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A Path-Following Infeasible Interior-Point Algorithm
for Semidefinite Programming

H. Mansouri'”", T. Siyavash?, M. Zangiabadi’

We present a new algorithm obtained by changing the search directions in the algorithm given
in [8]. This algorithm is based on a new technique for finding the search direction and the
strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step.
Moreover, we obtain the currently best known iteration bound for the infeasible interior-point

n
algorithms with full NT steps, namely O (n log—j , which is as good as the linear analogue.
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1. Introduction

We are concerned with the semidefinite programming (SDP) problem given in the following
standard form:

)r(nitrb{Tr(CX):Tr(AiX)zbi,i=1,---,m}, (P)
and its associated dual problem:
T m
max <b' y: A +S=C¢, D
SEO{ V2 viA } (D)
where b,y € R™ and each A, ,i =1,---,m and C are symmetric matrices, i.e., A, ,C €S".

Furthermore, X > (X > 0) means that X is a positive semidefinite (positive definite) matrix.
Without loss of generality, we assume that matrices A, are linearly independent. The SDP

problem has wide applications in continuous and combinatorial optimization [1, 14]. In the past
decade, SDP has become a popular research area in mathematical programming when it became
clear that the algorithm for linear optimization (LO) can often be extended to the more general SDP
case. Several interior-point methods (IPMs) designed for (LO) have been successfully extended to
SDP [11, 15]. Many researchers have studied SDP and obtained substantiona results. For an
overview of these results, see [9, 14].

Here, we present a full-Newton step infeasible interior-point algorithm for solving the SDP
problem and prove that the complexity of the algorithm coincides with the best known iteration
bound for infeasible [PMs.
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The following notations are used throughout the paper. R", R and R, denote the set of vectors
with N components, the set of nonnegative vectors and set of positive vectors, respectively,
|| || denotes the Frobenius norm for matrices, and the 2 -norm for vectors, R™" is the space of all

m xn matrices, S", S and S, denote the cone of symmetric, symmetric positive semidefinite

and symmetric positive definite N x N matrices, respectively, | denotes the N xn identity matrix,
P and D denote the feasible sets of the primal and dual problems, respectively. We use the
classical Lowner partial order >(>) for symmetric matrices meaning that A —B is positive

semidefinite (positive definite). The matrix inner product is defined by Ae B =Tr(A"B). For any

n
++

symmetric positive definite matrix Q € S, the expression Q”2 denotes the symmetric square
root of Q. We denote the diagonal matrix A with entries 4 by diag(4 ). Forany V €S/, , we
denote A(V ) to bethe vector of eigenvalues of V arranged in non-increasing order, that is,
AV)IZAV )22 A4 V) . For any matrix M , we denote o,(M )>0,(M )=---0,(M), the

J=1L--,n.

singular values of M . Specially, if M is symmetric, then one has o, (M ) = |ﬂ,| M)

Finally, if g(X) >0 is a real valued function of a real nonnegative variable, then the notation
g(x) = O(X) means that g(X) < Cx for some positive constant C and g(X) = ®(X) means that
C,X < g(X) <c,X fortwo positive constants C, and C,.

2. Preliminaries on Matrices and Matrix Functions

We recall some concepts from linear algebra. For more details, see [5].

Lemma 2.1.

HDTr(A)= Z?:lﬂ,, (A), where A (A) isthe i th eigenvalue of the matrix A ,
2)Tr(A)=Tr(A"),

3)Tr(AB)=Tr(BA),

4HTr(A+B)=Tr(A)+Tr(B).

Theorem 2.2. (Spectral Theorem for Symmetric Matrix [14]).

The real N xNn matrix A is symmetric if and only if there exists a matrix Q € R™" such that

QQ" =1 and Q" AQ = A where A is a diagonal matrix.

Throughout the paper, we assume that /(t) is a real valued function on [0,00) and differentiable
on(0,00) such that y(t)>0 for all t>0. Now, we are ready to show a matrix function obtained
from y(t).

