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A Path-Following Infeasible Interior-Point Algorithm 
for Semidefinite Programming 

H. Mansouri1,∗, T. Siyavash2, M. Zangiabadi3 

We present a new algorithm obtained by changing the search directions in the algorithm given 
in [8]. This algorithm is based on a new technique for finding the search direction and the 
strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. 
Moreover, we obtain the currently best known iteration bound for the infeasible interior-point 

algorithms with full NT steps, namely  log
n

O n
ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

, which is as good as the linear analogue. 
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1. Introduction 
 
     We are concerned with the semidefinite programming (SDP) problem given in the following 
standard form: 

                                   { }min ( ): ( ) , 1, , ,
0

Tr CX Tr A X b i mi iX
= =                                         ( )P  

and its associated dual problem: 

                                   max : ,
0 1

mTb y y A S Ci iS i
⎧ ⎫+ =∑⎨ ⎬

=⎩ ⎭
                                                       ( )D   

where mRyb ∈,  and each , 1, ,iA i m=  and C  are symmetric matrices, i.e., , n
iA C S∈ . 

Furthermore, ( 0)X X  means that X  is a positive semidefinite (positive definite) matrix. 
Without loss of generality, we assume that matrices iA  are linearly independent. The SDP 
problem has wide applications in continuous and combinatorial optimization [1, 14]. In the past 
decade, SDP has become a popular research area in mathematical programming when it became 
clear that the algorithm for linear optimization (LO) can often be extended to the more general SDP 
case. Several interior-point methods (IPMs) designed for (LO) have been successfully extended to 
SDP   [11, 15]. Many researchers have studied SDP and obtained substantiona results. For an 
overview of these results, see [9, 14]. 
 
     Here, we present a full-Newton step infeasible interior-point algorithm for solving the SDP 
problem and prove that the complexity of the algorithm coincides with the best known iteration 
bound for infeasible IPMs.  
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 The following notations are used throughout the paper. nR , nR+  and nR ++ denote the set of vectors 
with n  components, the set of nonnegative vectors and set of positive vectors, respectively, 

. denotes the Frobenius norm for matrices, and the 2 -norm for vectors, nmR ×
 is the space of all 

m n×  matrices, nS , nS + and nS ++ denote the cone of symmetric, symmetric positive semidefinite 
and symmetric positive definite n n× matrices, respectively, I  denotes the n n×  identity matrix, 
P  and D  denote the feasible sets of the primal and dual problems, respectively. We use the 
classical Löwner partial order ( )    for symmetric matrices meaning that A B−  is positive 

semidefinite (positive definite). The matrix inner product is defined by )( BATrBA T=• . For any 

symmetric positive definite matrix nSQ ++∈ ,  the expression 2/1Q   denotes the symmetric square 
root of Q . We denote the diagonal matrix Λwith entries iλ  by ( )idiag λ . For any nSV ++∈ , we 
denote ( )Vλ  to bethe vector of eigenvalues of V arranged in non-increasing order, that is, 

1 2( ) ( ) ( )nV V Vλ λ λ≥ ≥ ≥ . For any matrix M , we denote 1 2( ) ( ) ( )nM M Mσ σ σ≥ ≥ , the 

singular values of M . Specially, if M is symmetric, then one has ( ) ( ) , 1, ,i iM M i nσ λ= = . 

Finally, if 0)( ≥xg  is a real valued function of a real nonnegative variable, then the notation 
)()( xOxg =  means that xcxg ≤)(  for some positive constant  c  and )()( xxg Θ=  means that 

xcxgxc 21 )( ≤≤  for two  positive constants 1c  and 1c . 
 
2. Preliminaries on Matrices and Matrix Functions 
 
     We recall some concepts from linear algebra. For more details, see [5]. 
 
Lemma 2.1. 
 
1) 

1
( ) ( )n

ii
Tr A Aλ

=
=∑ , where ( )i Aλ  is the i th eigenvalue of the matrix A , 

2) ( ) ( )TTr A Tr A= , 

3)  ( ) ( )Tr AB Tr BA= , 

4)  ( ) ( ) ( )Tr A B Tr A Tr B+ = + . 
 
Theorem 2.2. (Spectral Theorem for Symmetric Matrix [14]).  
 
     The real n n× matrix  A  is symmetric if and only if there exists a matrix nnRQ ×∈  such that 

1=TQQ  and ΛTQ AQ = where Λ  is a diagonal matrix. 
Throughout the paper, we assume that (t)ψ  is a real valued function on [0, )∞  and differentiable 
on (0, )∞  such that y(t) > 0  for all t > 0 . Now, we are ready to show a matrix function obtained 
from y(t) . 
 
Definition 1 Let n

+V S∈  and 

( )T
1 nv = Q diag l (V),L ,l (V) Q,  

where Q  is any orthogonal matrix T -1Q = Q  that diagonalizes V  . The matrix valued function 
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(v)ψ  is defined by 

                                               ( )T
1 ny(v)= Q diag y(l (V)),L , y(l (V)) Q.                                        (1)                                    

It should be noted that the matrix Q  is not unique, but (v)ψ  is well defined on the eigenvalues of 
V  [11]. Furthermore, replacing ( ( ))i Vψ λ in (1)  by ( ( ))i Vψ λ′ , we obtain the matrix function 
y (V)′ as follws: 

                                              
( )T

1 ny (V)= Q diag y (l (V)),L , y (l (V)) Q.′ ′ ′                                       (2)                  

Two matrices A  and B  are called similar (abbreviated A B∼ ) if -1A = PBP for some invertible 
matrix P  and, moreover, if A  and B  are symmetric then this happen if and only if A  and B  
have the same eigenvalues [5]. 
 
