Characterization of efficient points of the production possibility set under variable returns to scale in DEA

F. Hosseinzadeh Lotfi¹, A.A. Noora², G.R. Jahanshahloo³, J.Gerami⁴ and M.R.Mozaffari⁵

We suggest a method for finding the non-dominated points of the production possibility set (PPS) with variable returns to scale (VRS) technology in data envelopment analysis (DEA). We present a multiobjective linear programming (MOLP) problem whose feasible region is the same as the PPS under variable returns to scale for generating non-dominated points. We demonstrate that Pareto solutions of the MOLP produce efficient units in DEA, and vice versa. We solve the MOLP problem by using a finite number of weights which are extreme rays of the cone generated by the efficient solutions. We obtain new efficient points by changing weights, and thus the efficient solutions set is produced.

Keywords: Data envelopment analysis, Multi-objective linear programming, Production possibility set, Variable returns to scale.

1. Introduction

Data Envelopment Analysis (DEA) was originally proposed by Charnes et al. [4] as a method for evaluating the relative efficiency of Decision Making Units (DMUs) performing essentially the same task. Units use similar multiple inputs to produce similar multiple outputs. DEA deals with the evaluation of the performance of DMU performing a transformation process of several inputs to several outputs. Relying on a technique based on linear programming (LP) and without having to introduce any subjective or economic parameters (weight, price, etc.), DEA provides a measure of efficiency of each DMU allowing, in particular, to separate efficient from non-efficient DMUs and to indicate for each non-efficient DMU its efficient peers. Charnes et al [5] have also had a significant impact on the development of multiple objective linear programming (MOLP) and DEA. However, researchers generally not have paid much attention to research performed in the other camp. DEA and MOLP address similar problems and are structurally very close to each other. In a broader picture, there have been various studies highlighting the similarities between DEA and multiple criteria decision making (MCDM) in general and MOLP in particular, though it is said that they retain their own distinctive traits, see Belton and Stewart. [2], Agrell and Tind [1], Joro et al. [8] and Stewart et al [13, 14]). Taking a step further Doyle and Green [6] suggested that DEA is an MCDM method itself. Belton and Vickers. [3] described the equivalence between the formulations of the basic DEA models and the classic linear multi-attribute value function of MCDM. More specifically, Belton and Stewart [2] pointed out that the mechanism of DEA involves comparison of DMUs on the basis of multiple criteria of both inputs and outputs, but the emphasis of DEA is put on evaluating DMUs against the best practice units and on setting targets

¹ Corresponding author, Department of Mathematics, Science and Research Branch,Islamic Azad University,Tehran, Iran. farhad@hosseinzadeh.ir.
² Department of Mathematics, Sistan & Baluchestan University, Zahedan, Iran
³ Department of Mathematics, Tarbiat Moallem University, Tehran, Iran.
⁴ Department of Mathematics, Science and Research Branch,Islamic Azad University,Tehran.
⁵ Department of Mathematics, Science and Research Branch,Islamic Azad University,Fars, Iran.
to improve efficiency, while MCDM focuses on ranking and assessing alternatives. The MOLP model has been widely applied to many fields and has become a useful tool for decision making (for applications, see Leschine et al. [9], Gravel et al. [7] and Prabuddha et al. [10]). A requisite technique has already been developed for multiple objective linear programing models. Because DEA and MOLP models are structurally similar, we apply this technique to DEA problems as well. The approach recommended is based on the equivalence between DEA and MOLP; we obtain efficient units in DEA by solving an MOLP problem. Here we use an approach similar to the "combined constraint-space, objective space" approach together with the method of transferring a polyhedron from intersection form to sum form for building the efficient solution structure of an MOLP. It is well known that a polyhedron can be represented by a set of linear constraints, called "intersection form" or by a convex combination of finite extreme points and non-negative combination of finite extreme rays, called "sum form". A polyhedron can be transferred from intersection form to sum form (for the algorithms, see Charnes et al. [5], Wei and Yan [11, 12], or Yan et al. [15]). We start by studying the relation between DEA and MOLP problems. We show that the approach recommended is based on the equivalence between DEA and MOLP; we obtain efficient units in DEA by solving an MOLP problem. Here we use an approach similar to the "combined constraint-space, objective space" approach together with the method of transferring a polyhedron from intersection form to sum form for building the efficient solution structure of an MOLP. It is well known that a polyhedron can be represented by a set of linear constraints, called "intersection form" or by a convex combination of finite extreme points and non-negative combination of finite extreme rays, called "sum form". A polyhedron can be transferred from intersection form to sum form (for the algorithms, see Charnes et al. [5], Wei and Yan [11, 12], or Yan et al. [15]).

The mainder of our work is organized as follows. Section 2 introduces the similar structure of MOLP and DEA models. Section 3 provides the structural similarities between MOLP and DEA and rank(ܣ=)݉ ,௠. The Pareto solution and weak Pareto solution of ሺ1ሻ are defined as follows.

Definition 1. DMUvalidators (j = 1, ..., n), where each DMU consumes an input to produce an output. Suppose that \(X^j = (x_1^j, x_2^j, ..., x_m^j)^T \) and \(Y^j = (y_1^j, y_2^j, ..., y_n^j)^T \) are the vectors of inputs and outputs, respectively, for DMUvalidators, where it is assumed that \(X^j \geq 0, X^j \neq 0 \) and \(Y^j \geq 0, Y^j \neq 0 \). We define the production possibility set of Data Envelopment Analysis under variable returns to scale as follows:

\[
T_v = \{ (X, Y) = (x_{1j}, ..., x_{mj}, y_{1j}, ..., y_{nj}) | \sum_{j=1}^{n} \lambda_j y_r^j \geq y_r, r = 1, ..., s, \sum_{j=1}^{n} \lambda_j x_i^j \leq x_i, i = 1, ..., m, \sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0, j = 1, ..., n \}.
\]

Definition 1. DMUvalidators (X^o, Y^o) ∈ T_v is called an efficient unit if and only if there is not an \((X, Y) \in T_v \) such that \((X, -Y) \leq (X^o, -Y^o) \) and \((X, -Y) \neq (X^o, -Y^o) \).