Definition 1 Let V € S and
v=Q"diag (l,(V),L.I,(V))Q,

where Q is any orthogonal matrix Q" = Q™ that diagonalizesV . The matrix valued function
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w (v) is defined by

y(v)=Q"diag (y(l,(V)),L,y(,(V)))Q. (1)
It should be noted that the matrix Q is not unique, but (v) is well defined on the eigenvalues of
V [11]. Furthermore, replacing (4 ¢ ))in (1) by w'(4(V)), we obtain the matrix function

y'(V) as follws:
y'(V)=Q"diag (y'(l,(V),L,y'(1,(V)))Q. 2)

Two matrices A and B are called similar (abbreviated A~ B) if A =PBP for some invertible
matrix P and, moreover, if A and B are symmetric then this happen if and only if A and B
have the same eigenvalues [5].

Lemma 2.3. (Lemma 2.6 in [13])

Let A,B esh ,and AB=BA. Then
J(A+B) = 4 (R)+ 4(B), =11
Furthermore, if |ﬂ,| (B )| is small enough, then we have

w(A+B)=y(A)+y'(A)B.
3. Perturbed Problems and Central Path

As usual for infeasible interior-point methods (IIPMs), we assume that the initial iterates
(X°,y°,S°%) are as follows:

XP=8"=g1y°=0, 1" = ¢, 3)
where | is the nxn identity matrix, ,uo is the initial duality gap and a positive scaler  such that
X +S <£I, for some optimal solution (X ,y",S") of (P) and (D) such that
Tr(X'S")=0. It is generally agreed that the total number of inner iterations required by the
algorithm is an appropriate measure for its efficiency and this number is referred to as the iteration
complexity of the algorithm. Using Tr(X °S°)=n¢?, the total number of iterations in the
algorithm of Mansouri and Roos [8] is bounded above by
max{n{z, LIRS }

O|nlog . , “4)

where rb0 and RCO are initial values of the primal and dual residuals, respectively:

(rbo)i =b; -Tr(A; X 0)’ i=1--,m, (5)

m
R/=c-> y/A;-S". (6)
i1
Up to a constant factor, the iteration bound (4) was first obtained by Kojima et al. [7] and Potra
and Sheng [12] and it is still the best-known iteration bound for infeasible IPMs. Now, we recall
the main idea underlying the algorithm in [8]. For any v with 0 <v <1, we consider the perturbed
problem (P,), defined by
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min { Tr(CX-v RIX ) : Tr(A;X) =b-v(1));, i =1,-+,m X =0}, (P)
and its dual problem (D, ) which is given by
m m
max{Z(bi —v(i))Yi: D ViA+S =C-vR!, S » 0}. (D,)
i=1 i=1
Note that if v =1, then X = X° yields a strictly feasible solution of (P,) and (y,S) a strictly
feasible solution of (D, ). Due to the choice of initial iterates, we may conclude that if v =1, then

(P,) and (D,) each have a strictly feasible solution, which then means that both perturbed
problems satisfy the well-known interior-point condition (IPC).

Lemma 3.1. (Lemma 4.1 in [8])

Let the original problems (P) and (D) be feasible. Then, for each v, 0 <v <1 the perturbed

problems (P,) and (D, ) satisfy the IPC.

Here we assume that the problems (P) and (D) are feasible, It follows from lemma 3.1 that the
problems (P,) and (D, ) satisfy the IPC, for each v € (0,1] . Hence, their central path exists. This

means that the system
b —Tr(AiX):v(rbO)i, i=1---,m X >0,

m
C->y,A-S=vR/, S>0, (7)
=
XS = ul,
has a unique solution, for every u>0.
In the sequel, this unique solution is denoted by (X(g,V), y(&,v), S(x,v)). These are the

4 _centers of the perturbed problems (P,) and (D,).