Lemma 2.3. (Lemma 2.6 in [13])  
 
    Let , nSA B ∈ , and AB = BA . Then 

( ) ( ) ( ), 1, , .i i iA B A B i nλ λ λ+ = + =   

Furthermore, if ( )i Bλ  is small enough, then we have 

( ) ( ) ( ) .A B A A Bψ ψ ψ ′+ ≈ +  
 

3. Perturbed Problems and Central Path 
 
     As usual for infeasible interior-point methods (IIPMs), we assume that the initial iterates 
( )0 0 0X , y , S  are as follows: 

                                                        0 =   = 0 0 0 2X  = S I, y  = 0, ,ζ µ ζ                               (3)                                    

where I  is the n× n  identity matrix, 0µ  is the initial duality gap and a positive scaler ζ  such that 
* *X + S Iζ≤ , for some optimal solution * * *( , , )X y S  of ( )P  and ( )D  such that 

* *( ) 0Tr X S = . It is generally agreed that the total number of inner iterations required by the 
algorithm is an appropriate measure for its efficiency and this number is referred to as the iteration 
complexity of the algorithm. Using 0 0 2( )Tr X S nζ= , the total number of iterations in the 
algorithm of Mansouri and Roos [8] is bounded above by 

                                                  
{ }2 0 0max , ,

log ,
b cn r R

O n
ζ

ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

                           (4)                                    

where 0
br  and 0

cR are initial values of the primal and dual residuals, respectively: 

                                                 
0 0( ) ( ), 1, , ,b i i ir b Tr A X i m= − =                        (5)                                    

                                                           0 0 0

1

.
m

c i i
i

R c y A S
=

= − −∑                                   (6)                                    

     Up to a constant factor, the iteration bound (4) was first obtained by Kojima et al. [7] and  Potra 
and Sheng [12] and it is still the best-known iteration bound for infeasible IPMs. Now, we recall 
the main idea underlying the algorithm in [8]. For any ν  with 0 1ν< ≤ , we consider the perturbed 
problem ( )vP , defined by      
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                             ( ){ }0 0min Tr - : ( ) - ( ) , 1, , 0 , ( )c i i b iCX R X Tr A X b r i m X Pνν ν= =                   

and its dual problem v(D )which is given by 

                                 
( )

m
0 0

1 1
max ( ) : C- , 0 . ( )

m

i b i i i i c v
i i

b r y y A S R S Dν ν
= =

⎧ ⎫− + =⎨ ⎬
⎩ ⎭
∑ ∑

 
 

Note that if 1ν = , then 0X  = X  yields a strictly feasible solution of ( )vP  and ( , )y S  a strictly 

feasible solution of ( )vD . Due to the choice of initial iterates, we may conclude that if 1ν = , then 

( )vP  and ( )vD   each have a strictly feasible solution, which then means that both perturbed 
problems satisfy the well-known interior-point condition (IPC). 
 
Lemma 3.1. ( Lemma 4.1 in [8])  
 
     Let the original problems ( )P  and ( )D  be feasible. Then, for each ν , 0 1ν< ≤ , the perturbed 
problems ( )vP  and ( )vD satisfy the IPC. 
Here we assume that the problems (P) and (D) are feasible, It follows from lemma 3.1 that the 
problems ( )vP  and ( )vD satisfy the IPC, for each  (0,1]ν ∈ . Hence, their central path exists. This 
means that the system 

0( ) ( ) , 1, , , 0,i i b ib Tr A X r i m Xν− = =  

                                                          0

1
, 0,

m

i i c
i

C y A S R Sν
=

− − =∑                                   (7)                                     

,XS Iµ=  

has a unique solution, for every 0µ > . 
In the sequel, this unique solution is denoted by (X( , ), y( , ), S( , ))µ ν µ ν µ ν . These are the                
µ ‐ centers of the perturbed problems ( )vP  and ( )vD .  

Note that since 0= 0 0X S Iµ , 0X  is 0µ -center of the perturbed problem ( )1P  and ( )0 0y , S is the 
0µ -center of ( )1D . 

On the other words, 0 0 0 0( ( ), ( ), ( )) = ( )0 0X , 1  y , 1 S , 1 X , y , Sµ µ µ . In the sequel, we will always 

have 0=µ νµ and we will accordingly denote (X( , ), y( , ), S( , ))µ ν µ ν µ ν  simply as 
 (X( ), y( ), S( ))ν ν ν . 