Definition 2. DMUvalidators (X^o, Y^o) ∈ T_v is called a weak efficient unit if and only if there is not an \((X, Y) \in T_v \) such that \((X, -Y) < (X^o, -Y^o) \).

Consider the following multiobjective linear programing (MOLP) problem,

\[
\begin{align*}
\min & \quad c^T Z \\
\text{s. t.} & \quad Z \in R = \{ Z | AZ \leq b, Z \geq 0 \},
\end{align*}
\]

where \(C = (C_1^1, C_2^1, ..., C_p^1)^T \) is a \(p \times n \) matrix, \(c_i^t \in \mathbb{R}^n \), \(i = 1, ..., p \), \(Z = (z_1, z_2, ..., z_n) \in \mathbb{R}^n \), \(E^n \) is called the constraint space, \(A \) is an \(m \times n \) matrix, \(n \geq m \) and \(\text{rank}(A) = m \), \(b = (b_1, b_2, ..., b_m) \in \mathbb{R}^m \).

The Pareto solution and weak Pareto solution of (1) are defined as follows.
Definition 3. $\bar{Z} \in \mathbb{R}$ is called a Pareto solution of (1) if there does not exist $Z \in \mathbb{R}$ such that $C^T Z \leq C^T \bar{Z}$, $C^T Z \neq C^T \bar{Z}$.

Definition 4. $\bar{Z} \in \mathbb{R}$ is called a weak Pareto solution of (1) if there does not exist $Z \in \mathbb{R}$ so that $C^T Z < C^T \bar{Z}$.

Put $Z = (X, Y, \lambda) = (x_1, ..., x_m, y_1, ..., y_s, \lambda_1, ..., \lambda_n), X \in \mathbb{R}^m, Y \in \mathbb{R}^s, \lambda \in \mathbb{R}^n,$ $C_i = e_i^T, j = 1, ..., m, C^T_j = -e_i^T, j = m + 1, ..., m + s, e_i^T \in \mathbb{R}^{m+s+n}$ is a vector whose jth element is one and other elements are zero, $C = (C_1^T, C_2^T, ..., C_{m+s}^T)^T$, and $R = \{(x_1, ..., x_m, y_1, ..., y_s, \lambda_1, ..., \lambda_n)| \sum_{j=1}^n \lambda_j y^j \geq y_r, \ r = 1, ..., s, \sum_{j=1}^n \lambda_j x^j \leq x_i, \ i = 1, ..., m, \sum_{j=1}^n \lambda_j = 1, \lambda_j \geq 0, \ j = 1, ..., n, \ x_i \geq 0, \ i = 1, ..., m, \ y_r \geq 0, \ r = 1, ..., s\}.$

Then problem (1) is converted to

$$\begin{align*}
\min & \quad (x_1, ..., x_m, -y_1, ..., -y_s) \\
\text{s.t.} \quad & \sum_{j=1}^m \lambda_j y^j \geq y_r, \ r = 1, ..., s, \\
& \sum_{j=1}^m \lambda_j x^j \leq x_i, \ i = 1, ..., m, \\
& \sum_{j=1}^m \lambda_j = 1, \\
& \lambda_j \geq 0, \ j = 1, ..., n, \\
& x_i \geq 0, \ i = 1, ..., m, \ y_r \geq 0, \ r = 1, ..., s.
\end{align*}$$

(2)

Note (X, Y, λ) is a feasible solution of problem (2) while $(X, -Y)$ is a vector belonging to objective function space of problem (2).

By considering definition (2) (X^*, Y^*, λ^*) is called a weak pareto solution of (2), if there does not exist (X, Y, λ) such that $(X, -Y) < (X^*, -Y^*)$.

Theorem 1. Let $(X^*, Y^*) \in T_v$. Then,

(i) (X^*, Y^*, λ^*) is a Pareto solution of (2) if and only if (X^*, Y^*) is an efficient unit in T_v.

(ii) (X^*, Y^*, λ^*) is a weak Pareto solution of (2) if and only if (X^*, Y^*) is a weak efficient unit in T_v.

Proof: (i) Let (X^*, Y^*, λ^*) be a Pareto solution of (2). We show that (X^*, Y^*) is an efficient unit in T_v. By contradiction, suppose (X^*, Y^*) is not an efficient unit in T_v. Then there is an $(\bar{X}, \bar{Y}) \in T_v$ such that $(\bar{X}, -\bar{Y}) \leq (X^*, -Y^*)$ and $(\bar{X}, -\bar{Y}) \neq (X^*, -Y^*)$. Since $(\bar{X}, \bar{Y}) \in T_v$, there is a $\bar{\lambda} \in \mathbb{R}^n$ such that $(\bar{X}, \bar{Y}, \bar{\lambda})$ is a feasible solution of (2). Since $(\bar{X}, -\bar{Y}) \leq (X^*, -Y^*)$ and $(\bar{X}, -\bar{Y}) \neq (X^*, -Y^*)$ then we have a contradiction; therefore, (X^*, Y^*) is an efficient unit in T_v.

Now suppose (X^*, Y^*) is an efficient unit in T_v. Since $(X^*, Y^*) \in T_v$, there is a $\lambda^* \in \mathbb{R}^n$ such that (X^*, Y^*, λ^*) is a feasible solution of (2). As (X^*, Y^*) is an efficient unit in T_v, there is no $(\bar{X}, \bar{Y}) \in T_v$ such that $(\bar{X}, -\bar{Y}) \leq (X^*, -Y^*)$ and $(\bar{X}, -\bar{Y}) \neq (X^*, -Y^*)$. Since, there is a vector $\bar{\lambda}$ for each $(\bar{X}, \bar{Y}) \in T_v$ such that $(\bar{X}, \bar{Y}, \bar{\lambda})$ is a feasible solution of (2). Regarding the above relations there is no $(\bar{X}, \bar{Y}, \bar{\lambda})$ that is a feasible solution of (2) such that $(\bar{X}, -\bar{Y}) \leq
(X^*, -Y^*) and \((\bar{X}, -\bar{Y}) \neq (X^*, -Y^*)\). Therefore \((X^*, Y^*, \lambda^*)\) is a Pareto solution of (2) and
the proof is complete.