Note that since X°S° = °1 , X° is ,uo -center of the perturbed problem (P,) and (y°,S%)is the
1" -center of (D).
On the other words, (X (x°,1), y(x",1),S(u",1))=X",y%,8°). In the sequel, we will always

have z=vu’ and we will accordingly denote (X(u,Vv), (i, V), S(1,v)) simply as
(X(V), ¥(v), S(v)).
The set of 1 centers (with g running all positive real numbers) gives a homotopy path, which
is called the central path of (P) and (D). If 4 — 0, then the limit of the central path exists and

since the limit points satisfy the complementarity condition, the limit yields an & - approximate
solution for (P) and (D) [6, 14].
In [4], Darvay presented a new technique for finding a class of search direction for LO. He

XS
replaced the standard centering equation XS = ue by w(—)=w(e), where y/(.) is the vector
Y7,

function induced by the function (1), and then applies Newton’s method to obtain the search
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directions. Similar to the LO case, we replace the standard centering equation XS =ul by

W(ﬁ) =/(l). Then, the system (7) can be written as:
H
b —Tr(A, X)=v(r)),,i=1--,m, X =0,
C-> yA-S=vR!, S0, (8)
i=1
XS
7 (—J =y(l).

y7,
We, we use the above system to get the central path.
4. Centering Steps

Let (X,Y,S) be a strictly feasible solution for (P,)and (D, ). Applying Newton’s method to
system (8), we obtain the following system for the search directions AX , Ay and AS :
Tr(A, (X +AX))=b —v(r)),,i=1---,m, X =0,

D (Y +AY)A +(S+AS)=C-vR], S -0, ©)
it
X +AX)(S +AS
w(( X )j=w(l )
Y7,
The third equation of the system (9) is equivalent to:
XS X AS +AXS +AS AX
H H
Applying Lemma 2.3 and neglecting the term AS AX , the equation (10) can be rewritten as
XS (XS ) X AS +AXS
vi— |tV =y(l). (11)
H H H

Then we consider the following system:
Tr(Ai AX)=0,i=1---,m,

m

-1
AX + X ASS ™ =;{y/[x—sn [W(l)—w(x—sns‘l.
7 7

It is obvious that AS is symmetric due to the second equation in (12). However, a crucial

observation is that AX is not necessarily symmetric because X ASS ™' may not be symmetric
[14]. Several ways exist for symmetrizing the third equation in the Newton system such that the
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resulting new system has a unique symmetric solution [6, 9, 11]. Here, we consider the Nesterov-
Todd (NT)-symmetrization scheme in [9]. Let us define

11 1y2 1 =11 1 -1
P=X2{X2sx2| x2=52|52x52| 52, (13)

which is a symmetric nonsingular matrix. We replace the term X ASS ™' in the third
equation of (12) by PASP" . The system (12) becomes
Tr(A;AX)=0,1 =1---,m,

i=1

-
AX + PASPT = y(w(ﬁjj (V/(l)—yx[ﬁns‘l.
p 7

-1
Furthermore, we define D =P 2 . The matrix D can be used to scale X and S to the same
matrix V, because

1 11
V=—bD Ixpl=—_psp

T APt 1)

Note that the matrices D andV are symmetric and positive definite. By using (15), we have

1
V?=—D'XSD.
7 (16)
From Definition 1, we obtain
V/(%}DW(VZ)DI and V/'(%}DV/'(VZ)DI' (17)
Let us further define

— 1 . I - - 1

A =——DAD, i=l-m, Dy =—D 'aXD~!, D¢ ==—DASD. (18)
T p p

Then it follows from (18) that the scaled NT search direction (Dy,D,,Ds) is defined by the

following system

Tr(A,D,)=0,i =1,---,m,

2AyiA_i +D, =0, (19)
D, +D, =P, .
Where,
-1
P, :,uD"(Dz,u’(Vz)D“) (w(l)—Dw(Vz)D‘l)S‘lD“. 20)

Recently, Peng et al. [10] introduced a class of search directions based on self-regular kernel
functions and Bai and Roos. [2] also defined a class of new search direction by using the so-called
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eligible kernel functions. The general approach in this paper can be particularized in such a way as
to obtain the directions defined in [3] only by a constant multiplier, such as y(t) =t yielding

R =V 'V which gives the classical search direction. The classical search direction has been
studied by many researchers [1, 6, 9]. Here we restrict the analysis to the case where () = \/{ ,
This yields

R =2(1 -V).

