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                                       J.Gerami4 and M.R.Mozaffari5 

 
We suggest a method for finding the non-dominated points of the production possibility 

set (PPS) with variable returns to scale (VRS) technology in data envelopment analysis 
(DEA). We present a multiobjective linear programming (MOLP) problem whose feasible 
region is the same as the PPS under variable returns to scale for generating non-dominated 
points. We demonstrate that Pareto solutions of the MOLP produce efficient units in DEA, 
and vice versa. We solve the MOLP problem by using a finite number of weights which are 
extreme rays of the cone generated by the efficient solutions. We obtain new efficient points 
by changing weights, and thus the efficient solutions set is produced. 
 
Keywords: Data envelopment analysis, Multi-objective linear programming, Production 
possibility set, Variable returns to scale.  
  

1. Introduction 
    Data Envelopment Analysis (DEA) was originally proposed by Charnes et al. [4] as a method 

for evaluating the relative efficiency of Decision Making Units (DMUs) performing essentially the 
same task. Units use similar multiple inputs to produce similar multiple outputs. DEA deals with 
the evaluation of the performance of DMU performing a transformation process of several inputs to 
several outputs. Relying on a technique based on linear programming (LP) and without having to 
introduce any subjective or economic parameters (weight, price, etc.), DEA provides a measure of 
efficiency of each DMU allowing, in particular, to separate efficient from non-efficient DMUs and 
to indicate for each non-efficient DMU its efficient peers. Charnes et al [5] have also had a 
significant impact on the development of multiple objective linear programming (MOLP) and DEA. 
However, researchers generally not have paid much attention to research performed in the other 
camp. DEA and MOLP address similar problems and are structurally very close to each other. In a 
broader picture, there have been various studies highlighting the similarities between DEA and 
multiple criteria decision making (MCDM) in general and MOLP in particular, though it is said 
that they retain their own distinctive traits, see Belton and Stewart. [2], Agrell and Tind [1], Joro et 
al. [8] and Stewart et al [13, 14]). Taking a step further Doyle and Green [6] suggested that DEA is 
an MCDM method itself. Belton and Vickers. [3] described the equivalence between the 
formulations of the basic DEA models and the classic linear multi-attribute value function of 
MCDM. More specifically, Belton and Stewart [2] pointed out that the mechanism of DEA 
involves comparison of DMUs on the basis of multiple criteria of both inputs and outputs, but the 
emphasis of DEA is put on evaluating DMUs against the best practice units and on setting targets 
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to improve efficiency, while MCDM focuses on ranking and assessing alternatives. The MOLP 
model has been widely applied to many fields and has become a useful tool For decision making 
(for applications, see Leschine et al. [9], Gravel et al. [7] and Prabuddha et al. [10]). A requisite 
technique has already been developed for multiple objective linear programing models. Because 
DEA and MOLP models are structurally similar, we apply this technique to DEA problems as well. 
The approach recommended is based on the equivalence between DEA and MOLP; we obtain 
efficient units in DEA by solving an MOLP problem. Here we use an approach similar to the 
"combined constraint-space, objective space" approach together with the method of transferring a 
polyhedron from intersection form to sum form for building the efficient solution structure of an 
MOLP. It is well known that a polyhedron can be represented by a set of linear constraints, called 
"intersection form" or by a convex combination of finite extreme points and non-negative 
combination of finite extreme rays, called"sum form". A polyhedron can be transferred from 
intersection form to sum form (for the algorithms, see Charnes et al. [5], Wei and Yan [11, 12], or 
Yan et al. [15]). westart by studying the relation between DEA and MOLP problems. We show that 
by choosing weights properly and solving the weighted sum problem of MOLP associeted with 
these weights, we can obtain all the weak Pareto solutions and the Pareto solution of the MOLP 
problem that are efficient units in DEA. 

The mainder of our work is organized as follows. Section 2 introduces the similar structure of 
MOLP and DEA problem and some of theair basic results for later use. Section 3 provides the 
efficient points structure of the DEA model. Section 4 gives a numerical example for illustrating 
our approach. Section 5 gives the conclusions.  

 
2. Structural similarities between MOLP and DEA 

   Consider ݊  decision making units, ܯܦ ௝ܷ ሺ݆ ൌ 1, … , ݊ሻ , where each ܷܯܦ  consumes an ݉ -
vector input to produce an ݏ -vector output. Suppose that ܺ௝ ൌ ሺݔଵ

௝, ଶݔ
௝, … , ௠ݔ

௝ ሻ்  and ܻ௝ ൌ
ሺݕଵ

௝, ଶݕ
௝, … , ௦ݕ

௝ሻ்  are the vectors of inputs and outputs, respectively, for ܯܦ ௝ܷ , in where it is 
assumed that ܺ௝ ൒ 0, ܺ௝ ് 0 and ܻ௝ ൒ 0,  ܻ௝ ് 0. We define the production possibility set of 
Data Envelopment Analysis under variable returns to scale as follows:  

௩ܶ ൌ ሼሺܺ, ܻሻ ൌ ሺݔଵ, … , ,௠ݔ ,ଵݕ … , |௦ሻݕ ∑  ௡
௝ୀଵ ௥ݕ௝ߣ

௝ ൒ ,௥ݕ ݎ ൌ 1, … ,   ,ݏ
∑  ௡

௝ୀଵ ௜ݔ௝ߣ
௝ ൑ ,௜ݔ ݅ ൌ 1, … , ݉, ∑  ௡

௝ୀଵ ௝ߣ ൌ ௝ߣ ,1 ൒ 0, ݆ ൌ 1, … , ݊ሽ.  
 

Definition 1. ܯܦ ௢ܷ ൌ ሺܺ௢, ܻ௢ሻ א ௩ܶ is called an efficient unit if and only if there is not an 
ሺܺ, ܻሻ א ௩ܶ such that ሺܺ, െܻሻ ൑ ሺܺ௢, െܻ௢ሻ and ሺܺ, െܻሻ ് ሺܺ௢, െܻ௢ሻ.  
  
Definition 2. ܯܦ ௢ܷ ൌ ሺܺ௢, ܻ௢ሻ א ௩ܶ is called a weak efficient unit if and only if there is not 
an ሺܺ, ܻሻ א ௩ܶ such that ሺܺ, െܻሻ ൏ ሺܺ௢, െܻ௢ሻ. 
 

Consider the following multiobjective linear programing (MOLP) problem,  

 
    min    ்ܼܥ
.ݏ      ܼ    .ݐ א ܴ ൌ ሼܼ|ܼܣ ൑ ܾ, ܼ ൒ 0ሽ,  (1) 

where ܥ ൌ ሺܥଵ
௧, ଶܥ

௧, … , ௣ܥ
்ሻ୲  is a ݌ ൈ ݊  matrix, ܿ௜

்௧ א ௡ܧ , ݅ ൌ 1, … , ݌  , 
ܼ ൌ ሺzଵ, zଶ, … , z୬ሻ א ௡ܧ ௡ܧ ,  is called the constraint space, ܣ is an ݉ ൈ ݊ matrix, ݊ ൒ ݉ 
and rank(ܣ)=݉, ܾ ൌ ሺܾଵ, ܾଶ, … , ܾ௠ሻ א  .௠ܧ

The Pareto solution and weak Pareto solution of ሺ1ሻ are defined as follows.  
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Definition 3. ҧܼ א ܴ is called a Pareto solution of ሺ1ሻ if there does not exist ܼ א ܴ such that 
்ܼܥ ൑ ்ܥ ҧܼ, ்ܼܥ ് ்ܥ ҧܼ.  