(ii) Proof is similar to (i). \(\blacksquare\)

Theorem 2. The optimal values of problem (2) are finite.

Proof: Since \(-\sum_{j=1}^{n} \lambda_j y_j^r \leq -y_r, r = 1, \ldots, s,\) and \(\sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0, j = 1, \ldots, n,\) then
\(-y_r, r = 1, \ldots, s\) are finite. Similarly \(\sum_{j=1}^{n} \lambda_j x_j^i \geq x_i, i = 1, \ldots, m,\) and \(\sum_{j=1}^{n} \lambda_j = 1,\)
\(\lambda_j \geq 0, j = 1, \ldots, n.\) Then, \(x_i, i = 1, \ldots, m,\) are finite. Therefore, the optimal values of problem
(2) are finite. \(\blacksquare\)

3. Constructing efficient points structure of DEA

Consider the following multiobjective linear programming problem,

\[
\begin{align*}
\text{min} & \quad (X, -Y) \\
\text{s. t.} & \quad (X, Y) \in T_v.
\end{align*}
\]

(3)

Note that the above problem is the vector form of problem (2).

Using Theorem 1, we solve problem (3) to obtain the efficient units of \(T_v.\) Problem (3) being an
MOLP problem, we can use a method of solving MOLP, as presented in [16].

Since, for every \((X, Y) \in T_v\) we have a corresponding point \((X, -Y)\) in the objective space
of problem (3), there exists a injective correspondence between the units of \(T_v\) and the values of
the objective function. Then, for finding the efficient units of \(T_v\) we solve problem (3) and obtain
all the weak efficient points.

Here paper, we use the weighted sum problem method. So, we select vectors of positive
weights \(v \in E^m, u \in E^s (V \geq 0, U \geq 0, V \neq 0, U \neq 0).\) The following linear programming
problem is called a weighted sum problem of problem (2) associated with weight \(W = (V, U)^T = (v_1, \ldots, v_m, u_1, \ldots, u_s)^T \in E^{m+s} (V \geq 0, U \geq 0, V \neq 0, U \neq 0).\)

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{m} v_i x_i - \sum_{r=1}^{s} u_r y_r \\
\text{s. t.} & \quad (x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_s) \in T_v.
\end{align*}
\]

(4)

It is well known (from Theorem 3 below) that \((X, -Y)\) is an optimal solution for the linear
programming problem (2) in objective function space if and only if \((X, -Y)\) is an optimal solution
for the linear programming problem (4) for some \(W \in E^{m+s} (W \geq 0, W \neq 0).\)

Theorem 3. Let \((X, Y) \in T_v.\) Then,

(i) \((X, -Y)\) is a weak Pareto solution of (2) in objective function space if and only if there exists a
weight \(W = (w_1, w_2, \ldots, w_{m+s}), W \in E^{m+s}, W \geq 0, W \neq 0,\) such that \((X, -Y)\) is the
optimal solution of the weighted sum problem (4).

(ii) \((X, -Y)\) is a Pareto solution of (2) in objective function space if and only if there exists a
weight \(W = (w_1, w_2, \ldots, w_{m+s}), W \in E^{m+s}, W > 0,\) such that \((X, -Y)\) is the optimal
solution of the weighted sum problem (4).

Proof: See Zeleny [16] for proof. \(\blacksquare\)
Provided that we have obtained \(k \) weak Pareto solutions, \((\tilde{X}, -\tilde{Y})^1, \ldots, (\tilde{X}, -\tilde{Y})^k\) of \((2)\), we hope to find new Pareto solutions of \((2)\) by solving its weighted sum problem. In following, we show how we obtain these solutions. (see Theorems (3) and (4)). In order to do this, we should choose some weights to obtain the new efficient solutions.

Let \(SE = \{(X, -Y) | (X, -Y) = \sum_{q=1}^{k} \lambda_q (\tilde{X}, -\tilde{Y})^q, \sum_{q=1}^{k} \lambda_q = 1, \lambda_q \geq 0, q = 1, \ldots, k\} + E^+_{m+s} \), where \(E^+_{m+s} = \{(X, Y) | (X, Y) \in E^{m+s}, (X, Y) \geq 0\} \). Let also Cone \(C \) is constructed as follows.

\[
C = \{(V, U, u_0) | V^T \tilde{X}^q - U^T \tilde{Y}^q \geq u_0, (V, U) \geq 0, (V, U) \neq 0, q = 1, \ldots, k\}.
\]

It is easy to see that \(SE \) is a closed convex set in \(E^{m+s} \) and \(C \cup \{0\} \) is a polyhedral cone in \(E^{m+s} \). \(C \) can be represented by a non-negative combination of its extreme rays. (For the algorithms, see Charnes et al. [5] or Wei and Yan. [11, 12, and Yan et al. [15]).

Denote the extreme rays of \(C \) by \(W^l = (\tilde{w}_1, \ldots, \tilde{w}_m, \tilde{w}_1, \ldots, \tilde{w}_s, w_0) \). Then, \(SE \) is not true. Then, there exists \(\lambda^o = (\lambda^o_1, \ldots, \lambda^o_k) \), such that \((X^o, -Y^o) \neq \sum_{q=1}^{k} \lambda^o_q (\tilde{X}^q, -\tilde{Y}^q)\). Therefore, \(X^o \geq \sum_{q=1}^{k} \lambda^o_q \tilde{X}^q, -Y^o \geq -\sum_{q=1}^{k} \lambda^o_q \tilde{Y}^q \). Since \((\tilde{W}, \tilde{W}, w_0) \), \(l = 1, \ldots, h \), are the extreme rays of \(C \), we have \(\tilde{X}^T \tilde{W}^l - \tilde{Y}^T \tilde{W}^l \geq w_0^l, l = 1, \ldots, h \).