(21)
Furthermore, we have
PZ
2 _\/2 _ 2 _ vV
V+V R =V +2V( -V)=1-(1-V) —I—T. 22)
For the analysis of the algorithm, we define a norm-based proximity measure Oo(X ,S;u)as
follows:
sy =o0x.5:0 =13y 2
(V)=6(X, S5 =2 =1 =V (23)

Due to the first and second equations of the system (19), D, and Dy are orthogonal. One can
easily verify that

oV)=0=V=1<D, =Dy =0 XS =pul. (24)
Hence, the value of 5(V) can be considered as a measure for the distance between the given pair
(X,¥,S) and the p- center (X (1), Y(1), S(1)) -
The new search directions D, and Dy are obtained by solving (19) with R, =2(1 -V) such that
AX and AS are computed via (18). If (X,y,S)= (X (u), y(u), S(«))then AX ,Ay,AS are

nonzero. One can construct a new full-Newton triple according to

X=X +AX,y" =y+Ay, S* =S +AS, (25)
where AX , Ay, and AS are called the centering steps. For the analysis of the algorithm, we
introduce the notation

Q, =Dx -Ds. (26)

We cite two useful lemmas in [6], which will be used in the proof of Theorem 7.1 in Section 7.
Lemma4.l. (Lemma6.1in [6])

Suppose that X >0 and S > 0. If one has
detX(2)S(a)) >0, VO <a<a,
then X(@) >0 and S() > 0.

Lemma 4.2. (Lemma 6.3 in [6])

Suppose that Q € S”, and M € R"" be skew-symmetric, i.e. M =—M T . One has
det(@Q +M ) > 0. Moreover, if 4L (Q+M) eR(1=1,---,n), then
0 <//i’min (Q) < //i’min (Q +M) < //i’max (Q +M) < //i’max (Q)’
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Lemma 4.3.

Suppose that X >0 and S > 0, Then
det(XS) >0, Tr(XS) > 0.
The following lemma shows the strict feasibility of the centering iterations under the condition

oX,S;u)<1.
Lemma4.4. (Lemma 6.3 in [13])

Let 0:=0(X ,S;u)<1. Then, the centering iterations are strictly feasible.
We proceed to prove the local quadratic convergence of full NT step to the target point

(X(1), y(1), S(11)).
Lemma 4.5. (Lemma 6.4 in [13])

Let 0 :=0(X ,S;u)<1. Then

2

1+41-6>

The following lemma gives an upper bound of the duality gap after a centering step (a full NT
step).

S(X *,S T u)<

Lemma 4.6. (Lemma 6.5 in [13])

After a centering step, we have
Tr(X'S") = nu.

5. A main Iteration of the Algorithm

Now, we describe a main iteration of the algorithm. Suppose that for some v € (0, 1] we have
X, y and S satisfying the feasibility conditions (7) such that
Tr(XS)=nw, and O(X,S;u)<r7,
where £ =v¢ 7 and 7 is a positive value.
First, we find new iterates X' and (y',S") that the satisfy feasibility conditions of (P,) and
(D,) with v replaced by v = (1+0)v . As we will see, by taking € small enough, this can be
realized by one feasibility step. For the feasibility step, we use search directions ATX A y and

A'S that are defined by the system
Tr(AA" X)) =0v(r),, i=1,---,m,

S f f 0
;A y,A+A"'S=0vR!, 27

Therefore the following system is used to define A'X, A"y and A'S:
Tr(AA'X) =0v(r’),, i=1---,m,
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m

Y ATV A+A'S =6vR], (28)

i=l1

1
AX + X ASS™ =y[w'(X—SD (V/(l)—w(x—sj}s‘l.
u 7

After the feasibility step, the iterates are given by

Xf=X+D'X
y'=y+ Ay,
ST=5+A'S.