     The set of µ  centers (with µ  running all positive real numbers) gives a homotopy path, which 
is called the central path of ( )P  and ( )D . If 0µ → , then the limit of the central path exists and 
since the limit points satisfy the complementarity condition, the limit yields an ε - approximate 
solution for ( )P  and ( )D  [6, 14]. 
In [4], Darvay presented a new technique for finding a class of search direction for LO. He 

replaced the standard centering equation XS eµ=  by ( ) ( )xs eψ ψ
µ

= , where (.)ψ  is the vector 

function induced by the function ( )tψ , and then applies Newton’s method to obtain the search 
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directions. Similar to the LO case, we replace the standard centering equation XS = I µ  by 

( ) ( )
XS

Iψ ψ
µ

= . Then, the system (7)  can be written as: 

0( ) ( ) , 1, , , 0,i i b ib Tr A X r i m Xν− = =  

                                             0

1

, 0,
m

i i c
i

C y A S R Sν
=

− − =∑                                                       (8)                                 

( ).XS Iψ ψ
µ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

We, we use the above system to get the central path. 
 
4. Centering Steps 
 
     Let ( ) X, y, S be a strictly feasible solution for ( )Pν and ( )Dν . Applying Newton’s method  to  
system (8) , we obtain the following system for the search directions X∆ , y∆  and S∆ : 

0( ( )) ( ) , 1, , , 0,i i b iTr A X X b r i m Xν+ ∆ = − =  

                                          0

1

( ) ( ) , 0,
m

i i i c
i

y y A S S C R Sν
=

+ ∆ + + ∆ = −∑                                            (9) 

( )( ) ( ).X X S S Iψ ψ
µ

⎛ ⎞+ ∆ + ∆
=⎜ ⎟

⎝ ⎠
 

The third equation of the system (9)  is equivalent to: 
                                        

                                            ( ).XS X S XS S X Iψ ψ
µ µ

⎛ ⎞∆ + ∆ + ∆ ∆
+ =⎜ ⎟

⎝ ⎠
                                          (10) 

Applying Lemma 2.3 and neglecting the term S X∆ ∆ , the equation (10)  can be rewritten as 
                               

                                            ' ( ).XS XS X S XS Iψ ψ ψ
µ µ µ

⎛ ⎞ ⎛ ⎞⎛ ⎞∆ + ∆
+ =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
                                      (11) 

Then we consider the following system: 
( ) 0 , 1, , ,Tr A X i mi ∆ = =  

                                                                   

                                                                      0,
1

m
y A Si ii

∆ + ∆ =∑
=

                                                            (12) 

1
1 1( ) .

XS XS
X X SS I Sµ ψ ψ ψ

µ µ

−
− −′∆ + ∆ = −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

     It is obvious that S∆  is symmetric due to the second equation in (12) . However, a crucial 
observation is that X∆  is not necessarily symmetric because 1X SS −∆  may not be symmetric 
[14]. Several ways exist for symmetrizing the third equation in the Newton system such that the 
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resulting new system has a unique symmetric solution [6, 9, 11]. Here, we consider the Nesterov-
Todd (NT)-symmetrization scheme in [9]. Let us define 

                                   

1 1
1 1 1 1 1 1 1 12 2
2 2 2 2 2 2 2 2: ,P X X SX X S S XS S

−
− −

= =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                 (13) 

 which is a symmetric nonsingular matrix. We replace the term 1X SS −∆  in the third                
 equation of (12) by TP SP∆ . The system (12) becomes 

( ) 0, 1, , ,iTr A X i m∆ = =  

                                                                     
1

0,
m

i i
i

y A S
=

∆ + ∆ =∑                                                             (14) 

1
1( ) .

XS XSTX P SP I Sµ ψ ψ ψ
µ µ

−
−′∆ + ∆ = −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

Furthermore, we define 
1

2D P
−

= . The matrix D  can be used to scale X  and S  to the same 
matrix ,V because 

                                                       
1 11 1: .V D XD DSD
µ µ

− −= =                                                     (15) 

Note that the matrices D  and V are symmetric and positive definite. By using (15) , we have 
                                                                 

                                                                     2 11V .D XSD
µ

−=                                                                 (16) 

From Definition 1, we obtain 

                            ( )2 1XS D V Dψ ψ
µ

−⎛ ⎞
=⎜ ⎟

⎝ ⎠
  and    ( )2 1.XS D V Dψ ψ

µ
−⎛ ⎞′ ′=⎜ ⎟

⎝ ⎠
                              (17) 

Let us further define 

                 
1 1 11 1: , 1, , , : , : .A DA D i m D D XD D D SDX Si i µ µµ

− −= = = ∆ = ∆               (18) 

Then it follows from (18)  that the scaled NT search direction y( , , )X SD D D  is defined by the 
following system 

( ) 0, 1, , ,i XTr A D i m= =  

                                                                   
1

0,
m

i i S
i

y A D
=

∆ + =∑                                                               (19) 

.X S VD D P+ =  

Where, 

                        ( )( ) ( )( )11 2 1 2 1 1 1( ) .VP D D V D I D V D S Dµ ψ ψ ψ
−

− − − − −′= −                                   (20) 
 
Recently, Peng et al. [10] introduced a class of search directions based on self-regular kernel 
functions and Bai and Roos. [2] also defined a class of new search direction by using the so-called 
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eligible kernel functions. The general approach in this paper can be particularized in such a way as 
to obtain the directions defined in [3] only by a constant multiplier, such as ( )t tψ = yielding 

1
VP V V−= − which gives the classical search direction. The classical search direction has been 

studied by many researchers [1, 6, 9]. Here we restrict the analysis to the case where ( )t tψ = , 
This yields 
                                                                                     2( ).VP I V= −                                                        (21) 
Furthermore, we have 

                              

