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   A new machine replacement policy based on number of   
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A novel optimal single machine replacement policy using a single as well as a two-
stage decision making process is proposed based on the quality of items produced. In 
a stage of this policy, if the number of defective items in a sample of produced items 
is more than an upper threshold, the machine is replaced. However, the machine is 
not replaced if the number of defective items is less than a lower threshold. 
Nonetheless, when the number of defective item falls between the upper and the lower 
thresholds, the decision making process continues inspecting and possibly repairing 
the machine and the decision making process goes on to collect more samples. The 
primary objective of own work is to determine the optimal values of both the upper 
and the lower thresholds using a Markov process to minimize the total cost 
associated with a machine replacement policy.  
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1. Introduction 

    
     As the optimal management of equipment replacement is continuously becoming more important 
nationally and locally (i.e., at a firm level), it is attracting a significant interest in operations 
research and management science. The traditional equipment replacement analysis focus on the 
evaluation of the keep or replace alternative for each period within the planning horizon for single, 
two, or multiple machines. These machines work in series or parallel, where several motivations 
such as machine deterioration, technological change, and capacity expansion have been focused. 
Solutions generally involve the use of dynamic programming under various assumptions concerning 
costs, planning horizon, number of machines and their types. 

 
Two approaches have been applied to the machine replacement problem. In the first approach, 
modeling helps to understand how the optimal replacement depends on the intensity of 
technological change, the rate of capacity expansion, and the deteriorating rate. In the second 
approach, the maintenance policy that is being followed in practice is a combination of preventive 
and corrective maintenance. 

 
     Chand and Sethi [2] defined a deterministic approach improving technological environment in 
terms of a periodic process of technological improvements in every existing technology. Goldstein 
et al. [5] proposed a planning horizon for the first optimal replacement in an infinite-horizon 
problem when two types of machines were considered. The first type is based on existing 
technology; the second is based on a not-yet-achieved technological breakthrough to be available at 
some unknown future time. They employed a dynamic programming model to generate some 
conditional decision rules on optimal replacement. In their formulation, technological 
improvements were viewed in terms of purchasing and operating costs, assuming that the 
                                        
* Corresponding author.      

     1 Department of Industrial Engineering, Yazd University, Yazd, Iran. E-mail: Fallahnezhad@Yazduni.ac.ir 
     2 Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran. E-mail: Niaki@Sharif.edu 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
2-

07
 ]

 

                             1 / 12

http://iors.ir/journal/article-1-183-en.html


18                                                                                                                       Fallahnezhad and Niaki                          

production capacity and quality characteristics of machines at different or identical technologies 
remained constant. 
 

     While the objective of a machine replacement problem is to minimize the cost, some researchers 
assumed the rate of machine breakdown and repair was known. They tried to minimize the cost of 
production, inventories, and backlogs. Sethi et al. [12] developed appropriate dynamic programming 
equations and established the existence of the solution using a verification theorem for optimality. 
Presman et al. [11] considered a production-planning problem in a two-machine flow-shop 
environment with breakdown and repair, subject to upper bound constraints on work-in-process. The 
main purpose in their research was to choose admissible input rates to minimize the average surplus 
and production costs over an infinite horizon. Niaki and Fallahnezhad [10] employed Bayesian 
inference and stochastic dynamic programming to design a decision-making framework in production 
environment. Further, Fallahnezhad et al. [3] determined the optimal policy for two-machine 
replacement problem using Bayesian inference in the context of the finite mixture model. They 
discussed the analysis of time-to-failure data and proposed an optimal decision-making procedure for 
machine replacement strategy. Moreover, Fallahnezhad and Niaki [4] proposed a dynamic 
programming model of the two-machine replacement problem. 
 
     Ivy and Nembhard [8] integrated statistical quality control (SQC) and partially observable Markov 
decision processes (POMDP) for maintenance decision making of deteriorating systems. In their 
work, they employed SQC to sample a real-world system and define the observation distribution for 
the POMDP modeling. Simulation methodology was used in their research to integrate SQC and 
POMDP to develop and evaluate maintenance policies as a function of process characteristics, system 
operating and maintenance costs. 
 
     Marsh and Nam [9] studied the equipment maintenance and replacement policies under the 
scenarios of increasing customer expectations (in terms of tighter product specifications), loss (in 
terms of process deviation), and process drift. The Taguchi loss function was first employed to 
estimate the loss due to target deviation. Then, a generalized Brownian motion-to-process was used to 
model the problem. 
 