By definition, after the feasibility step, the iterates satisfy the affine equations (7), with v=v".
The hard part in the analysis will be to guarantee that (X ",y",S") are positive definite and
satisfy 0(X " ,S" ;") <n. In other words, we want that X " and S' belong to the region of

quadratic convergence of ' -centers. Proving this is the crucial part in the analysis of the
algorithm.
After the feasibility step, assume that we have the iterates(X',y",S") such that
SX',S";u)
can be obtained and denoting this bound by 7. We perform few centering steps in order to get
iterates (X', y', S") that satisfy

Tr(X*S*)=nu" and SX *,S*;u")<r.
By using Lemma 4.5, the required number of centering steps can easily be obtained. Indeed,
o=0(X",S";u"H)<n
®., O

vt

+ + +
, after K centering steps we will have iterates (X7 y".87) that

2)

assuming

14

are still feasible for and and satisfy
SX*,yt, ST <n*.

Just as in the linear case [10] this implies that after at most

log,
lo 2
= (logz nj 29)

centering steps, we have §(X*,y",S")<r.

6. A Generic Primal-Dual 11PM for SDP

A formal description of the algorithm is given in Figure 1, where 1, and R, denote the primal

and dual residuals, respectively. One may easily verify that after each iteration the residuals and
the duality gap are reduced by a factor 1 —@ . The algorithm stops if the norms of residual vectors
and the duality gap are less than the accuracy parameter & .

7. Feasibility Steps
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In section 5, we proved that the feasibility step generates the new iterates (X ", y",S")that
satisfy the feasibility conditions of (P )and (D .), except for the nonnegativity constrains,

Another element in the analysis is to show that after the feasibility step we have
SX",ST:m")<n,where 0<n<1.

7.1. Effect of the Feasibility Step

According to Section 6, A'X, A’ yand A'Ssatisfy the system (28). Hence, the matrix

A"X is not necessarily symmetric, because X A"SS ' may not be symmetric [14] we use the NT-
trick to

Input:
An accuracy parameter ¢ ;
a fix barrier update parameter 8, 0<8<1;
a threshold parameter ¢, and 7 > 0;
begin
X% 8=,y =0,u" =7
While max {Tr(XS), R?
begin

feasibility step:
(X,y,8)=(X,y,8)+(A"X,A"y,A"S);
u and v update:

u=0-0)u;

centering steps:

While 6(X,S; ) > 7 do

begin

(X,¥,5) =(X,y,S)+(AX, Ay, AS);

end

end
end

0
il

}25 do

Figure 1. Infeasible-point full Newton step algorithm

symmetrize A" X with P as defined in (13) . Therefore, the system (28) can be rewritten as:
Tr(AA" X)=0v(r)),, i=1,---,m,

D ATYA+A'S=06VR, (30)

i=1
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1
AX +PA'SPT = ﬂ[w(x_sn [V/(l)—yx(x—sns‘l.
7 7

Let X , y and S be the iterates at the start of an iteration. Define

D, :=LD*1AfXD*1, D! =LDA‘SD,
T 7
1
where D =P 2. We can now rewrite (30) as follows : (31)

TH(DADDY) =~ v (), i=L--.m,

Tz

LZAfyiDAiD+Dg =levDRC°D,
\/; i=l H (32)
D) +D{ =P,

where (P,) is as defined in (20).
Using (31), we may write

X'=X+A"X =./uD(V +D/)D,

S'=S+A'S=.[uD*(V+D!)D™
Therefore,

X's"=uD(V+D, )V +D!)D".
The last equality shows that the matrix XS’ is similar to

u(V +DJ )V +D ).