                                        
2

2 2 22 ( ) ( ) .
4
V

V
PV V P V V I V I I V I+ = + − = − − = −                             (22) 

For the analysis of the algorithm, we define a norm-based proximity measure ( , ; )X Sδ µ as 
follows: 

                                                      ( ) : ( , ; ) .
2
VP

V X S I Vδ δ µ= = = −                                         (23)                      

Due to the first and second equations of the system (19) , XD  and SD  are orthogonal. One can 
easily verify that 
                                            ( ) 0 0 .X SV V I D D XS Iδ µ= ⇔ = ⇔ = = ⇔ =                                                  (24) 
Hence, the value of ( )Vδ  can be considered as a measure for the distance between the given pair 
( )X, y, S  and the µ- center ( ( ), ( ), ( ))X y Sµ µ µ . 
The new search directions XD  and SD  are obtained by solving (19) with 2( )VP I -V= such that 

X∆  and S∆  are computed via (18) . If ( ) ( ( ), ( ), ( ))X, y, S X  y Sµ µ µ≠ then X∆ , y∆ , S∆  are 
nonzero. One can construct a new full-Newton triple according to 
                                                 + + + =  + ,  = +   =  +X X X y  y y, S S S,∆ ∆ ∆             (25)                                  
where X∆ , y∆ , and S∆  are called the centering steps. For the analysis of the algorithm, we 
introduce the notation 
                                                                           =  .V X SQ D - D                                (26)                                      
We cite two useful lemmas in [6], which will be used in the proof of Theorem 7.1 in Section 7. 
 
Lemma 4.1. (Lemma 6.1 in [6])  
 
     Suppose that 0X  and 0S . If one has 

det( ( ) ( )) > 0,   0 ,X Sα α α α∀ ≤ ≤  
then ( ) 0X α  and ( ) 0S α . 
 
Lemma 4.2. (Lemma 6.3 in [6])  
 
     Suppose that n

++Q S∈ and n nM ×∈ be skew-symmetric, i.e.   TM M= − . One has 

det ( ) 0Q M+ > . Moreover, if i (Q +M) R(i = 1,  , n),λ ∈  then 

min min max max0 < (Q) (Q +M) (Q +M) (Q),λ λ λ λ≤ ≤ ≤  
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Lemma 4.3.  
 
     Suppose that X 0  and 0S , Then 

det(XS) 0, Tr(XS) 0.≥ ≥  
      The following lemma shows the strict feasibility of the centering iterations under the condition 

( , ; ) 1X Sδ µ < . 
 
Lemma 4.4. (Lemma 6.3 in [13])  
 
     Let : ( , ; ) 1X Sδ δ µ= < . Then, the centering iterations are strictly feasible. 
We proceed to prove the local quadratic convergence of full NT step to the target point 
(X( ), y( ), S( )).µ µ µ  
 
Lemma 4.5. (Lemma 6.4 in [13])  
      
     Let : ( , ; ) 1X Sδ δ µ= < . Then 

2

2
( , ; ) .

1 1
X S δδ µ

δ
+ + ≤

+ −
 

The following lemma gives an upper bound of the duality gap after a centering step (a full NT 
step). 
 
Lemma 4.6. (Lemma 6.5 in [13])  
 
     After a centering step, we have 

+ +Tr(X S ) = n .µ  
 

5. A main Iteration of the Algorithm 
 
     Now, we describe a main iteration of the algorithm. Suppose that for some (0, 1]ν ∈  we have 
X , y  and S  satisfying the feasibility conditions (7) such that 

Tr( ) = ,XS nµ    and     ( , ; ) ,X Sδ µ τ≤  

where 2µ νζ= and τ  is a positive value. 

 First, we find new iterates fX  and f( , )fy S  that the satisfy feasibility conditions of ( )Pν  and 

( )Dν  with ν  replaced by +  = (1+ )ν θ ν . As we will see, by taking θ  small enough, this can be 

realized  by one feasibility step. For the feasibility step, we use search directions f X∆ , f y∆  and 
f S∆  that are defined by the system 

0
iTr( ) = ( ) , 1, , ,f

b iA X r i mθν∆ =  

                                                              0

1

,
m

f f
i i c

i

y A S Rθν
=

∆ + ∆ =∑                                                   (27) 

Therefore the following system is used to define Xf∆ , f y∆ and f S∆ : 
0

iTr(A X) = ( ) , 1, , ,f
b ir i mθν∆ =  
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                                                            0

1

,
m

f f
i i c

i

y A S Rθν
=

∆ + ∆ =∑                                                    (28) 

1
1

1( ) .
XS XS

X X SS I Sµ ψ ψ ψ
µ µ

−

−
−′∆ + ∆ = −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

After the feasibility step, the iterates are given by 
f fX  = X  + D X,  

 f  fy = y + y,∆  

 f fS  = S + S.∆  

By definition, after the feasibility step, the iterates satisfy the affine equations (7) , with +=ν ν . 