Note that \((\tilde{W}, \tilde{W})^l \geq 0, l = 1, \ldots, h \). We have \(X^o^T \tilde{W}^l - Y^o^T \tilde{W}^l \geq \sum_{q=1}^{k} \lambda^o_q (\tilde{X}^q)^T \tilde{W}^l - \sum_{q=1}^{k} \lambda^o_q \tilde{X}^q \tilde{W}^l \geq w_0^l, l = 1, \ldots, h \), that is, \((X^o, -Y^o) \in P \).

On the other hand, assume that \(P \subseteq SE \) is not true. Then, there exists \((X^o, -Y^o) \in P, \) but \((X^o, -Y^o) \) is not in \(SE \). Since \(SE \) is a closed convex set, by the separation theorem for convex sets, there exist \(d \in E^{m+s}, d \neq 0, \) and \(\alpha \in E^1 \), such that for any \((X, -Y) \in SE, \) we have \(d(X, -Y)^T \geq \alpha > d(X^o, -Y^o)^T \). Then \(\sum_{i=1}^{m} d_i x_i - \sum_{r=1}^{s} d_{r+m} y_r \geq \alpha > \sum_{i=1}^{m} d_i x_i^o - \sum_{r=1}^{s} d_{r+m} y_r^o \).

Note that when all components of \((X, -Y) \) are very large, we still have \((X, -Y) \in SE \). Thus, \(d \geq 0 \). Since \((\tilde{X}^q, -\tilde{Y}^q) \in SE \), we have \(\sum_{i=1}^{m} \mu_i \tilde{x}_i^q - \sum_{r=1}^{s} d_{r+m} \tilde{y}_r^q \geq \alpha, q = 1, \ldots, k \). Therefore, \((d, \alpha)^T \in C \), (by definition of \(C \)). That is, there are \(\mu_i \geq 0, l = 1, \ldots, h \), such that \(d = \sum_{l=1}^{h} \mu_i (\tilde{W}, \tilde{W})^l \), \(\alpha = \sum_{l=1}^{h} \mu_i w_0^l \). Thus \(\alpha \geq \sum_{i=1}^{m} d_i x_i^o - \sum_{r=1}^{s} d_{r+m} y_r^o = \sum_{i=1}^{m} \sum_{l=1}^{h} \mu_i \tilde{x}_i^o - \sum_{r=1}^{s} \sum_{l=1}^{h} \mu_i \tilde{y}_r^o \). Note that \((X^o, -Y^o) \in P \). Then, \(\alpha \geq \sum_{i=1}^{m} d_i x_i^o - \sum_{r=1}^{s} d_{r+m} y_r^o = \sum_{i=1}^{m} \sum_{l=1}^{h} \mu_i \tilde{x}_i^o - \sum_{r=1}^{s} \sum_{l=1}^{h} \mu_i \tilde{y}_r^o \).

After all obtaining extreme rays of \(C \), we solve the following weighted sum problems associated with weight \(W^l = (\tilde{W}, \tilde{W}, w_0) \), \(l = 1, \ldots, h \), (note that \(W^l, l = 1, \ldots, h \) are the extreme rays of \(C \)).
Characterization of efficient points of the production

\[\min \sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r \]
\[\text{s. t. } (x_1, x_2, ..., x_m, y_1, y_2, ..., y_s) \in T_v, \quad (5) \]

where \(l = 1, ..., h \).

Let \((\bar{X}, -\bar{Y})^l\) be an optimal solution of (5) corresponding to weights vector \(W^l, l = 1, ..., h \).

From Theorem 3, \((\bar{X}, -\bar{Y})^l\) is a weak Pareto solution of (2) in objective function space.

For any \((\bar{X}, -\bar{Y})^l, l = 1, ..., h\), we have two cases:

1. For any \(l = 1, ..., h \), we have \((\bar{X}, -\bar{Y})^l \in \mathcal{P}\). Then, from Theorems 4, 7 and 8, (to be seen later) we have determined all weak Pareto solutions of problem (2) in objective function space. There exists \(l(0 \leq l \leq h) \) such that \((\bar{X}, -\bar{Y})^l \) is not in \(\mathcal{P} \). Denote an index set

2. \(I_0 = \{ l | (\bar{X}, -\bar{Y})^l \) is not in \(\mathcal{P}, l = 1, ..., h \} \). Then, \((\bar{X}, -\bar{Y})^l, l \in I_0\), are the new weak Pareto solutions of problem (2) in objective function space.

To determine the structure of all optimal solutions of an MOLP problem, we make use of extreme points and ray in MOLP. First, we obtain some of the optimal solutions in MOLP, which coincide with DEA efficient units. These solutions can be easily obtained in the first stage. Next, we obtain the structure of all optimal solutions in MOLP, which coincide with the DEA-efficient surfaces. This is the space made by the efficient surfaces. We construct cone \(C \), which is made by the efficient surfaces; then we obtain the extreme rays of the cone and use them as the weights of the objective function in MOLP for finding new optimal points. If all the points produced lie in the space made by the efficient surfaces, then we have obtained the structure of all optimal solutions. Otherwise, we reconstruct cone \(C \) by adding the new optimal points and the surfaces containing them. The cone will then include the half-spaces made by the new and previous efficient surfaces. We pursue this process until we obtain the structure of all efficient surfaces. It should be noted that the union of all efficient surfaces will yield the set of all efficient points. As we have not obtained all efficient points in the second case, we make a new cone and obtain the new extreme rays of this cone as the new weights of the weighted sum problem.

At first, we produce \(m + s \) weak Pareto solutions of problem (2) in objective function space for composing set \(SE \), which will be efficient units in \(T_v \), with regard to Theorems 5 and 6. We compose cone \(C \) using these points, and produce new efficient points by obtaining extreme rays of this cone as the new weights.

If all points belong to the corresponding set \(\mathcal{P} \), we will have all efficient points. Otherwise we continue producing new weights and points. In addition, we present a procedure for studying the above conditions.