This means that we have

X ST ~(V+Dy)(V+D{). (33)
According to Section 4, we limit the analysis to w (1) = Jt, This yields B, =2(1 =V ). Putting
Q, =Dy -D{. (34)
we have
2 2
p =Rt pr R prprapip SR (33)
2 2 2
In the sequel, we denote
1 f|? fol?
wvy =2 i+ fa's] 0
This implies
|Dx|| < 2w(v), |Di]<2w(v). 37)
Theorem 7.1.

Let X =0 and S > 0. Then, the iterates (X ", y",S")are strictly feasible if 2W(V) < <1.
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Proof. The proof of this lemma is similar to the proof of Lemma 5.4 in [8]. o
Using (33)and (34), we have
Xfo~y[l—%2+M], (38)
where,
M =§((D;v +VD{ VD, -D{V )+(D;D{ -D{ Dy )).

dividing (38) by u", we obtain:

| -———+M
XS 4 (39)
ﬂ —
which yields:
2
. DX fst—l I 7V+M
2— ~
(\/ - /UJr 1_9 : (40)

Assuming 2W(V) < 8 <1, which guarantees strict feasibility of the iterates (X',y",S") we
proceed by deriving an upper bound for (X ' ,S" ; u").
Recall from definition O that

SX "8 = 1-v T, 1)
with V © as defined in (40). In the sequel we denote S(X" ,S" ;") shortly by S(V'). we
proceed to find an upper bound for (V') in terms of W(V). To this end we need some

technical results given information on the eigenvalues and the norm of V " .
Lemma 7.2.

One has
1
2, ((VT)) =2 ——(1-4w’(v)).
(V1)) 2 (1- 4w ()
Proof. Using (40)and Lemma 4.2, we have

O ;L(l—avzﬂvlj

- n

fy2)_ 4 _
A=A -6 | 1-6

z(l —szj 1-4, (Q] |_AQ)
4 4 4
> = = .

-6 1-  1-0
According to the definition of W (V ) and (34) and the properties of the Frobenius matrix norm,

we obtain [An(Qy, )| <4w(V ). Substituting this yields
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1
A (V)P )>——(1-4w?(V )),
(V)2 (14w (V)
which completes the proof. m]

Lemma 7.3.

One has
J1-(v'y Hsﬁ(ﬁewwz(w).

Proof. Using (40) and properties of the Frobenius norm, we have

[1-(vry HZ =Tr(1-(v ') =Zn;(z,(| (V')

B N O L SV | IR (o
(IQ)QEnH +§(/?,,( i +Mn +249iZ=1:/1,[ i +MJ]

< ! 2[—% —29Tr(%J+92nj.
(1-6) 4

4

In the last inequality, we use property of skew-symmetric matrices (M is a skew-symmetric

2 2
matrix). Now, let X(QTV] be the vector consisting of the eigenvalues of QTV Using the Cauchy-
Schwartz inequality, we get
2 n 2 2
Tr Q_V — 21 Q_V =e" 1 Q_V
4 - 4 4

2 2
< ef| 2] = Vi |2,

Thus, we have
2

HI-(Vf)Zuzz 1 QLQVZ —26’Tr[—‘?j+6’2n]
(1-0)7 || 4 4
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1
<
(1-0)° ( ]
On the other hand, according to the definition of W(V) and (34) we get
Q\f 2
v 2 < =i _J/no (< APV Y/nd
vy et o )
which completes the proof. i

Lemma 7.4.