  
Definition 4. Zത א R is called a weak Pareto solution of ሺ1ሻ if there does not exist Z א R so that 
C୲Z ൏ C୲Zത.  
 
Put Z ൌ ሺX, Y, λሻ ൌ ሺxଵ, … , x୫, yଵ, … , yୱ, λଵ, … , λ୬ሻ, X א R୫, Y א Rୱ, λ א R୬, 
C୨

୲ ൌ e୨
୲, j ൌ 1, … , m, C୨

୲ ൌ െe୨
୲, j ൌ m ൅ 1, … , m ൅ s, e୨

୲ א R୫ାୱା୬ is a vector whose th 
element is one and other elements are zero, C ൌ ሺCଵ

୘, Cଶ
୘, … , C୫ାୱ

୘ ሻ୘, and 
R ൌ ሼሺxଵ, … , x୫, yଵ, … , yୱ, λଵ, … , λ୬ሻ| ∑  ୬

୨ୀଵ λ୨y୰
୨ ൒ y୰, r ൌ 1, … , s, 

 ∑  ୬
୨ୀଵ λ୨x୧

୨ ൑ x୧, i ൌ 1, … , m, ∑  ୬
୨ୀଵ λ୨ ൌ 1, λ୨ ൒ 0 , j ൌ 1, … , nሽ. 

 
Then problem ሺ1ሻ is converted to 

min     ሺݔଵ, … , ,௠ݔ െݕଵ, … , െݕ௦ሻ
.ݏ  ∑     .ݐ  ௡

௝ୀଵ ௥ݕ௝ߣ
௝ ൒ ݎ    ,௥ݕ ൌ 1, … , ,ݏ

             ∑  ௡
௝ୀଵ ௜ݔ௝ߣ

௝ ൑ ݅    ,௜ݔ ൌ 1, … , ݉,
             ∑  ௡

௝ୀଵ ௝ߣ ൌ 1,
௝ߣ              ൒ 0,    ݆ ൌ 1, … , ݊,
௜ݔ              ൒ 0,    ݅ ൌ 1, … , ௥ݕ    ,݉ ൒ ݎ    ,0 ൌ 1, … , .ݏ

(2) 

Note ሺX, Y, λሻ is a feasible solution of problem (2) while ሺX, െYሻ is a vector belonging to 
objective function space of problem (2).  

    By considering definition (2) ሺXכ, Yכ, λכሻ is called a weak pareto solution of (2),if there does 
not exist ሺܺ, ܻ, ,ሻ such that ሺܺߣ െܻሻ ൏ ሺܺכ, െܻכሻ . 
 

Theorem 1. Let ሺܺכ, ሻכܻ א  ௩ܶ. Then,  
(i) ሺXכ, Yכ, λכሻ is a Pareto solution of ሺ2ሻ if and only if ሺܺכ,  .ሻ is an efficient unit in ௩ܶכܻ
(ii) ሺXכ, Yכ, λכሻ is a weak Pareto solution of ሺ2ሻ if and only if ሺܺכ,  ሻ is a weak efficient unit inכܻ

௩ܶ. 
Proof: ሺiሻ Let ሺXכ, Yכ, λכሻ. be a Pareto solution of ሺ2ሻ. We show that ሺܺכ,  ሻ  is an efficientכܻ
unit in T୴. By contradiction, suppose ሺܺכ, ሻ is not an efficient unit in T୴כܻ . Then there is an 
ሺXഥ, Yഥሻ א T୴ such that ሺXഥ, െYഥሻ ൑ ሺܺכ, െܻכሻ and ሺXഥ, െYഥሻ ് ሺܺכ, െܻכሻ. Since ሺXഥ, Yഥሻ א T୴, 
there is a λത א R୬ such that ሺXഥ, Yഥ, λതሻ is a feasible solution of ሺ2ሻ . Since ሺXഥ, െYഥሻ ൑ ሺܺכ, െܻכሻ 
and ሺXഥ, െYഥሻ ് ሺܺכ, െܻכሻ then we have a contradiction; therefore, ሺܺכ,  ሻ is an efficient unitכܻ
in T୴. 

    Now suppose ሺܺכ, ,כሻ is an efficient unit in ௩ܶ. Since ሺܺכܻ ሻכܻ א ௩ܶ, there is a כߣ א ܴ௡ 
such that ሺܺכ, ,כܻ ,כሻ is a feasible solution of ሺ2ሻ. AS ሺܺכߣ  ሻ is an efficient unit in ௩ܶ, there isכܻ
no ሺ തܺ, തܻሻ א ௩ܶ such that ሺ തܺ, െ തܻሻ ൑ ሺܺכ, െܻכሻ and ሺ തܺ, െ തܻሻ ് ሺܺכ, െܻכሻ. Since, there is a 
vector ߣҧ  for each ሺ തܺ, തܻሻ א ௩ܶ such that ൫ തܺ, തܻ ,  ҧ൯ is a feasible solution of (2). Regarding theߣ
above relations there is no൫ തܺ, തܻ , ҧ൯ that is a feasible solution of (2) such that ሺߣ തܺ, െ തܻሻ ൑
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ሺܺכ, െܻכሻ and ሺ തܺ, െ തܻሻ ് ሺܺכ, െܻכሻ. Therefore ሺܺכ, ,כܻ  ሻ is a Pareto solution of (2) andכߣ
the proof is complete.  

(ii) Proof is similar to (i).  
 
 Theorem 2. The optimal- values of problem ሺ2ሻ are finite. 
 Proof: Since െ ∑  ୬

୨ୀଵ λ୨y୰
୨ ൑ െy୰, r ൌ 1, … , s,  and ∑  ୬

୨ୀଵ λ୨ ൌ 1, λ୨ ൒ 0, j ൌ 1, … , n, then 

െy୰, r ൌ 1, … , s are finite. Similarly ∑  ୬
୨ୀଵ λ୨x୧

୨ ൒ x୧, i ൌ 1, … , m, and ∑  ୬
୨ୀଵ λ୨ ൌ 1, 

λ୨ ൒ 0, j ൌ 1, … , n. Then, x୧, i ൌ 1, … , m, are finite. Therefore, the optimal values of problem 
ሺ2ሻ are finite.   
 