At first, we obtain \(m + s \) weak efficient unit \((X^*, Y^*)^q, q = 1, ..., m + s\), by using \(u \) observed DMUs introduced in Section 2 (DMU \(j = (X^l, Y^l) \) such that

\[X^l = (x_1^l, x_2^l, ..., x_m^l) \] and \(Y^l = (y_1^l, y_2^l, ..., y_s^l), l = 1, ..., n \) as follows.

For \(i = 1, ..., m \), we put \((X^*, Y^*)^i = (x_1^i, x_2^i, ..., x_m^i, y_1^i, y_2^i, ..., y_s^i), \) where \(I \) is an index such that \(x_i^I = \min \{ x_i^j | j = 1, ..., n \} \).

Similarly, for \(r = 1, ..., s \), we put \((X^*, Y^*)^{m+r} = (x_1^t, x_2^t, ..., x_m^t, y_1^t, y_2^t, ..., y_s^t), \) where \(t \) is an index such that \(y_t^I = \max \{ y_t^j | j = 1, ..., n \} \).

Theorem 5. Suppose \(x_i^I = \min \{ x_i^j | j = 1, ..., n \} \)
(note that \(i\) is corresponding to the index of the DMU that has the least input in \(i\)th component).

Then, \((X^*, Y^*) = (x_1^i, x_2^i, \ldots, x_m^i, y_1^i, y_2^i, \ldots, y_l^i)\) will be a weak efficient unit in \(T_v\).

Proof: By contradiction, suppose \((x^i, y^i) \) is not a weak efficient unit in \(T_v\). Therefore, there is \((x, y) \in T_v\) such that \((x, y) < (x^*, y^*)\). Since \((x, y) \in T_v\), there is a vector \(\lambda \in E^n\) such that \(\sum_{j=1}^{n} \lambda_j y^i_j \geq y_j, r = 1, \ldots, s\) and \(\sum_{j=1}^{n} \lambda_j x^i_j \leq x_j, i = 1, \ldots, m\). \(\sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0, j = 1, \ldots, n\).

Regarding above relations, we have \(x^i_j > x_j \geq \sum_{j=1}^{n} \lambda_j x^i_j\), which is a contradiction, because we have \(x^i_j = \min \{x^i_j | j = 1, \ldots, n\}\), \(x^i_j = x^i_j \leq x^i_j, j = 1, \ldots, n\), then \(x^i_j \leq \sum_{j=1}^{n} \lambda_j x^i_j\), \(\sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0, j = 1, \ldots, n\). Therefore, \((X, Y)\) is a weak efficient unit in \(T_v\), and the proof is complete.

Theorem 6. Suppose \(y^i_t = \min \{y^i_j | j = 1, \ldots, n\}\) (note that \(t\) is corresponding to the index of DMU that has the most output in \(t\)th component), then \((x^i, y^i) \) will be a weak efficient unit in \(T_v\).

Proof. The Proof is similar to the proof of Theorem 5.

By attention to Theorem (3), since \((x^i, y^i)\) are weak efficient units in \(T_v\) thus \((x^i, -y^i)\) are weak pareto solutions in objective function space of problem (2). Denote \(EF^1 = \{(x^i, -y^i) | q = 1, \ldots, m + s\}\) and \(k = m + s\). Let \(C^1 = \{(V, U, u_0) | V^T X^* - U^T Y^* \geq u_0, (V, U) \geq 0, (V, U) \neq 0, q = 1, \ldots, m + s\}\). Obtain the extreme rays of \(C^1\) and denote the rays by \(W^l = (W, \hat{W}, w^0)\), \(l = 1, \ldots, h_1\).

Now, denote \(P^l = \{(X, Y) | (\hat{W})^T X - (\hat{W})^T Y \geq w^0, l = 1, \ldots, h_1, (X, Y) \in T_v\}\). For \(l = 1, \ldots, h_1\), solve the weighted sum problem (5).

Let \((\tilde{X}, -\tilde{Y})\) be an optimal solution of (5). Denote an index set as follows.

\[I_1 = \{l | (\tilde{X}, -\tilde{Y}) \notin P^l, l = 1, \ldots, h_1\}\]

If \(I_1 = \emptyset\) the stop, (denote \(h = h_1, k = m + s\), we have case (1)), else denote \(EF^2 = \{(\tilde{X}, -\tilde{Y}) \} \cup EF^1\). Without loss of generality, denote \(EF^2 = \{(\tilde{X}, -\tilde{Y})^{m+s}, (\tilde{X}, -\tilde{Y})^{m+s+1}, \ldots, (\tilde{X}, -\tilde{Y})^{k_2}\}, k_2 > m + s\).

We provide an **algorithm** for finding all weak Pareto solutions of (2), in objective function space, as follows.

Step 0. Set \(EF = EF^2\).

Step 1. We obtain cone \(C\) as following.

\[C = \{(V, U, u_0) | V^T X - U^T Y \geq u_0, (V, U) \geq 0, (V, U) \neq 0, (X, Y) \in EF\}\]

Obtain the extreme rays of \(C\) and denote the rays by \(W \) and compose \(P = \{(X, Y) | (\hat{W})^T X - (\hat{W})^T Y \geq w^0, l = 1, \ldots, h, (X, Y) \in T_v\}\).

Step 2. For \(l = 1, \ldots, h\), solve the weighted sum problem (5) associated with weight \(W^l\). Let \((\tilde{X}, -\tilde{Y})\) be an optimal solution of (5). Denote an index set \(I = \{l | (\tilde{X}, -\tilde{Y}) \} \notin P, l = 1, \ldots, h\}.

Step 3. If \(I = \emptyset\) then stop From theorems 4, 7 and 8, we have determined all weak Pareto
Characterization of efficient points of the production

solutions in objective function space of problem (2). else go to step 4.

Step 4. Denote \(\text{EF} = \text{EF} \cup \emptyset \). Without loss of generality, denote
\[
\text{EF}^2 = \{ (\bar{x}, -\bar{y})^1, \ldots, (\bar{x}, -\bar{y})^h \},
\]
where \((\bar{x}, -\bar{y})^j, j = 1, \ldots, k\), are the extreme points of outcome space of MOLP (2). Go to step 1.