Let 2w (V ) <6 <1. Then we have
Jno+4awi (v )

\/(1—9)(1—(4w2(v )
Proof. We may write, using definition &
SV )=[ -V =fa-vHu+v vy

<2 ((I +V O a-ov )|

- e

Using the bound in lemmas 7.2 and 7.3 the result follows. ]

SX",S"u)<

We wish the new iterates (X ',y",S") are within the neighborhood where the Newton process
targeting the g -centers of (P.)and (D .) is quadratically convergent, ie., & VH<ng.
According to Lemma 7.4, it suffices to have

Jno +awA (V)

<
- (42)

Ja=0)(1-(aw*(v)))

putting
-
n: 5
Lemma 7.5.
Let w(V)= L and 0<O< !
42 ~ o 2van

Then, the iterates (X ',y",S")are strictly feasible for (P,) and (D,), respectively, and

5(Vf)£77=%.
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Proof. Due to Theorem 7.1 and W(V)= the iterates (X ',y",S") are strictly feasible. We

1
42"
1 1
just established that if inequality (42) with 7 = —=1is satisfied then S(V ') <7 =—=. The left

V2 V2

1
hand side in (42)is monotonically increasing in W(V). By substituting W(V)Zm, the

inequality (42) reduces to:

1
\/HH+§ 1

<—, (43)

1 2
(1—9)(1—8j

+4(\/_+—J¢9—2<0. (44)

which is equivalent to

Thus, if 0< 6 < , then the above inequality is satisfied. Therefore, the proof is complete. O

1
242n
8. An upper Bound for w(Vv)

Consider the linear space L as follows:
={£eS": DADe£=0, i=1--m|.

Using the linear space L, it is clear from the first equation in system (30) that the affine space
1 .
{f eS": DA,D ofzfgv(rbo)i i :1’...,m’}
)7

1
equals D; + L. By the second equation in the system (30), we have Ds‘c e——6vDR'D+L".

Tx

Since L NL" ={0}, the spaces Dy +Land D/ +L"meet in a unique matrix. This matrix is

denoted by Q . We can get a similar result of Mansouri and Roos [8].
Lemma 8.1.

Let Q be the (unique) matrix in the intersection of the affine spaces D; + Land DSf +L".
Then,

20(V) < | Q +(| Q+24(v)) 5)

Proof. The proof of this Lemma is similar to the proof of Lemma 5.6 in [10], and is therefore
omitted . o
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1
Recall from Lemma 7.5 that in order to guarantee that S(V')<—=, we want to have

NA

1
w(V )< m . Due to Lemma 8.1 this will certainly hold if || Q || satisfies

1
[Q +(lQl+20) <. (46)
8.1. An Upper Bound for | Q|
Recall from Lemma 8.1 that Q is the unique solution of the system
Tr(DAiDQ)zlev(rb")i, i=1---,m,
7

ig—iDAiD +Q =l9VDRC°D. (47)
i=1 4 M

We proceed to find an upper bound for . As will become clear below, specially in the proofs
p

of Lemma 8.2 and Lemma 8.4, it will be convenient to choose the initial iterates (X0 , y° ,S° ) as
follows:

X?=8°=(1,y" =0, 4" =¢?, 48)
where >0 is such that

X +8S <71, (49)

for some (X ™,y ,S )eF = {(X, Y,S)e PxD:Tr(XS) = 0} . It may be noted that this choice of

the initial iterates has become usual for infeasible IPMs for SDP [8].

Lemma 8.2. (Lemma 5.13 in [8])

with (X°,y%,S°) as defined by (48) , we have

0
||Q||smTr(X +S). (50)

In the following lemma we get a bound for A, V ) whereV is defined in (15).

Lemma 8.3.

Let 0=0(V) be given by (23). Then
1-06<AV )<+, 1 =1,---,n.
Proof. We can rewrite (V) in (23) as follows

SV)=[|1-V =]V -1 =Tr(v - 1))

(€Y
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i=l i=l

=\/iw —l)=\/i(l.(\/)—l)2.
It implies that
AV )-1|<6.

The proof is complete.

Lemma 8.4.