3. Constructing efficient points structure of DEA 

     Consider the following multiobjective linear programming problem, 
 

    min    ሺX, െYሻ
    s. t.     ሺX, Yሻ א T୴.                                                                    (3) 

Note that the above problem is the vector form of problem (2). 
Using Theorem 1, we solve problem (3) to obtain the efficient units of T୴. Problem (3) being an 

MOLP problem, we can use a method of solving MOLP, as presented in [16]. 
    Since, for every ሺX, Yሻ א T୴ we have a corresponding point ሺX, െYሻ in the objective space 

of problem (3), there exists a injective correspondence between the units of T୴ and the values of 
the objective function. Then, for finding the efficient units of T୴ we solve problem (3) and obtain 
all the weak efficient points. 

    Here paper, we use the weighted sum problem method. So, we select vectors of positive 
weights V א E୫, U א Eୱ ሺV ൒ 0, U ൒ 0, V ് 0, U ് 0ሻ. The following linear programming 
problem is called a weighted sum problem of problem (2) associated with weight W ൌ
ሺV, Uሻ୘ ൌ ሺvଵ, , … , v୫, uଵ, … , uୱሻ୘ א E୫ାୱሺV ൒ 0, U ൒ 0, V ് 0, U ് 0ሻ.  

 

 
    min    ∑  ୫

୧ୀଵ v୧x୧ െ ∑  ୱ
୰ୀଵ u୰y୰

     s. t.    ሺxଵ, xଶ, … , x୫, yଵ, yଶ, … , yୱሻ א T୴. (4) 

It is well known (from Theorem 3 below) that ሺX, െYሻ is an optimal solution for the linear 
programming problem (2) in objective function space if and only if ሺX, െYሻ is an optimal solution 
for the linear programming problem (4) for some ܹ א ௠ା௦ሺܹܧ ൒ 0, ܹ ് 0ሻ. 

 
Theorem 3. Let ሺܺ, ܻሻ א ௩ܶ. Then,  
(i)ሺܺ, െܻሻ is a weak Pareto solution of (2) in objective function space if and only if there exists a 
weight ܹ ൌ ሺݓଵ, ,ଶݓ … , ,௠ା௦ሻݓ ܹ א ,௠ା௦ܧ ܹ ൒ 0, ܹ ് 0, such that ሺܺ, െܻሻ  is the 
optimal solution of the weighted sum problem (4). 
(ii) ሺܺ, െܻሻ is a Pareto solution of (2) in objective function space if and only if there exists a 
weight ܹ ൌ ሺݓଵ, ,ଶݓ … , ,௠ା௦ሻݓ ܹ א ,௠ା௦ܧ ܹ ൐ 0,  such that ሺܺ, െܻሻ  is the optimal 
solution of the weighted sum problem (4). 

Proof:  See Zeleny [16] for proof.  
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    Provided that we have obtained k weak Pareto solutions, ሺX෡, െY෡ሻଵ, … , ሺX෡, െY෡ሻ,୩ of (2), we 

hope to find new Pareto solutions of (2) by solving its weighted sum problem. In following, we 
show how we obtain these solutions. (see Theorems (3) and (4)). In order to do this, we should 
choose some weights to obtain the new efficient solutions. 

Let SE ൌ ሼሺX, െYሻ|ሺX, െYሻ ൌ ∑  ୩
୯ୀଵ λ୯ሺX෡, െY෡ሻ୯, ∑  ୩

୯ୀଵ λ୯ ൌ 1, λ୯ ൒ 0, q ൌ
1, … , kሽ ൅ Eା

୫ାୱ, where Eା
୫ାୱ ൌ ሼሺX, Yሻ|ሺX, Yሻ א E୫ାୱ, ሺX, Yሻ ൒ 0ሽ. Let also Cone , is 

constructed as follows. 
 C ൌ ሼሺV, U, u଴ሻ|V୘X෡୯ െ U୘Y෡୯ ൒ u଴, ሺV, Uሻ ൒ 0, ሺV, Uሻ ് 0, q ൌ 1, … , kሽ. 
    It is easy to see that ܵܧ is a closed convex set in ܧ௠ା௦ and ܥ ׫ ሼ0ሽ is a polyhedral cone in 

௠ା௦ܧ ܥ .  can be represented by a non-negative combination of its extreme rays. (For the 
algorithms, see Charnes et al. [5] or Wei and Yan. [11,  12.]. and Yan et al. [15] ). 

Denote the extreme rays of  by 
W୪ ൌ ሺwሶ ଵ, … wሶ ୫, wሷ ଵ, … , wሷ ୱ, w଴ሻ୪ ൌ ሺWሶ , Wሷ , w଴ሻ୪ א E୫ାୱାଵ, l ൌ 1, … , h. Then, 
C ൌ ሼ∑  ୦

୪ୀଵ µ୪ሺWሶ , Wሷ , w଴ሻ୪| µ୪ ൒ 0, l ൌ 1, … , hሽ. 

Denote P ൌ ሼሺX, െYሻ|ሺWሶ ୪ሻ୘X െ ሺWሷ ୪ሻ୘Y ൒ w଴
୪ , l ൌ 1, … , h, ሺX, Yሻ א T୴ሽ. 

 
Theorem 4. Suppose ܵܧ and  are defined as above. Then ܵܧ, ൌ ܲ. 
Proof: First, we show that SE ك P. 

Let ሺX୭, െY୭ሻ א SE. Then, there exists λ୭ ൌ ሺλଵ
୭, λଶ

୭, … , λ୩
୭ሻ୘, λ୭ א E୩, 

∑  ୩
୯ୀଵ λ୯ ൌ 1, λ୯ ൒ 0, q ൌ 1, … , k, such that ሺX୭, െY୭ሻ ൒ ∑  ୩

୯ୀଵ λ୯ሺX෡୯, െY෡୯ሻ. 
Therefore, X୭ ൒ ∑  ୩

୯ୀଵ λ୯X෡୯, െY୭ ൒ െ ∑  ୩
୯ୀଵ λ୯Y෡୯. Since ሺWሶ , Wሷ , w଴ሻ୪, l ൌ 1, … , h, are 

the extreme rays of , we have, X෡୘Wሶ ୪ െ Y෡୘Wሷ ୪ ൒ w଴
୪ , l ൌ 1, … , h. 

Note that ሺWሶ , Wሷ ሻ୪ ൒ 0, l ൌ 1, … , h. We have X୭୘Wሶ ୪ െ Y୭୘Wሷ ୪ ൒ ∑  ୩
୯ୀଵ λ୯൫X෡୯൯୘Wሶ ୪ െ

∑  ୩
୯ୀଵ λ୯൫Y෡୯൯୘Wሷ ୪ ൒ ∑  ୩

୯ୀଵ λ୯w଴
୪ ൌ w଴

୪ , l ൌ 1, … , h, , that is, ሺX୭, െY୭ሻ א P. 
   On the other hand, assume that P ك SE is not true. Then, there exists ሺX୭, െY୭ሻ א P, but 

ሺX୭, െY୭ሻ is not in SE. Since SE is a closed convex set, by the separation theorem for convex 
sets, there exist d א E୫ାୱ, d ് 0 , and α א Eଵ , such that for any ሺX, െYሻ א SE, we have, 
݀ሺܺ, െܻሻ் ൒ ߙ ൐ ݀ሺܺ௢, െܻ௢ሻ்  Then ∑  ୫