The hard part in the analysis will be to guarantee that ( )f f fX , y , S  are positive definite and 

satisfy +( )f fX  , S  ;δ µ η≤ . In other words, we want that fX  and fS  belong to the region of 

quadratic convergence of +µ -centers. Proving this is the crucial part in the analysis of the 
algorithm.  
After the feasibility step, assume that we have the iterates ( )f f fX , y , S  such that 

+( )f fX  , S  ;δ µ  
can be obtained and denoting this bound by η . We perform few centering steps in order to get 

iterates + + +(X , y , S ) that satisfy 

                                                Tr( + +X S ) = nµ+    and       ( , ; ) .X Sδ µ τ+ + + ≤  
By using Lemma 4.5, the required number of centering steps can easily be obtained. Indeed, 

assuming 
f f += (X  , S  ; )δ δ µ η≤ , after k  centering steps we will have iterates ( )+ + +X , y , S  that 

are still feasible for ( )P
ν + and ( )D

ν +  and satisfy 
k2( ) .+ + +X , y , Sδ η≤  

Just as in the linear case [10] this implies that after at most 

                                                                        2
2

2

loglog
log

τ
η

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                                    (29) 

centering steps, we have ( )+ + +X , y , Sδ τ≤ . 
 

6. A Generic Primal-Dual IIPM for SDP 
 
     A formal description of the algorithm is given in Figure 1, where br  and cR  denote the primal 
and dual residuals, respectively. One may easily verify that after each iteration the residuals and 
the duality gap are reduced by a factor 1 θ− . The algorithm stops if the norms of residual vectors 
and the duality gap are less than the accuracy parameter ε . 
 
7. Feasibility Steps 
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     In section 5, we proved that the feasibility step generates the new iterates ( )f f fX , y , S that 
satisfy the feasibility conditions of ( )P

ν + and ( ),D
ν +  except for the nonnegativity constrains, 

Another element in the analysis is to show that after the feasibility step we have 
( )f f +X  , S  ;mδ η≤ , where 0 1η< < . 

 
7.1. Effect of the Feasibility Step 

 
     According to Section 6, f X∆ , f y∆ and f S∆ satisfy the system (28) . Hence, the matrix 

f X∆ is not necessarily symmetric, because f -1X SS∆ may not be symmetric [14] we use the NT- 
trick to 
 
 

    Input: 
    An accuracy parameter ε ; 
    a fix barrier update parameter θ , 0 1θ< < ; 
    a threshold parameter , 0;andζ τ >  
    begin 
   0 0 0 0 2, : , : 0, ;X S I yζ µ ζ= = =  

    While  { }0 0max ( ), ,b cTr XS r R ε≥ do 

     begin  
     feasibility step: 
     ( ) ( ) ( , );f f fX, y,S X, y,S X y, S= + ∆ ∆ ∆  
     µ  and ν  update: 
        (1 )µ θ µ= − ; 
      centering  steps: 
     While ( )X,S;δ µ τ>  do 
      begin            
          ( ) ( ) ( , , );X, y,S X, y,S X y S= + ∆ ∆ ∆  
      end 
      end  
     end 

        
Figure 1. Infeasible-point full Newton step algorithm 

 
 

symmetrize f X∆ with P  as defined in (13) . Therefore, the system (28)  can be rewritten as: 
0Tr( ) = ( ) , 1, , ,f

i b iA X r i mθν∆ =  

                                                        

                                                             0

1

,
m

f f
i i c

i

y A S Rθν
=

∆ + ∆ =∑                                                         (30) 
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1
1( ) .f T XS XS

X P SP I Sµ ψ ψ ψ
µ µ

−
−′∆ + ∆ = −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

Let X , y  and S  be the iterates at the start of an iteration. Define 

                                          1 11 1: , ,f f f f
X SD D XD D D SD

µ µ
− −= ∆ = ∆                                

where  
1
2D P

−
= . We can now rewrite (30)  as follows :                                                             (31) 

01Tr( ) = ( ) , 1, , ,f
i X b iDA DD r i mθν

µ
=  

                                 

0

1

1 1 ,
m

f f
i i S c

i
y DA D D DR Dθν

µµ =

∆ + =∑
                                            (32)

 

      ,f f
X SD D Pν+ =                

                                                         
where ( )Pν  is as defined in (20) . 
Using (31) , we may write 

=  = ( )f f f
XX   X  + X D V + D D,µ∆  

+ = ( ) .f f -1 f -1
SS  = S S D V + D Dµ∆  

Therefore, 
f f f f -1

X SX S D(V + D )(V  + D )D .µ=  

The last equality shows that the matrix f fX S  is similar to 
f f

X S(V  + D )(V  + D ).µ  

This means that we have 
                                                      

                                                          
f f f f

X SX S (V  + D )(V + D ).∼                                                       (33)                                    

According to Section 4, we limit the analysis to ( )t tψ = , This yields 2( )VP I V= − . Putting 

                                                                    : .f f
V X SQ D D= −                                                                      (34)                                    

we have 

                     
2 2

, , .
2 2 2

f f f f f fV V V V V V
X S X S S X

P Q P Q P QD D D D + D D+ − −
= = =                               (35)                    

In the sequel, we denote 

                                                           
2 21( ) : .

2
f f

Xw V D S= + ∆                                                       (36)                                      

This implies 
                                                      ,f f

X XD 2w(V) D 2 w(V).≤ ≤                                                   (37) 

Theorem 7.1.  
 