Since the outcome space has a finite number of extreme points, this algorithm will finally end after a finite number of steps.

According to the above algorithm, if we want to obtain the weak pareto solutions in objective function space of problem (2), in every step we will compose cone \(\mathcal{C} \) and obtain its extreme rays we use them as the new weights of problem (5) to obtain the new weak pareto solutions.

Theorem 7. Let \((X, Y) \in T_v \) and \(\text{EF} = \{ (\bar{x}, -\bar{y})^1, \ldots, (\bar{x}, -\bar{y})^h \} \) in the termination of the above algorithm. Then, \(P = \{ (X, -Y) | (X, Y) \in T_v \} + E_+^m + s \).

Proof: Suppose \((X, Y) \in T_v \). At the end of the above algorithm, we have \((X, -Y)^l \in P, l = 1, \ldots, h \).
Regarding Theorem (4), \(P = SE \), and therefore \((X, -\bar{y})^l \geq \sum_{q=1}^{k} \lambda_q (X, -\bar{y})^q \),
\[
\sum_{q=1}^{k} \lambda_q = 1, \lambda_q \geq 0, q = 1, \ldots, k.
\]
Since \((\bar{x}, -\bar{y})^q \in SE, q = 1, \ldots, k \), and \((\bar{x}, -\bar{y})^l, l = 1, \ldots, h \), are the optimal solutions of problem (5) in objective function space corresponding to weight vectors \(W^l, l = 1, \ldots, h \), we have,
\[
(W^l)^T (X, Y) \geq (W^l)^T (X, -\bar{y})^l \geq \sum_{q=1}^{k} \lambda_q (W^l)^T (X, -\bar{y})^q \geq \sum_{q=1}^{k} \lambda_q W^l = w_0^l.
\]
That is, \((X, Y) \in P \). Now, suppose \((X, -Y) \in SE \). By the definition of \(SE \), we have \((X, -Y) \geq \sum_{q=1}^{k} \lambda_q (X, Y)^q \), \(\sum_{q=1}^{k} \lambda_q = 1, \lambda_q \geq 0, q = 1, \ldots, k \). Since \((X, Y)^q \in T_v, q = 1, \ldots, k \), and \(T_v \) is a convex set, \(\sum_{q=1}^{k} \lambda_q (X, Y)^q \in T_v \) for \(\sum_{q=1}^{k} \lambda_q = 1, \lambda_q \geq 0, q = 1, \ldots, k \). We put \(\sum_{q=1}^{k} \lambda_q X^q = \bar{x} \) and \(\sum_{q=1}^{k} \lambda_q Y^q = \bar{y} \), for \(\sum_{q=1}^{k} \lambda_q = 1, \lambda_q \geq 0, q = 1, \ldots, k \). Then \(X \geq \bar{x} \) and \(Y \leq \bar{y} \) since \((X, Y) \in T_v \), by definition of \(T_v \), we have \((X, Y) \in T_v \).

As for every \((X, Y) \in T_v \) we have a corresponding point \((X, -Y) \) in the objective space of problem (2), then there exists a injective correspondence between \((X, Y) \in T_v \) and \((X, -Y) \) of the objective function space of problem (3). Consequently, if \((X, Y) \in P \) then, \((X, Y) \in \{ (X, -Y) | (X, Y) \in T_v \} + E_+^m + s \), and the proof is complete. \(\blacksquare \)

Theorem 8. Suppose we obtain all weights during the above algorithm as follows. With \(\{ W^1, \ldots, W^h \} \), we obtain the weak pareto solutions structure of problem (2) in objective function space as follows:
\[
\text{EF} = \{ (X, Y) | \sum_{i=1}^{m} \bar{w}^i X_i - \sum_{r=1}^{s} \bar{w}^r Y_r = w^0 \},
\]
\[(X, Y) = (x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_s) \in T_v \}.
\]

Proof: At first, suppose \((X, Y) \in T_v \). Then, by Theorem 7, we have \((X, -Y) \in P = SE \) then \(\sum_{i=1}^{m} \bar{w}^i X_i - \sum_{r=1}^{s} \bar{w}^r Y_r \geq w^1 \). Therefore, \(w^1 \) is the minimum of the left-hand side of the above inequality.

If there is \((\bar{x}, \bar{y}) \in T_v \) such that \(\sum_{i=1}^{m} \bar{w}^i X_i - \sum_{r=1}^{s} \bar{w}^r Y_r = w^1 \), for some \(l = 1, \ldots, h \), then we will have \((\bar{x}, \bar{y}) \) is an optimal solution of problem (4), if we select \((U, V) = (\bar{W}, \bar{W}) \).
From Theorem 1 and 3, \((\bar{x}, \bar{y}) \) is an efficient unit in \(T_v \), thus \((\bar{x}, \bar{y}) \) is a weak Pareto solution in objective function space of problem (2).

Now, suppose \((\bar{x}, -\bar{y}) \) is an efficient point in outcome space of MOLP (2). From Theorem 7, \((\bar{x}, -\bar{y}) \) is the optimal solution of the following problem,
\[
\min (X, -Y) \\
\text{s.t. } (X, Y) \in P. \quad (6)
\]

By contradiction, suppose \((\bar{X}, -\bar{Y})\) is not in \(U^b_{h_1} \{(X, -Y) | \sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r = w_0^l, (x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_r) \in T_v\}\).

Since \((\bar{X}, -\bar{Y}) \in P\) then \(\sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r \geq w_0^l, \ l = 1, \ldots, h\), since \((\bar{X}, -\bar{Y})\) does no belong to \(U^b_{h_1} \{(X, -Y) | \sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r = w_0^l, (x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_r) \in T_v\}\).