୧ୀଵ d୧x୧ െ ∑  ୱ
୰ୀଵ d୰ା୫y୰ ൒ α ൐ ∑  ୫

୧ୀଵ d୧x୧
୭ െ

∑  ୱ
୰ୀଵ d୰ା୫y୰

୭. 
Note that when all components of ሺX, െYሻ are very large, we still have ሺX, െYሻ א SE. Thus, 

d ൒ 0 . Since ሺX෡୯, െY෡୯ሻ א SE , we have ∑  ୫
୧ୀଵ d୧xො୧

୯ െ ∑  ୱ
୰ୀଵ d୰ା୫yො୰

୯ ൒ α , q ൌ 1, … , k . 
Therefore, ሺd, αሻ୘ א C, (by definition of ).Tthat is, there are µ୪ ൒ 0, l ൌ 1, … , h, such that 
d ൌ ∑  ୦

୪ୀଵ µ୪ሺWሶ , Wሷ ሻ୪ , α ൌ ∑  ୦
୪ୀଵ µ୪w୭

୪ . Thus α ൒ ∑  ୫
୧ୀଵ d୧x୧

୭ െ ∑  ୱ
୰ୀଵ d୰ା୫y୰

୭ ൌ
∑  ୦

୪ୀଵ ∑  ୫
୧ୀଵ µ୪wሶ ୧୪x୧

୭ െ ∑  ୦
୪ୀଵ ∑  ୫

୧ୀଵ µ୪wሷ ୰୪ y୰
୭. Note that ሺX୭, െY୭ሻ א P . Then, α ൒

∑  ୫
୧ୀଵ d୧x୧

୭ െ ∑  ୱ
୰ୀଵ d୰ା୫y୰

୭ ൌ ∑  ୦
୪ୀଵ ∑  ୫

୧ୀଵ µ୪wሶ ୧
୪x୧

୭ െ ∑  ୦
୪ୀଵ ∑  ୫

୧ୀଵ µ୪wሷ ୰
୪ y୰

୭ ൐
∑  ୦

୪ୀଵ µ୪w୭
୪ . ൌ αwhich is a contradiction. So, SE ك P, and the proof is complete.  

     
After all obtaining extreme rays of , we solve the following weighted sum problems associated 

with weight W୪ ൌ ሺWሶ , Wሷ , w଴ሻ୪, l ൌ 1, … , h, (note that W୪, l ൌ 1, … , h are the extreme rays 
of ): 
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    min    ∑  m

iୀ1 wሶ ilxi െ ∑  s
rୀ1 wሷ rlys

    s. t.    ሺx1, x2, … , xm, y1, y2, … , ysሻ א Tv,  (5) 

where l ൌ 1, … , h. 
Let ሺXഥ, െYഥሻ୪ be an optimal solution of (5) corresponding to weights vector W୪, l ൌ 1, … , h. 

From Theorem 3, ሺXഥ, െYഥሻ୪ is a weak Pareto solution of (2) ) in objective function space.  
For any ሺXഥ, െYഥሻ୪, l ൌ 1, … , h, we have two cases: 

1. For any l ൌ 1, … , h, we have ሺXഥ, െYഥሻ୪ א P. Then, from Theorems 4, 7 and 8, (to be 
seen later) we have determined all weak Pareto solutions of problem (2) ) in objective 
function space.There exists lሺ0 ൑ l ൑ hሻ  such that ሺXഥ, െYഥሻ୪ is not in . Denote an 
index set  

2. I଴ ൌ ሼl|ሺXഥ, െYഥሻ୪ is not in , l ൌ 1, … , hሽ. Then, ሺXഥ, െYഥሻ୪, l א I଴, are the new weak 
Pareto solutions of problem (2) in objective function space. 

    To determine the structure of all optimal solutions of an MOLP problem, we make use of 
extreme points and ray in MOLP. First, we obtain some of the optimal solutions in MOLP, which 
coincide with DEA efficient units. These solutions can be easily obtained in the first stage. Next, 
we obtain the structure of all optimal solutions in MOLP, which coincide with the DEA-efficient 
surfaces. This is the space made by the efficient surfaces. We construct cone C, which is made by 
the efficient surfaces; then we obtain the extreme rays of the cone and use them as the weights of 
the objective function in MOLP for finding new optimal points. If all the points produced lie in the 
space made by the efficient surfaces, then we have obtained the structure of all optimal solutions. 
Otherwise, we reconstruct cone C by adding the new optimal points and the surfaces containing 
them. The cone will then include the half-spaces made by the new and previous efficient surfaces. 
We pursue this process until we obtain the structure of all efficient surfaces. It should be noted that 
the union of all efficient surfaces will yield the set of all efficient points. As we have not obtained 
all efficient points in the second case, we make a new cone and obtain the new extremerays of this 
cone as the new weights of the weighted sum problem. 

    At First, we produce ݉ ൅  weak Pareto solutions of problem (2) ) in objective function space ݏ
for composing set SE, which will be efficient units in T୴, with regard to Theorems 5 and 6. We 
compose cone  using these points, and produce new efficient points by obtaining extreme rays of 
this cone as the new weights . 

    If all points belong to the corresponding set , we will have all efficient points. Otherwise we 
continue producing new weights and points. In addition, we present a procedure for studying the 
above conditions. 

At first, we obtain m+s weak efficient unit ሺܺכ, ሻ௤, qכܻ ൌ 1, … , m ൅ s, by using  observed 
DMUs introduced in Section 2 (DMU୨ ൌ ሺX୨, Y୨ሻ such that 

X୨ ൌ ൫xଵ
୨ , xଶ

୨ , … , x୫
୨ ൯ and Y୨ ൌ ൫yଵ

୨ , yଶ
୨ , … , yୱ

୨ ൯, j ൌ 1, … , nሻ as follows. 
For i ൌ 1, … , m , we put ሺܺכ, ሻ௜כܻ ൌ ሺxଵ

୪ , xଶ
୪ , … , x୫

୪ , yଵ
୪ , yଶ

୪ , … , yୱ
୪ ሻ , where  is an index 

such that x୧
୪ ൌ minሼx୧

୨|j ൌ 1, … , nሽ. 
Similarly, for r ൌ 1, … , s, we put ሺܺכ, ሻ௠ା௥כܻ ൌ ሺxଵ

୲ , xଶ
୲ , … , x୫

୲ , yଵ
୲ , yଶ

୲ , … , yୱ
୲ሻ, where  is 

an index such that y୰
୲ ൌ maxሼy୰

୨ |j ൌ 1, … , nሽ. 
 
 Theorem 5. Suppose x୧

୪ ൌ minሼx୧
୨|j ൌ 1, … , nሽ  
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(note that  is corresponding to the index of the DMU that has the least input in th component). 
Then, ሺܺכ, ሻכܻ ൌ ሺx୪

୪, xଶ
୪ , … , x୫

୪ , yଵ
୪ , yଶ

୪ , … , yୱ
୪ ሻ will be a weak efficient unit in T୴. 