     Let 0X  and 0S . Then, the iterates ( )f f fX , y , S are strictly feasible if 2 ( ) 1.w V δ≤ <  
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Proof. The proof of this lemma is similar to the proof of Lemma 5.4 in [8].                         □ 
 
Using (33) and (34) , we have  

                                                         
2

,
4

f f VQX S I Mµ
⎛ ⎞

− +⎜ ⎟
⎝ ⎠

∼                                                             (38)                                      

where, 

( ) ( )( ).2
f f f f f f f f
X S X S X S S XM D V VD VD D V D D D Dµ

= + − − + −  

dividing (38)  by µ+ , we obtain: 

                                                             

2

4 ,
1

V
f f

QI MX S
µ θ+

− +

−
∼                                                                (39)                                      

which yields: 

                                    

2

1
2 4( ) .

1

V
f f

f

QI MDX S DV
µ θ

−

+

− +
=

−
∼                                                            (40) 

Assuming 2 ( ) 1w V δ≤ < , which guarantees strict feasibility of the iterates ( )f f fX , y , S  we 

proceed by deriving an upper bound for +(  )f fX  , S ;δ µ . 
Recall from definition δ that 
                                        +( )= ,f f fX  , S  ; I -Vδ µ                                                                             (41)                                      

with fV  as defined in (40) . In the sequel we denote f f +(X  , S  ; )δ µ  shortly by f(V )δ . we 

proceed to find an upper bound for ( )fVδ  in terms of ( )w V . To this end we need some 
technical results  given information on the eigenvalues and the norm of fV . 
 
Lemma 7.2.  
 
     One has 

( ) ( )1 .
1

f 2 2
n (V ) 1- 4w (v)λ

θ
≥

−
 

Proof. Using (40) and Lemma 4.2, we have 

( )

22

44
1 1

VV n
f 2

n n

QQ I MI M
(V )

λ
λ λ

θ θ

⎛ ⎞⎛ ⎞ − +⎜ ⎟− +⎜ ⎟ ⎝ ⎠= =⎜ ⎟
− −⎜ ⎟⎜ ⎟

⎝ ⎠

 

                           

2 2 2 ( )1 14 4 4 .
1 1 1

V V n Vn
Q Q QI λλ λ

θ θ θ

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟ −

⎝ ⎠ ⎝ ⎠≥ = =
− − −

 

According to the definition of ( )w V  and (34)  and the properties of  the Frobenius matrix norm, 
we obtain V| n(Q  )| 4w(V )λ ≤ . Substituting this yields 
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( ) ( )1 ,
1

f 2 2
n (V ) 1- 4w (V )λ

θ
≥

−
 

which completes the proof.                                                                                                  □ 
 
Lemma 7.3.  
 
     One has 

( )1 .
1

f 2 2I - (V ) n 4w (V)θ
θ

≤ +
−  

 
Proof. Using (40) and properties of the Frobenius norm, we have 

                                 ( ) ( )( )2

1

2n2f 2 f 2 f 2
i

i
I - (V ) Tr I - (V ) I - (V )λ

=

= =∑  

                                                     

22

1

4 1
1

V
n

i
i

QI M
λ

θ=

⎛ ⎞⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎜ ⎟= −⎜ ⎟
−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑  

             

22

2
1

1 (1 )
(1 ) 4

n
V

i
i

QI Mλ θ
θ =

⎛ ⎞⎛ ⎞
= − + − −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∑  

                                                    

22

2
1

1
(1 ) 4

n
V

i
i

Q Mλ θ
θ =

⎛ ⎞⎛ ⎞
= − + +⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∑  

                                                   

22 2
2

2
1 1

1 2
(1 ) 4 4

n n
V V

i i
i i

Q Qn M Mθ λ θ λ
θ = =

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑  

  
2 2

2
2

1 2 .
(1 ) 4 4

V VQ QTr nθ θ
θ

⎛ ⎞⎛ ⎞
≤ − − +⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

In the last inequality, we use property of skew-symmetric matrices (M is a skew-symmetric 

matrix). Now, let 
2

4
VQλ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 be the vector consisting of the eigenvalues of 
2

4
VQ

. Using the Cauchy-

Schwartz inequality, we get 
2 2 2

14 4 4

n
TV V V

i
i

Q Q QTr eλ λ
=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑  

              
2 2

.
4 4
V VQ Qe n≤ =  

Thus, we have 
22 22 2

2

1I- 2
(1 ) 4 4

f 2 V VQ Q(V ) Tr nθ θ
θ

⎛ ⎞⎛ ⎞
⎜ ⎟= − +⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
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22

2

1 .
(1 ) 4

VQ nθ
θ

⎛ ⎞
≤ −⎜ ⎟

− ⎝ ⎠
 

On the other hand, according to the definition of w(V)  and (34)  we get 

( )
222 1 1 + ,

(1 ) 4 (1 )
f 2 2VQI -(V ) n 4w (V ) nθ θ

θ θ

⎛ ⎞
⎜ ⎟≤ − ≤
⎜ ⎟− −⎝ ⎠

 

which completes the proof.                                                                                               □ 
 
Lemma 7.4.   
      
     Let 2 ( ) 1w V δ≤ < . Then we have 

( )( )
 )( ; ) .