Therefore \(\sum_{i=1}^{m} \tilde{w}_i^l |x_i - \sum_{r=1}^{s} \tilde{w}_r^l |y_r > w_0^l, \ l = 1, \ldots, h\), which shows that \((\bar{X}, -\bar{Y})\) is not a weak Paerto solution of (6), and this is a contradiction. Therefore, \((\bar{X}, -\bar{Y}) \in U^b_{h_1} \{(X, -Y) | \sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r = w_0^l, (x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_r) \in T_v\}\) and Now, the proof is completed. \(\blacksquare\)

Suppose \((\bar{X}, -\bar{Y}) \in \overline{E}\), Denote \(J = \{l | \sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r = w_0^l, \ l = 1, \ldots, h\}\).

Theorem 9. Suppose \((\bar{X}, -\bar{Y}) \in \overline{E}\) then \((\bar{X}, -\bar{Y})\) is a Paerto solution in objective function space of problem (2) if and only if \(\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l) > 0\).

Proof: For \(l \in J\), we have \(\sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r = w_0^l\) and for \(l \in \{1, \ldots, h\} - J\), \(\sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r > w_0^l\). Assume \((\bar{X}, -\bar{Y})\) is a Paerto solution in objective function space of problem (2) but \(\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l) > 0\) is not true. Since for \(l \in \{1, \ldots, h\}\), we have \((\tilde{w}_l^l, \tilde{w}_l^l) \geq 0\), thus there exist \(l_0\) such that the \(j_{th}\) component of \(\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l)\) is zero. Without losing generality, suppose, for each \(l \in J\), we have \((\tilde{w}_l^l) = 0\). If \(J = \{1, \ldots, h\}\), let \(\delta\) be a positive number (for example \(\delta = 1\)), else let \(\delta = \min \left\{ \sum_{l=1}^{m} \tilde{w}_i^l \bar{x}_i - \sum_{r=1}^{s} \tilde{w}_r^l \bar{y}_r \right\} / \tilde{w}_l^l > 0, l \in \{1, \ldots, h\} - J\}.

Denote \((\bar{X}, -\bar{Y}) = (\bar{x}_1, \ldots, \bar{x}_{l_0-1}, \bar{x}_{l_0}, \ldots, \bar{x}_{m}, -\bar{y}_1, -\bar{y}_2, \ldots, -\bar{y}_s)\), then \(\sum_{i=1}^{m} \tilde{w}_i^l \bar{x}_i - \sum_{r=1}^{s} \tilde{w}_r^l \bar{y}_r \geq w_0^l, l = 1, \ldots, h\) thus \((\bar{X}, -\bar{Y}) \in P\) from Theorem (7) \((\bar{X}, -\bar{Y})\) belongs to objective function space of problem (2).

By attention to above relation, we have \((\bar{X}, -\bar{Y}) > (\bar{X}, -\bar{Y})\), \((\bar{X}, -\bar{Y}) \neq (\bar{X}, -\bar{Y})\). This contradicts with the assumption that \((\bar{X}, -\bar{Y})\) is a Paerto solution in objective function space of problem (2), then \(\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l) > 0\).

On the other hand, if \(\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l) > 0\), for \(l \in J\) we have \(\sum_{i=1}^{m} \tilde{w}_i^l \bar{x}_i - \sum_{r=1}^{s} \tilde{w}_r^l \bar{y}_r = w_0^l\) but, for each \((X, Y) \in T_v\) from Theorem (7) we have \(\sum_{i=1}^{m} \tilde{w}_i^l x_i - \sum_{r=1}^{s} \tilde{w}_r^l y_r \geq w_0^l\).

Therefore, for each \((X, -Y)\), that belongs belong to objective function space of problem (2) we have \((X, -Y) (\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l))^T \geq \sum_{l \in J} w_0^l = (\bar{X}, -\bar{Y}) (\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l))^T\).

This indicates that \((\bar{X}, -\bar{Y})\) is an optimal solution of linear programing following.

\[
\min (X, -Y) (\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l))^T \\
\text{s.t. } (X, Y) \in T_v \quad (7)
\]

Note, \((\sum_{l \in J} (\tilde{w}_l^l, \tilde{w}_l^l)) > 0\), by Theorem (3) \((\bar{X}, -\bar{Y})\) is a Paerto solution in objective function space of problem (2). \(\blacksquare\)

4. Numerical example

In this section, we illustrate the problem by a numerical example. Consider the case where there are seven units with two input and one output, with details as given in Table 1.
The data of the eight DMUs.

<table>
<thead>
<tr>
<th>DMU</th>
<th>DMU₁</th>
<th>DMU₂</th>
<th>DMU₃</th>
<th>DMU₄</th>
<th>DMU₅</th>
<th>DMU₆</th>
<th>DMU₇</th>
<th>DMU₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Input 2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Output</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

The proposed model (2) for the data in Table (1) is summarized as follows:

\[
\begin{align*}
\text{min} & \quad \{x₁, x₂, -y₁\} \\
\text{s.t} & \quad 4\lambda₁ + 7\lambda₂ + 8\lambda₃ + 4\lambda₄ + 2\lambda₅ + 10\lambda₆ + 12\lambda₇ + 10\lambda₈ + s₁^- = x₁ \\
& \quad 3\lambda₁ + 3\lambda₂ + 2\lambda₅ + 4\lambda₆ + \lambda₇ + 1.5\lambda₈ + s₂^- = x₂ \\
& \quad 2\lambda₁ + 4\lambda₂ + 7\lambda₃ + 5\lambda₄ + 2\lambda₅ + 5\lambda₆ + 8\lambda₇ + 7\lambda₈ - s₁^+ = y₁ \\
& \quad \lambda₁ + \lambda₂ + \lambda₃ + \lambda₄ + \lambda₅ + \lambda₆ + \lambda₇ + \lambda₈ = 1 \\
& \quad s₁^- \geq 0, s₂^- \geq 0, s₁^+ \geq 0, x₁ \geq 0, x₂ \geq 0, y₁ \geq 0, \lambda₁ \geq 0, j = 1, ..., 7. \quad (9)
\end{align*}
\]

First, we obtain \(\min\{x₁| 1 \leq j \leq 7\} \Rightarrow x₁ = 2\), and \(\min\{x₂| 1 \leq j \leq 7\} = x₂ = 1\), \(\max\{y₁| 1 \leq j \leq 7\} = y₁ = 8\).

