0 1
1 0 0
0 1 0

T

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 
Step 3. 

Using transformation matrix T,  our problem becomes: 

    3
3 3

3

8
Maximize 2 ,  4

2 1
w

w w
w

⎧ ⎫
+⎨ ⎬+⎩ ⎭

 

                     subject to                  1 32 4w w+ =  
                                                       2 34 6w w+ =  

                       and     1 2 3,  ,   0w w w ≥  

over region  { }w : w ,  w 0G A b= = ≥ . 

Step 4. Here, we find 1 16      0z z= = ,   2 26      0z z= =  and { }sup 6ip d= = . 

 
Step 5. 

Then, the given   problem reduces into vector maximum problem, 
                                                          Max. λ  

subject to                                     3
3

3

8
6 2

(2 1)
w

w
w

λ ≤ +
+

 

                                                      36 4wλ ≤  

                                                      1 32 4w w+ =  
                                                      - 2 34 6w w+ =  

              and                1 2 3,  ,  ,  0w w w λ ≥  
 
Step 6. 

Solving this nonlinear programming problem, the compromise optimal solution of 
transformed problem is obtained as: 
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                             1 2 3
160,  2,  2,  = 15w w w λ= = = . 

The solution of the original problem (X* = Tw) is given as: 

                            

1

2

4

5

0 0 1 2
0

0 0 1 2
2

1 0 0 0
2

0 1 0 2

x
x
x
x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦⎣ ⎦

, 

That is, the compromise optimal solution of (2.1) is: 

        1 2 3 42,  2,    0,   2x x x x= = = =  and  * *
1 2

36 ,    Z 8
5

Z = = . 

 
 
7.  Particular cases 
1. If we take 0,   1, 2,..., ,iL i k= ∀ =  and take only a single objective function with homogeneous 
constraints, then our problem is reduced to LFPP. This discussion is also given by Chadha [3]. 
2. If we take   0,   1, 2,...,iD i k= ∀ = , then iD = 0, and it our problem is reduced to a MOLPP. 
This discussion is also given by Gupta and Chakraborty [5], by defining the distance function 

(w)id with the weight   
{ }

1
2 2

1

ijc∑
. 

 
Figure 1. Selection of ideal point 

 
8. Conclusions 

When an MOFPP has more than one homogeneous constraints, then we can extend our approach 
for its solution. In general, T(s) is determined only when AT(1), AT(2),…,AT(s-1), have been 
computed. This algorithm reduces the number of constraints. 

Z

N

N
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Compromised solution depends on the choice of nadir point (lowest justifiable value) of the 
objective function. When the justifiable value changes, the compromised solution also changes. As 
seen in Figure, if Z is the ideal point and N and N′ we the two different minimum aspiration levels 
then their compromised solution are P and P′, respectively, because NZ and N′Z are the direction in 
which the decision parameter λ is increased. In our methodology, to find minimum aspiration level, 
we used minimum value of each objective function. This point is the ideal point for the vector 
minimization problem of the same objective functions with the same constraints, which generally 
lies outside the feasible region. Knowing the nadir point (worst point), and zenith point (ideal 
point) we can find the direction of the decision parameter λ in which λ is increased. Considering 
the region by taking the lowest justifiable value each objective function gets equal importance in 
the optimization process. 
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