(1 ) 1

2
f f

2

n 4w (VX  , S  
4w (V )

θδ µ
θ

+
≤

− −
 

Proof. We may write, using definition δ  

                f f f f f -1(V ) I -V (I -V )(I +V )(I +V )δ = =  

        ( )1
f -1 f 2(I +V ) (I - (V ) )λ≤  

f 21 I-(V ) .
1 ( )fVλ

=
+

 

Using the bound in lemmas 7.2 and 7.3 the result follows.                                            □ 
 
We wish the new iterates  ( )f f fX , y , S  are within the neighborhood where the Newton process 
targeting the +µ -centers of ( )P

ν + and ( )D
ν +  is quadratically convergent, i.e., f(V )δ η≤ . 

According to Lemma 7.4, it suffices to have 

                                                       
( )( )

.
(1 )

2

2

n 4w (V)

1- 4w (V)

θ η
θ

+
≤

−
                                                         (42) 

putting 
1: .
2

η =  

Lemma 7.5.  
 

Let 
1w(V)=

4 2
 and                       

10 .
2 2n

θ≤ <  

 

Then, the iterates ( )f f fX , y , S are strictly feasible for ( )Pν   and ( )Dν , respectively, and 

f 1(V )
2

δ η≤ = . 
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Proof. Due to Theorem 7.1 and 
1w(V)=

4 2
, the iterates ( )f f fX , y , S  are strictly feasible. We 

just established that if inequality (42) with 
1
2

η = is satisfied then ( )f 1V
2

δ η≤ = . The left 

hand side in (42) is monotonically increasing in w(V) . By substituting 
1w(V)=

4 2
, the 

inequality (42)  reduces to:  

                                                     

1
18 ,
21(1 ) 1

8

nθ

θ

+
≤

⎛ ⎞− −⎜ ⎟
⎝ ⎠

                                                                      (43)                          

which is equivalent to 

                                             2 7 274 0.
16 64

n nθ θ⎛ ⎞+ + − ≤⎜ ⎟
⎝ ⎠

                                                                 (44)                                  

Thus, if 
10

2 2n
θ≤ < , then the above inequality is satisfied. Therefore, the proof is complete. □ 

 
8. An upper Bound for w(V )  
 
     Consider the linear space L  as follows: 

{ }n= S : 0, 1, , .iL DA D i mξ ξ∈ • = =  

Using the linear space L , it is clear from the first equation in system (30) that the affine space 

n 01S : ( ) , 1, , ,i b iDA D r i mξ ξ θν
µ

⎧ ⎫⎪ ⎪∈ • = =⎨ ⎬
⎪ ⎪⎩ ⎭

 

equals f
XD + L . By the second equation in the system (30), we have 01f

S cD DR D Lθν
µ

⊥∈ + . 

Since {0}L L⊥∩ = , the spaces f
XD L+ and f

SD L⊥+ meet in a unique matrix. This matrix is 
denoted by Q . We can get a similar result of Mansouri and Roos [8]. 

 
Lemma 8.1.  
 
     Let Q  be the (unique) matrix in the intersection of the affine spaces f

XD + L and f
SD + L⊥ . 

Then, 
                                                     

                                                           
( )222w(V) Q + Q +2d(V)≤

                                (45)                                      
 

 Proof. The proof of this Lemma is similar to the proof of Lemma 5.6 in [10], and is therefore 
omitted .                                                                                                                                              □ 
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Recall from Lemma 7.5 that in order to guarantee that ( )f 1V
2

δ ≤ , we want to have 

1w(V )
4 2

≤ . Due to Lemma 8.1 this will certainly hold if Q  satisfies  

                                                    ( )2
( )2 1Q + Q + 2 V .

8
δ ≤                                                                (46)                                      

 

8.1.   An Upper Bound for Q  

 
     Recall from Lemma 8.1 that Q  is the unique solution of the system 

01= ( ) , 1, , ,i b iTr(DA DQ) r i mθν
µ

=  

                                               0

1

1 .
m

i
i c

i

DA D Q DR Dξ θν
µ µ=

+ =∑                       (47)                                     

We proceed to find an upper bound for Q . As will become clear below, specially in the proofs 

of Lemma 8.2 and Lemma 8.4, it will be convenient to choose the initial iterates 0 0 0(X , y , S )  as 
follows: 
                                                     0 2=   = 0,  = ,0 0 0X  = S  I, yζ µ ζ                                                    (48) 

where >0ζ  is such that 

                                                                      
* *X  + S I,ζ≺

                          (49)                                     

for some { }* : ( ) 0* * *(X , y , S ) F (X, y, S) P D Tr XS∈ = ∈ × = . It may be noted that this choice of 
the initial iterates has become usual for infeasible IPMs for SDP [8]. 
 
Lemma 8.2. (Lemma 5.13 in [8])  
 
     With 0 0 0(X , y , S )  as defined by (48) , we have 

                                                            
min

( ).
( )

Q Tr X S
V

θ
ζλ

≤ +                                                        (50) 

In the following lemma we get a bound for ( )i Vλ where V  is defined in (15) . 
 
Lemma 8.3. 
 
     Let = (V)δ δ  be given by (23) . Then 
                                                     1 ( ) 1 , 1, , .i V i nδ λ δ− ≤ ≤ + =                                                   (51) 

Proof. We can rewrite (V)δ  in (23)  as follows 
2) )(V)= I -V = V - I Tr((V - Iδ =  
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2 2

1 1

( ) ( ( ) 1) .
n n

i i
i i

V I Vλ λ
= =

= − = −∑ ∑  

It implies that 
( ) .i V Iλ δ− ≤  

The proof is complete.                                                                                                        
     □ 

Lemma 8.4.  
 