Proof: By contradiction, suppose ሺܺכ,  ሻ is not a weak efficient unit in ௩ܶ. Therefore, there isכܻ
ሺܺ, ܻሻ א ௩ܶ  such that ሺܺ, െܻሻ ൏ ሺܺכ, െܻכሻ . Since ሺX, Yሻ א T୴ , there is a vector λ א E୬ 
such that ∑  ୬

୨ୀଵ λ୨y୰
୨ ൒ y୰, r ൌ 1, … , s  and ∑  ୬

୨ୀଵ λ୨x୧
୨ ൑ x୧, i ൌ 1, … , m , ∑  ୬

୨ୀଵ λ୨ ൌ 1,
λ୨ ൒ 0, j ൌ 1, … , n.  

Regarding above relations, we have x୧
כ ൐ x୧ ൒ ∑  ୬

୨ୀଵ λ୨x୧
୨, , which is a contradiction, because 

we have x୧
୪ ൌ min൛x୧

୨หj ൌ 1, … , nൟ, x୧
୪ ൌ x୧

כ ൑ x୧
୨, j ൌ 1, … , n, then x୧

כ ൑ ∑  ୬
୨ୀଵ λ୨x୧

୨,  
∑  ୬

୨ୀଵ λ୨ ൌ 1, λ୨ ൒ 0, j ൌ 1, … , n.  Therefore, ሺX, Yሻ is a weak efficient unit in T୴, and the 
proof is complete.  

 
Theorem 6. Suppose y୰

୲ ൌ minሼy୰
୨ |j ൌ 1, … , nሽ (note that t is corresponding to the index of 

DMU that has the most output in th component), then 
ሺܺכ, ሻכܻ ൌ ሺx୪

୲, xଶ
୲ , … , x୫

୲ , yଵ
୲ , yଶ

୲ , … , yୱ
୲ሻ will be a weak efficient unit in T୴. 

Proof. The Proof is similar to  the proof of Theorem 5.  
    By attention to Theorem (3),  since ሺܺכ, ,ሻ௤כܻ q ൌ 1, … , m ൅ s are weak efficient units in 
௩ܶ thus ሺܺכ, െܻכሻ௤, ݍ ൌ 1, … , ݉ ൅  are weak pareto solutions in objective function space of ݏ

problem (2). Denote EFଵ ൌ ሼሺܺכ, െܻכሻ௤|q ൌ 1, … , m ൅ sሽ and k ൌ m ൅ s. Let  
Cଵ ൌ ሼሺV, U, u଴ሻ|V୘ܺכ୯ െ U୘ܻכ୯ ൒ u଴, ሺV, Uሻ ൒ 0, ሺV, Uሻ ് 0, q ൌ 1, … , m ൅ sሽ. 

Obtain the extreme rays of Cଵ and denote the rays by W୪ ൌ ሺWሶ , Wሷ , w଴ሻ୪, l ൌ 1, … , hଵ. 
Now, denote Pଵ ൌ ሼሺX, െYሻ|ሺWሶ ୪ሻ୘X െ ሺWሷ ୪ሻ୘Y ൒ w଴

୪ , l ൌ 1, … , hଵ, ሺX, Yሻ א T୴ሽ. 
For l ൌ 1, … , hଵ, solve the weighted sum problem (5). 

    Let ሺXഥ, െYഥሻ୪ be an optimal solution of (5). Denote an index set as follows. 
Iଵ ൌ ሼl|ሺXഥ, െYഥሻ୪ is not in Pଵ, l ൌ 1, … , hଵሽ. 
If Iଵ ൌ the stop, (denote h ׎ ൌ hଵ, k ൌ m ൅ s, we have case (1)), else denote 
EFଶ ൌ ሼሺXഥ, െYഥሻ୪|l א Iଵሽ ׫ EFଵ. Without loss of generality, denote 
EFଶ ൌ ሼሺXഥ, െYഥሻଵ, … , ሺXഥ, െYഥሻ୫ାୱ, ሺXഥ, െYഥሻ୫ାୱାଵ, … , ሺXഥ, െYഥሻ୩మሽ, kଶ ൐ ݉ ൅  ,ݏ
    We provide an algorithm for finding all weak Pareto solutions of (2), in objective function 

space, as follows. 
 
Step 0.  Set EF ൌ EFଶ. 
Step 1. We obtain cone  as following. 
C ൌ ሼሺV, U, u଴ሻ|V୘X െ U୘Y ൒ u଴, ሺV, Uሻ ൒ 0, ሺV, Uሻ ് 0, ሺX, െYሻ א EFሽ.  Obtain the 

extreme rays of  and denote the rays by W୪ ൌ ሺWሶ , Wሷ , w଴ሻ୪, l ൌ 1, … , h, and compose 
P ൌ ሼሺX, െYሻ|ሺWሶ ୪ሻ୘X െ ሺWሷ ୪ሻ୘Y ൒ w଴

୪ , l ൌ 1, … , h, ሺX, Yሻ א T୴ሽ. 
 
Step 2. For l ൌ 1, … , h, solve the weighted sum problem (5) associated with weight W୪. Let 

ሺXഥ, െYഥሻ୪ be an optimal solution of (5). Denote an index set   I ൌ ሼl|ሺXഥ, െYഥሻ୪ does not belong 
to , l ൌ 1, … , hሽ. 

 
Step 3. If I ൌ  then stop From theorems 4, 7and 8, we have determined all weak Pareto ׎
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solutions in objective function space of problem (2). else go to step 4. 

Step 4. Denote EF ൌ EF ׫ I. Without loss of generality, denote   
EFଶ ൌ ሼሺXഥ, െYഥሻଵ, … , ሺXഥ, െYഥሻ୩ሽ,  where ሺXഥ, െYഥሻ୨ , j ൌ 1, … , k,  are the extreme points of 

outcome space of MOLP (2). Go to step 1. 
     
Since the outcome space has a finite number of extreme points, this algorithm will finallyend 

after a finite number of steps. 
According to the above algorithm, if we want to obtain the weak pareto solutions in objective 

function space of problem (2), in every step we will compose cone  and obtain its extreme rays 
we use them as the new weights of problem (5) to obtain the new weak pareto solutions. 