Therefore, \((X', -Y')^1 = (2.4, -2)\), \((X', -Y')^2 = (8.1, -7)\), \((X', -Y')^3 = (12.1, -8)\) and \(\text{EF}^1 = \{(v₁, v₂, u₁, u₀)|2v₁ + 4v₂ - 2u₁ \geq u₀, 8v₁ + v₂ - 7u₁ \geq u₀, 12v₁ + v₂ - 8u₁ \geq 0, v₁, v₂, u₁ \geq 0, (v₁, v₂, u₁) \neq 0\} \)

We obtain all extreme rays of \(C^1\) as follows:

\[
\begin{align*}
W₁ &= (W₁, W₂, W₃, w₀)^1 = (1,0,0,0), \quad W₂ = (W₁, W₂, W₃, w₀)^2 = (0,1,0,0) \\
W₃ &= (W₁, W₂, W₃, w₀)^3 = (0,0,1, -8), \quad W₄ = (W₁, W₂, W₃, w₀)^4 = (1,1,1,2).
\end{align*}
\]

Using these weights to solve the weighted sum problem (5), the optimal solutions corresponding them are as follows, respectively:

\[
\begin{align*}
(X₁, -Y₁)^1 &= (2,4, -2), \quad (X₁, -Y₁)^2 = (8,1, -7), \quad (X₁, -Y₁)^3 = (12,1, -8). \quad \text{P}^1 = \{(x₁, x₂, -y₁)|x₁ ≥ 0, x₂ ≥ 0, -y₁ ≥ -8, x₁ + x₂ - y₁ ≥ 2, (x₁, x₂, y₁) \in T₁\} \\
\text{Since} \ (4,2, -5) \ \text{is not in} \ \text{P}^1 \ \text{then} \ I₁ = \{4\} \neq 0.
\end{align*}
\]

Now, we have \(\text{EF}^2 = \{(2.4, -2), (8.1, -7), (12.1, -8), (4.2, -5)\} \).

In step 1 of the algorithm, we put \(\text{EF} = \text{EF}^2 = \{(2.4, -2), (8.1, -7), (12.1, -8), (4.2, -5)\} \).

\[C = \{(v₁, v₂, u₁, u₀)|2v₁ + 4v₂ - 2u₁ \geq u₀, 8v₁ + v₂ - 7u₁ \geq u₀, 12v₁ + v₂ - 8u₁ \geq 0, v₁, v₂, u₁ \geq 0, (v₁, v₂, u₁) \neq 0\} \]

We obtain all extreme rays of \(C\) as follows:

\[
\begin{align*}
W₁ &= (W₁, W₂, W₃, w₀)^1 = (1,0,0,0), \quad W₂ = (W₁, W₂, W₃, w₀)^2 = (0,1,0,1) \\
W₃ &= (W₁, W₂, W₃, w₀)^3 = (2.5,0.5, -15), \quad W₄ = (W₁, W₂, W₃, w₀)^4 = (15,0,10,10), \quad W₅ = (W₁, W₂, W₃, w₀)^5 = (1.25,0.5, -25).
\end{align*}
\]

Using these weights to solve the weighted sum problem (5), the optimal solutions corresponding them are as follows, respectively:

\[
\begin{align*}
(X₁, -Y₁)^1 &= (2.4, -2), \quad (X₁, -Y₁)^2 = (10,1, -5), \quad (X₁, -Y₁)^3 = (8,1, -7), \quad (X₁, -Y₁)^4 = (4,2, -5). \quad \text{P}^1 = \{(x₁, x₂, -y₁)|x₁ ≥ 0, x₂ ≥ 1.25x₁ - 5y₁ ≥ -15, x₁ ≥ 10, 1.25x₁ - 5y₁ ≥ -25, (x₁, x₂, y₁) \in T₁\}
\end{align*}
\]

Since all points are in \(\text{P}\), then \(I₁ = \emptyset\), and the algorithm terminates. So, \(\text{EF} = \{(2.4, -2), (8.1, -7), (12.1, -8), (4.2, -5)\} \).
$$EF = \{(x_1, x_2, -y_1)|x_2 = 1, (x_1, x_2, y_1) \in T_v\} \cup \{(x_1, x_2, -y_1)|2.5x_1 - 5y_1 = 15, (x_1, x_2, y_1) \in T_v\} \cup \{(x_1, x_2, y_1)|15x_1 - 10y_1 = 10, (x_1, x_2, y_1) \in T_v\} \cup \{(x_1, x_2, -y_1)|12.5x_1 - 5y_1 = -25, (x_1, x_2, y_1) \in T_v\}$$

Since $W^2 + W^4 > 0$, $W^2 + W^3 > 0$, $W^2 + W^4 + W^2 > 0$, $W^4 + W^3 + W^3 > 0$ According to Theorem (8) thus the corresponding points to these weights are pareto efficient. Therefore (2,4,-2),(8,1,-7),(4,2,-5), (12,1,-8) are pareto efficient in objective function space of problem (2).

We obtain the vertex set of T_v by converting $(x_1, x_2, -y_1)$ to (x_1, x_2, y_1) as follows:

$$\{(2,4,2),(8,1,7),(12,1,8),(4,2,5)\}.$$

5. Conclusion

In data envelopment analysis, programming problems corresponding to DMU. Are applied. investigated the structure of weak Pareto solutions via solving an MOLP problem. We showed that by choosing weights properly and solving the weighted sum problems of the MOLP associated with these weights, all weak Pareto solutions and Pareto solutions of the MOLP problem were obtained. The method showed that weak Pareto solutions and Pareto solutions could be terminated by solving only a finite number of linear weighted sum problems. If the number of inputs and outputs are smaller than the DMUs, the the method will be useful. If the weights are chosen suitably, it can help the convergence of the method. We can use the proposed method for obtaining benchmarks and other elements in DEA. Here we established a relation between DEA and multiobjective linear programming and showed how a DEA problem could be solved by an MOLP formulation. This provides a basis for applying techniques of MOLP to solve DEA problems.

References

Characterization of efficient points of the production