Let X and (y,S)be feasible for the perturbed problems (P,) and (D), respectively, and
let(X°,y°,S°%) and (X*,y",S") e F be as defined in (48) and (49) . Then, we have
NTr(S°X + X°S)=Tr(XS)+Vv*Tr(S°X°)
+V(1-V)Tr(S°X" + X°S™ )-(1-v)Tr(SX™ +S™X).
Proof. See [8]. i

Lemma 8.5.

Using the same notations as in Lemma 8.4, we have
Tr(X +8)<((1+dy’ +1)nZ. (52)
Proof. Since X, S, X" and S" are positive definite, Tr(SX") and Tr(XS" ) are nonnegative.
Dividing both sides of the inequality in Lemma 8.4 by 0 < v <1, we get
T X * *
TrsX + X°8) < TS (50X 0 )4 (1-W)Tr(S°X " + X°S" ).
Vv

Since X°=8° =¢Tand X" +S" < T, we have
Tr(S°X™ + X°SH)=¢Tr(X™ +S" )< £*Tr(1)=n¢?,
and

Tr(XS) yTr(V )

Tr(S°X + X°S)= +ng? = L4ngP=LTr(V 2 +nd .

The last equality is true because of v = ﬁo and yo =4 * . According to (51), we get
y7j

Tr(V*) =2 AV =2 A'(V)< n(L+5).
i=1 i=1
Thus,
Tr(S°X +X°8)>((1+ 5)’+1)ng”.
On the other hand, we have X°=S°= 1 . Therefore,
Tr(S°X + X°S)=¢Tr(X +Y9),

and the proof is complete.
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By substituting (51) and (52) into (50), we get

ol < (@r 0 +1). (53)
At this stage let
1
T=—. 54
g (54)
) 1
Since O <7 = g , we have
145n 9
|| Q|| < (55)
In (46), we found that, in order to have S(V ") < we should have

[

|| Q||2 + || Q||+ 2(3‘0/))2 < % Therefore, since 6V )<t =% , it suffices to have || Q” satisfy

—

2
” Q||2 + || Q”"‘l i . The latter holds if ||Q|| <— . Hence, using (55) we obtain
4 8 32

7~ N\

1
SV <— if
V2
145n60
56 32
We deduce that by taking
1
0=——-. 56
17n (56)
1
We have o(V ' )< —
V") NG

9. Iteration Bound

In the pervious sections, we have found out that if at the start of an iteration the iterates satisfy
0(X,S; i) <t with 7 as defined in (54), and € as in (56), then after the feasibility step, the

1
iterates satisfy 5(X" , S" ;) < ﬁ
According to (29), at most

log, (10g2 sz <log, (log, 64)
T

centering steps suffice to get the iterates that satisfy 5(X,S; #") <7 . So, each main iteration (57)
consists of one feasibility step and at most 3 centering steps. In each main iteration, both the
duality gap and the norm of residual vectors are reduced by the factor (1—6). Hence, using

Tr(X°S°)=n¢? the total number of iterations is bounded above by
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1 max{né’z, iR }
—1
0 o8 & (58)
Due to € as in (56), the total number of iterations is bounded above by
max{n(z, LIRS }
68n log . (59)
£

Theorem 1. If (P) and (D )have optimal solutions (X,y",S" ) e Fsuch that X" +S" <1,
then after at most

max {n¢”> R’
(g [r]1|Rs

&

0
Ll

|

68n log

Iterations, the algorithm finds an & -solution of (P)and (D).

10. Concluding Remarks

We have extended an infeasible primal-dual path-following interior-point algorithm for LO to
SDP with full NT step and derived the currently best known iteration bound for the algorithm with

n
full Newton step, namely, (n log —j , which is the same iteration bound as in the LO case. Some
&

interesting topics remain for further research. First, the search directions used have are all based
on the NT-symmetrization scheme. It may be possible to design similar algorithms using other
symmetrization schemes to obtain polynomial-time iteration bounds. Second, the extensions to
SOCO and the general convex optimization deserve to be investigated. Furthermore, numerical
test are needed to investigate the behavior of the algorithm so as to be with other approaches.
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