 
 Theorem 7. Let ሺܺ, ܻሻ א ௩ܶ and ܨܧ ൌ ሼሺ തܺ, െ തܻሻଵ, … , ሺ തܺ, െ തܻሻ௛ሽ in the termination of the 
above algorithm. Then, ܲ ൌ ሼሺܺ, െܻሻ|ሺܺ, ܻሻ א ௩ܶሽ ൅ ାܧ

௠ା௦. 
Proof: Suppose ሺܺ, ܻሻ א ௩ܶ.  At the end of the above algorithm, we have ሺ തܺ, െ തܻሻ௟ א ܲ, ݈ ൌ 1, … , ݄. 
Regarding Theorem (4), ܲ ൌ and therefore ሺ ,ܧܵ തܺ, െ തܻሻ௟ ൒ ∑  ௞

௤ୀଵ ௤ሺߣ ෠ܺ, െ ෠ܻሻ௤,  
 ∑  ௞

௤ୀଵ ௤ߣ ൌ 1, ௤ߣ ൒ 0, ݍ ൌ 1, … , ݇. 
    Since ሺX෡, െY෡ሻ୯ א SE, q ൌ 1, … , k,  and ሺXഥ, െYഥሻ୪, l ൌ 1, … , h,  are the optimal solutions of 

problem (5) in objective function space corresponding to weight vectors W୪, l ൌ 1, … , h, we have, 
ሺW୪ሻ୲ሺX, െYሻ ൒ ሺW୪ሻ୲ሺXഥ, െYഥሻ୪ ൒ ∑  ୩

୯ୀଵ λ୯ሺW୪ሻ୲ሺX෡, െY෡ሻ୯ ൒ ∑  ୩
୯ୀଵ λ୯w୭

୪ ൌ w୭.
୪  That is,  

ሺX, െYሻ א P.    Now, suppose ሺX, െYሻ א SE ൌ P. By the definition of SE, we have ሺX, െYሻ ൒
∑  ୩

୯ୀଵ λ୯ሺX෡, െY෡ሻ୯, ∑  ୩
୯ୀଵ λ୯ ൌ 1, λ୯ ൒ 0, q ൌ 1, … , k. Since ሺX෡, Y෡ሻ୯ א T୴, q ൌ 1, … , k, and T୴ is a 

convex set, ∑  ୩
୯ୀଵ λ୯ሺX෡, Y෡ሻ୯ א T୴ for ∑  ୩

୯ୀଵ λ୯ ൌ 1, λ୯ ൒ 0, q ൌ 1, … , k. We put ∑  ௞
௤ୀଵ ௤ߣ ෠ܺ୯ ൌ X෩ 

and ∑  ௞
௤ୀଵ ௤ߣ ෠ܻ ୯ ൌ Y෩, for ∑  ௞

௤ୀଵ ௤ߣ ൌ 1, ௤ߣ ൒ 0, ݍ ൌ 1, … , ݇. Then  ܺ ൒ ෨ܺ and ܻ ൑ ෨ܻ since ൫ ෨ܺ, ෨ܻ൯ א
T୴, by definition of T୴, we have ሺܺ, ܻሻ א ௩ܶ. 

    As for every  ሺX, Yሻ א T୴  we have a corresponding point ሺX, െYሻ  in the objective space of 
problem (2), then there exists a injective correspondence between ሺX, Yሻ ,T୴ and ሺX א െYሻ of the 
objective function space of problem (3). Consequently, if ሺX, െYሻ א P then, 
 ሺX, െYሻ א ሼሺX, െYሻ|ሺX, Yሻ א T୴ሽ ൅ Eା

୫ାୱ, and the proof is complete.  
 
Theorem 8. Suppose we obtain all weights during the above algorithm as follows.With 
ሼܹଵ, … , ܹ௛ሽ, we obtain the weak pareto solutions structure of problem (2) in objective function 
space as follows: 

EFതതതത ൌ׫୪ୀଵ
୦ ሼሺX, െYሻ| ∑  ୫

୧ୀଵ wሶ ୧
୪x୧ െ ∑  ୱ

୰ୀଵ wሷ ୰୪ y୰ ൌ w଴
୪ ,

ሺX, Yሻ ൌ ሺxଵ, xଶ, … , x୫, yଵ, yଶ, … , yୱሻ א T୴ሽ.   
Proof:  At first, suppose ሺX, Yሻ א T୴, Then, by Theorem 7, we have ሺX, െYሻ א P ൌ SE then 

∑  ୫
୧ୀଵ wሶ ୧

୪x୧ െ ∑  ୱ
୰ୀଵ wሷ ୰୪ y୰ ൒ w଴

୪ . Therefore, w଴
୪  is the minimum of the left-hand side of the 

above inequality. 
If there is ሺXഥ, Yഥሻ א T୴  such that ∑  ୫

୧ୀଵ wሶ ୧୪xത୧ െ ∑  ୱ
୰ୀଵ wሷ ୰

୪ yത୰ ൌ w଴
୪ , for some l ൌ 1, … , h , 

Then we will have ሺXഥ, Yഥሻ is an optimal solution of problem (4), if we select ሺU, Vሻ ൌ ሺWሶ , Wሷ ሻ. 
From Theorem 1 and 3, ሺXഥ, Yഥሻ is an efficient unit in T୴, thus ሺ തܺ, െ തܻሻ is a weak Pareto solution in 
objective function space of problem (2). 

Now, suppose ሺXഥ, െYഥሻ is an efficient point in outcome space of MOLP (2). From Theorem 7, 
ሺXഥ, െYഥሻ is the optimal solution of the following problem, 
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    min    ሺX, െYሻ
     s. t.    ሺX, Yሻ א P.      (6) 

 By contradiction, suppose ሺXഥ, െYഥሻ is not in 
୪ୀଵ׫

୦ ሼሺX, െYሻ| ∑  ୫
୧ୀଵ wሶ ୧

୪x୧ െ ∑  ୱ
୰ୀଵ wሷ ୰

୪ y୰ ൌ w଴
୪ , ሺxଵ, xଶ, … , x୫, yଵ, yଶ, … , y୰ሻ א T୴ሽ. 

Since ሺXഥ, െYഥሻ א P then ∑  ୫
୧ୀଵ wሶ ୧୪xത୧ െ ∑  ୱ

୰ୀଵ wሷ ୰
୪ yത୰ ൒ w଴

୪ , l ൌ 1, … , h, since ሺXഥ, െYഥሻ dose 
no belong to  

୪ୀଵ׫
୦ ሼሺX, െYሻ| ∑  ୫

୧ୀଵ wሶ ୧
୪x୧ െ ∑  ୱ

୰ୀଵ wሷ ୰
୪ y୰ ൌ w଴

୪ , ሺxଵ, xଶ, … , x୫, yଵ, yଶ, … , y୰ሻ א T୴ሽ, 
Therefore ∑  ୫

୧ୀଵ wሶ ୧୪xത୧ െ ∑  ୱ
୰ୀଵ wሷ ୰

୪ yത୰ ൐ w଴
୪ , l ൌ 1, … , h, which shows that ሺXഥ, െYഥሻ is not a 

weak Pareto solution of (6), and this is a contradiction. Therefore, 
ሺXഥ, െYഥሻ ୪ୀଵ׫א

୦ ሼሺX, െYሻ| ∑  ୫
୧ୀଵ wሶ ୧୪x୧ െ ∑  ୱ

୰ୀଵ wሷ ୰
୪ y୰ ൌ w଴

୪ ,
ሺxଵ, xଶ, … , x୫, yଵ, yଶ, … , yୱሻ א T୴ሽ    and Now, the proof is completed.  

Suppose ሺXഥ, െYഥሻ א EFതതതത , Denote J ൌ ሼl| ∑  ୫
୧ୀଵ wሶ ୧୪xത୧ െ ∑  ୱ

୰ୀଵ wሷ ୰
୪ yത୰ ൌ w଴

୪ , l ൌ 1, … , hሽ.  
 