     Let X  and ( , )y S be feasible for the perturbed problems ( )Pν  and ( )Dν , respectively, and 

let 0 0 0(X , y , S )  and * ** *(X , y , S ) F∈ be as defined in (48)  and (49) . Then, we have 
0 0 2 0 0nTr(S X  + X S) = Tr(XS) +v Tr(S X )  

                                                                                 0 * 0 * * *+ v(1- v)Tr(S X  + X S )-(1- v)Tr(SX  + S X).  
Proof. See [8].                                                                                                 □ 
 
Lemma 8.5.  
 
     Using the same notations as in Lemma 8.4, we have 
                                                   ( )n .2Tr(X  + S) (1 + d)  + 1 ζ≤                                     (52)                                     

Proof. Since X ,  S , *X  and *S  are positive definite, *Tr(SX )  and *Tr(XS )  are nonnegative. 
Dividing both sides of the inequality in Lemma 8.4 by 0 <  1ν ≤ , we get 

+0 0 0 0 0 * 0 *Tr(XS)Tr(S X  + X S)  vTr(S X )+(1- v)Tr(S X  + X S ).
v

≤  

Since  = I0 0X  = S ζ and I* *X  + S ζ≺ , we have 
2 2)= = ,0 * 0 * * *Tr(S X  + X S Tr(X  + S ) Tr(I) nζ ζ ζ≤  

and 

2 2 2 2=  + + = + .
2

0 0 2Tr(XS) Tr(V )Tr(S X  + X S) n n Tr(V ) nµζ ζ ζ ζ
ν ν

=  

The last equality is true because of 0

µν
µ

= and 0 2µ ζ= . According to (51) , we get 

n n
2

i
i=1 i=1

 = ) =   + 2 2 2
iTr(V ) (V (V) n(1 ) .λ λ δ≤∑ ∑  

Thus, 
( )2 2 ) +1 .0 0Tr(S X + X S) (1 + nδ ζ≥  

On the other hand, we have 0 0X  = S  = Iζ . Therefore, 

=0 0Tr(S X + X S) Tr(X  + S),ζ  
and the proof is complete.     
 
 
                                                                                              □ 
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By substituting (51) and (52) into (50) , we get 

                                                   ( )+ ) .
1

2nQ (1 +1θ δ
δ

≤
−

                                                                    (53) 

At this stage let 

                                                                    
1 .
8

τ =                           (54)                                     

Since 
1
8

δ τ≤ = , we have 

                                                                                    

145Q .
56

nθ
≤                                (55) 

In (46), we found that, in order to have 
1( )
2

fVδ ≤ , we should have 

( )22 1( )
8

Q Q +2 Vδ+ ≤ . Therefore, since 
1( )
8

Vδ τ≤ =  , it suffices to have Q  satisfy 

2
2 1 1Q + Q +

4 8
⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

 . The latter holds if 
5

32
Q ≤ . Hence, using (55) we obtain 

1( )
2

fVδ ≤  if 

                    
145 5 .

56 32
nθ

≤                                                                    

We deduce that by taking 

                                                                                   
1 .

17n
θ =                                (56)                                      

We have 
1
2

f(V )δ ≤  

9. Iteration Bound 
 
     In the pervious sections, we have found out that if at the start of an iteration the iterates satisfy 

( )X, S;δ µ τ≤  with τ  as defined in (54) , and θ  as in (56) , then after the feasibility step, the 

iterates satisfy f f 1(X  , S  ; )
2

δ µ ≤ . 

According to (29), at most 

                                                      ( )2 2 2 22

1log log log log  64
τ

⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

                                              

centering steps suffice to get the iterates that satisfy ( )X, S;δ µ τ+ ≤ . So, each main iteration (57) 
consists of one feasibility step and at most 3 centering steps. In each main iteration, both the 
duality gap and the norm of residual vectors are reduced by the factor (1 )θ− . Hence, using 

20 0Tr(X S )= nζ  the total number of iterations is bounded above by 
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{ }2 0 0max n , ,1 log

b cr Rζ

θ ε
                                                       (58) 

Due to θ  as in (56) , the total number of iterations is bounded above by 

                                                           
{ }2 0 0max n , ,

68 log .
b cr R

n
ζ

ε
                              (59)                                     

Theorem 1.  If ( )P  and ( )D have optimal solutions * * *(X , y , S ) F∈ such that **X  + S Iζ≺ , 
then after at most 

                                                      

{ }2 0 0max n , ,
68 log

b cr R
n

ζ

ε  
 

Iterations, the algorithm finds an ε -solution of ( )P and ( )D . 
 

10.  Concluding Remarks 
 
       We have extended an infeasible primal-dual path-following interior-point algorithm for LO to 
SDP with full NT step and derived the currently best known iteration bound for the algorithm with 

full Newton step, namely, log nn
ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

 , which is the same iteration bound as in the LO case. Some 

interesting  topics remain for further research. First, the search directions used have are all based 
on the NT-symmetrization scheme. It may be possible to design similar algorithms using other 
symmetrization schemes to obtain polynomial-time iteration bounds. Second, the extensions to 
SOCO and the general convex optimization deserve to be investigated. Furthermore, numerical 
test are needed to investigate the behavior of the algorithm so as to be with other approaches. 
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