Theorem 9. Suppose ሺ തܺ, െ തܻሻ א തതതത then ሺܨܧ തܺ, െ തܻሻ is a Paerto solution in objective function 
space of problem (2) if and only if ∑  ௟א௃ ሺݓሶ ௟, ሷݓ ௟ሻ ൐ 0. 
Proof:  For l א J, we have ∑  ୫

୧ୀଵ wሶ ୧୪xത୧ െ ∑  ୱ
୰ୀଵ wሷ ୰୪ yത୰ ൌ w଴

୪  and for l א ሼ1, … , hሽ െ J , ∑  ୫
୧ୀଵ wሶ ୧୪xത୧ െ

∑  ୱ
୰ୀଵ wሷ ୰୪ yത୰ ൐ w଴

୪ . Assume ሺXഥ, െYഥሻ is a Paerto solution in objective function space of problem (2) 
but ∑  ୪א୎ ሺwሶ ୪, wሷ ୪ሻ ൐ 0 is not true. Since for l א ሼ1, … , hሽ, we have ሺwሶ ୪, wሷ ୪ሻ ൒ 0, thus there exist j଴ 
such that the j଴th component of ∑  ୪א୎ ሺwሶ ୪, wሷ ୪ሻ is zero. Without losing generality, suppose, for each 
l א J, we have ሺwሶ ୨బ

୪ ሻ ൌ 0. If J ൌ ሼ1, … , hሽ, let  be a positive number (for example δ ൌ 1), else let 

δ ൌ minሼ∑  ౣ
౟సభ ୵ሶ ౟

ౢ୶ത౟ି∑  ౩
౨సభ ୵ሷ ౨

ౢ ୷ഥ౨ି୵బ
ౢ

୵ሶ ౠబ
ౢ |wሶ ୨బ

୪ ൐ 0, ݈ א ሼ1, … , hሽ െ Jሽ. 

Denote ሺX෩, െY෩ሻ ൌ ሺxതଵ, … , xത୨బିଵ, xത୨బ െ δ, , xത୨బାଵ, … , xത୫, െyതଵ, െyതଶ, … , െyതୱሻ, then  
∑  ୫

୧ୀଵ wሶ ୧୪x෤୧ െ ∑  ୱ
୰ୀଵ wሷ ୰୪ y෤୰ ൒ w଴

୪ , l ൌ 1, … , h thus ሺX෩, െY෩ሻ א P from Theorem (7) ሺX෩, െY෩ሻ belongs to 
objective function space of problem (2). 

    By attention to above relation, we have ሺXഥ, െYഥሻ ൐ ሺX෩, െY෩ሻ  , ሺXഥ, െYഥሻ ് ሺX෩, െY෩ሻ . This 
contradicts with the assumption that ሺXഥ, െYഥሻ is a Paerto solution in objective function space of 
problem (2), then ∑  ୪א୎ ሺwሶ ୪, wሷ ୪ሻ ൐ 0. 

    On the other hand, if ∑  ୪א୎ ሺwሶ ୪, wሷ ୪ሻ ൐ 0, for l א J we have ∑  ୫
୧ୀଵ wሶ ୧୪xത୧ െ ∑  ୱ

୰ୀଵ wሷ ୰୪ yത୰ ൌ w଴
୪  but, 

for each ሺX, Yሻ א T୴, from Theorem (7) we have ∑  ୫
୧ୀଵ wሶ ୧୪x୧ െ ∑  ୱ

୰ୀଵ wሷ ୰୪ y୰ ൒ w଴
୪ . 

    Therefore, for each ሺX, െYሻ, that belongs belong to objective function space of problem (2) we 
have ሺX, െYሻሺ∑  ୨א୎ ሺwሶ ୪, wሷ ୪ሻሻ୘ ൒ ∑  ୪א୎ w଴

୪ ൌ ሺXഥ, െYഥሻሺ∑  ୪א୎ ሺwሶ ୪, wሷ ୪ሻሻ୘. 
    This indicates that ሺXഥ, െYഥሻ is an optimal solution of linear programing following. 

  
    min    ሺX, െYሻሺ∑  ୪א୎ ሺwሶ ୪, wሷ ୪ሻሻ୘

    s. t.     ሺX, Yሻ א T୴  (7) 

 Note, ሺ∑  ୪א୎ ሺwሶ ୪, wሷ ୪ሻሻ ൐ 0, by Theorem (3) ሺXഥ, െYഥሻ is a Paerto solution in objective 
funcƟon space of problem (2).    
 
4. Numerical example 

    In this section, we illustrate the problem by a numerical example. Consider the case where 
there are seven units with two input and one output, with details as given in Table1. 
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Table 1. The data of the eight DMUs. 
  DMU   DMUଵ   DMUଶ  DMUଷ  DMUସ   DMUହ   DMU଺   DMU଻   DMU଼ 
 Input 1  4  7  8   4   2   10  12 10 
 Input 2   3  3  1   2   4   1  1 1.5 
 Output   2  4  7   5   2   5  8 7 

 
The proposed model (2) for the data in Table (1) is summarized as follows:  
 
    min    ሼxଵ, xଶ, െyଵሽ                                
    s. t      4λଵ ൅ 7λଶ ൅ 8λଷ ൅ 4λସ ൅ 2λହ ൅ 10λ଺ ൅ 12λ଻ ൅ 10λ଼ ൅ sଵ

ି ൌ xଵ
                3λଵ ൅ 3λଶ ൅ λଷ ൅ 2λସ ൅ 4λହ ൅ λ଺ ൅ λ଻ ൅ 1.5λ଼ ൅ sଶ

ି ൌ xଶ
                2λଵ ൅ 4λଶ ൅ 7λଷ ൅ 5λସ ൅ 2λହ ൅ 5λ଺ ൅ 8λ଻ ൅ 7λ଼ െ sଵ

ା ൌ yଵ
                λଵ ൅ λଶ ൅ λଷ ൅ λସ ൅ λହ ൅ λ଺ ൅ λ଻ ൅ λ଼ ൌ 1
                sଵ

ି ൒ 0, sଶ
ି ൒ 0, sା ൒ 0, xଵ ൒ 0, xଶ ൒ 0, yଵ ൒ 0, λ୨ ൒ 0, j ൌ 1, … ,7. ሺ9ሻ

  

 First, we obtain minሼxଵ୨|1 ൑ j ൑ 7ሽ ൌ xଵହ ൌ 2 , and minሼxଶ୨|1 ൑ j ൑ 7ሽ ൌ xଶଷ ൌ 1 , 
maxሼyଵ୨|1 ൑ j ൑ 7ሽ ൌ yଵ଻ ൌ 8. 

Therefore, ሺXכ, െYכሻଵ ൌ ሺ2,4, െ2ሻ , ሺXכ, െYכሻଶ ൌ ሺ8,1, െ7ሻ , ሺXכ, െYכሻଷ ൌ ሺ12,1, െ8ሻ  and 
EFଵ ൌ ሼሺ2,4, െ2ሻ, ሺ8,1, െ7ሻ, ሺ12,1, െ8ሻሽ.  Let Cଵ ൌ ሼሺvଵ, vଶ, uଵ, u଴ሻ|2vଵ ൅ 4vଶ െ 2uଵ ൒ u଴, 8vଵ ൅
vଶ െ 7uଵ ൒ u଴, 12vଵ ൅ vଶ െ 8uଵ ൒ u଴, ሺvଵ, vଶ, uଵሻ ൒ 0, ሺvଵ, vଶ, uଵሻ ് 0ሽ 

We obtain all extreme rays of Cଵ as follows: 
Wଵ ൌ ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻଵ ൌ ሺ1,0,0,0ሻ, Wଶ ൌ ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻଶ ൌ ሺ0,1,0,0ሻ 
Wଷ ൌ ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻଷ ൌ ሺ0,0,1, െ8ሻ, Wସ ൌ ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻସ ൌ ሺ1,1,1,2ሻ. 
Using these weights to solve the weighted sum problem (5), the optimal solutions corresponding 

them are as follows, respectively: 
ሺXഥ, െYഥሻଵ ൌ ሺ2,4, െ2ሻ, ሺXഥ, െYഥሻଶ ൌ ሺ8,1, െ7ሻ,ሺXഥ, െYഥሻଷ ൌ ሺ12,1, െ8ሻ, ሺXഥ, െYഥሻସ ൌ ሺ4,2, െ5ሻ. 
Pଵ ൌ ሼሺxଵ, xଶ, െyଵሻ|xଵ ൒ 0, xଶ ൒ 0, െyଵ ൒ െ8, xଵ ൅ xଶ െ yଵ ൒ 2, ሺxଵ, xଶ, yଵሻ א T୴ሽ  
    Since ሺ4,2, െ5ሻ is not in Pଵ then Iଵ ൌ ሼ4ሽ ്   .׎

Now, we have EFଶ ൌ ሼሺ2,4, െ2ሻ, ሺ8,1, െ7ሻ, ሺ12,1, െ8ሻ, ሺ4,2, െ5ሻሽ. 
In step 1 of the algorithm, we put EF ൌ EFଶ ൌ ሼሺ2,4, െ2ሻ, ሺ8,1, െ7ሻ, ሺ12,1, െ8ሻ, ሺ4,2, െ5ሻሽ. 

C ൌ ሼሺvଵ, vଶ, uଵ, u଴ሻ|2vଵ ൅ 4vଶ െ 2uଵ ൒ u଴, 8vଵ ൅ vଶ െ 7uଵ ൒ u଴, 12vଵ ൅ vଶ െ 8uଵ
൒ u଴, 4vଵ ൅ vଶ െ 5uଵ ൒ u଴, ሺvଵ, vଶ, uଵሻ ൒ 0, ሺvଵ, vଶ, uଵሻ ് 0ሽ 

We obtain all extreme rays of  as follows: 
Wଵ ൌ ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻଵ ൌ ሺ1,0,0,0ሻ, Wଶ ൌ ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻଶ ൌ ሺ0,1,0,1ሻ, 
Wଷ ൌ ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻଷ ൌ ሺ2.5,0,5, െ15ሻ , Wସ ൌ ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻସ ൌ ሺ15,0,10,10ሻ , Wହ ൌ

ሺWሶ ଵ, Wሶ ଶ, Wሷ ଵ, w଴ሻହ ൌ ሺ1.25,0,5, െ25ሻ.  
Using these weights to solve the weighted sum problem (5), the optimal solutions corresponding 
them are as follows, respectively: 

ሺXഥ, െYഥሻଵ ൌ ሺ2,4, െ2ሻ, ሺXഥ, െYഥሻଶ ൌ ሺ10,1, െ5ሻ, ሺXഥ, െYഥሻଷ ൌ ሺ8,1, െ7ሻ, 
ሺXഥ, െYഥሻସ ൌ ሺ2,4, െ2ሻ, ሺXഥ, െYഥሻହ ൌ ሺ4,2, െ5ሻ. 

Pଵ

ൌ ሼሺxଵ, xଶ, െyଵሻ|xଵ ൒ 0, xଶ ൒ 1,2.5xଵ െ 5yଵ ൒ െ15,15xଵ െ 10yଵ ൒ 10,1.25xଵ െ 5yଵ ൒ െ25, ሺxଵ, xଶ, yଵሻ א T୴ሽ 
Since all points are in , then I ൌ   ,and the algorithm terminates. So ,׎
EF ൌ ሼሺ2,4, െ2ሻ, ሺ8,1, െ7ሻ, ሺ12,1, െ8ሻ, ሺ4,2, െ5ሻሽ. 
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EFതതതത ൌ ሼሺxଵ, xଶ, െyଵሻ|xଶ ൌ 1, ሺxଵ, xଶ, yଵሻ א T୴ሽ ׫ ሼሺxଵ, xଶ, െyଵሻ|2.5xଵ െ 5yଵ ൌ 15, ሺxଵ, xଶ, yଵሻ
א T୴ሽ ׫ ሼሺxଵ, xଶ, െyଵሻ|15xଵ െ 10yଵ ൌ 10, ሺxଵ, xଶ, yଵሻ
א T୴ሽ ׫ ሼሺxଵ, xଶ, െyଵሻ|1.25xଵ െ 5yଵ ൌ െ25, ሺxଵ, xଶ, yଵሻ א T୴ሽ 

    Since Wଶ ൅ Wସ ൐ 0, Wଶ ൅ Wଷ ൐ 0, Wଶ ൅ Wସ ൅ Wଶ ൐ 0,Wଵ ൅ Wଵ ൅ Wଷ ൐ 0   According 
to Theorem (8) thus the corresponding points to these weights are pareto efficient. Therefore (2,4,-
2),(8,1,-7),(4,2,-5), (12,1,-8) are pareto efficient in objective function space of problem (2). 

    We obtain the vertex set of T୴ by converting ሺxଵ, xଶ, െyଵሻ to ሺxଵ, xଶ, yଵሻ as follows: 
ሼሺ2,4,2ሻ, ሺ8,1,7ሻ, ሺ12,1,8ሻ, ሺ4,2,5ሻሽ.  

 
5.  Conclusion 

    In data envelopment analysis, programming problems corresponding to DMU. Are applied. 
investigated the structure of weak Pareto solutions via solving an MOLP problem. We showed that 
by choosing weights properly and solving the weighted sum problems of the MOLP associated 
with these weights, all weak Pareto solutions and Pareto solutions of the MOLP problem were 
obtained. The method showed that weak Pareto solutions and Pareto solutions could be termined by 
solving only a finite number of linear weighted sum problems. If the number of inputs and outputs 
are smaller than the DMUs,  the the method will be useful. If the weights are chosen suitably, it 
can help the convergence of the method. We can use the proposed method for obtaining 
benchmarks and other elements in DEA. Here we established a relation between DEA and 
multiobjective linear programming and showed how a DEA problem could be solved by an MOLP 
formulation. This provides a basis for applying techniques of MOLP to solve DEA problems.  
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