     Hartman and Ban [7] developed a multiple machine replacement model that was characterized as a 
parallel flow shop environment. An integer programming formulation was developed in their work to 
determine the optimal purchase, salvage, utilization, and storage decisions for each machine over a 
finite horizon. They first showed the formulation was hard to solve and then came up with valid 
inequalities to improve the lower bound provided by the linear programming relaxation and a 
dynamic programming approach to provide initial lower bounds. Grosfeld-Nir [6] presented a two-
state partially observable Markov decision process for machine replacement problem. He proved that 
the ‘‘dominance in expectation’’ (the expected profit is larger in the good state than in the bad state) 
suffices for the optimal policy to be of a control limit type (CLT). In other words, continue if and only 
if the good state probability exceeds the CLT. 
 
     Here, a new single-machine replacement policy with both single and two-stage decision-making 
process is proposed in which the optimal policy is derived based on the quality of items produced. 
The quality in each stage is compared with the optimal upper and lower thresholds obtained by a 
Markov process modeling. The rest of the paper is organized as follows. The problem is first stated in 
Section 2. Then, the notations are presented in Section 3. Next, the single-stage model together with 
an illustrative example is proposed in Section 4. Section 5 contains the two-stage modeling along with 
a numerical example. Finally, we conclude in Section 6. 
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2. Problem Statement and Assumptions 
 
     Consider a single machine that produces a specific item. At each stage of the machine replacement 
policy, the states of the machine are defined in terms of the quality of items it produces. This quality 
is determined using the attribute acceptance sampling plans to accept or reject a production lot. The 
accept/reject decision is based on the count of the number of defectives items (see Taylor [13]). If this 
number is greater than an upper threshold, then the machine needs replacement. If it is less than a 
lower threshold, then the machine continues production. Nonetheless, if it is between the upper and 
the lower threshold, then an inspection and possibly repair is needed. After inspection, the machine 
returns to its initial state and the decision-making process starts over by collecting more samples. The 
objective is to find the optimal values of the thresholds that minimize the total cost associated with the 
machine replacement strategy. Furthermore, the following assumptions are used in the modeling 
process. 
(1) The machine produces the items continuously. 
(2) The quality of items produced by the machine is inspected periodically. 
(3) The machine replacement strategy is employed in every period of item inspection.  
 
3. Notations 
 
     To model the problem at hand, the following notations are used. 

( )E TC : The expected total system cost 
( )E AC : The expected total cost of accepting (not replacing) the machine 
( )E RP : The expected total cost of replacing the machine 
( )E I : The expected total cost of inspecting and repairing the machine 

n : The sample size of a single-stage machine replacement policy 
1n : The sample size in the first stage of a two-stage machine replacement policy 

2n : The sample size in the second stage of a two-stage machine replacement policy 
N : The number of produced items in a period 
p : The probability of producing a defective item 

1c : The lower threshold for the number of defective items in the first stage  

2c : The upper threshold for the number of defective items in the first stage 

3c : The lower threshold for the number of defective items in the second stage 

4c : The upper threshold for the number of defective items in the second stage 
I : The cost of inspecting and repairing a possible defect 
c : The cost of producing a defective item 
R : The cost of machine replacement 

1δ : The minimum acceptable level of the lot quality (accepted quality level (AQL)). 

2δ : The minimum rejectable level of the lot quality (lot tolerance proportion defective (LTPD)) 

1ε : The probability of type-one error in making a decision 

2ε : The probability of type-two error in making a decision  
P :  The transition probability matrix 
Q : The square matrix containing the transition probabilities of going from a non-absorbing state to 

another non-absorbing state 
R : The matrix containing all probabilities of going from a non-absorbing state to an absorbing state 
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(i.e., finished or scrapped product) 
A : An identity matrix representing the probability of staying in a state 
O : The matrix representing the probabilities of escaping an absorbing state (always zero) 
M : The fundamental matrix containing the expected number of transitions from any non-absorbing 

state to another non-absorbing state before absorption occurs 
F : The absorption probability matrix containing the long-run probabilities of the transition from any 

non-absorbing state to an absorbing state 
ijp : The probability of going from state i to state j in a single stage 

ijm : The expected long-run number of times that the transient state j is occupied before absorption 
occurs, given that the initial state is i  

ijf :  The long-run probability of going from a non-absorbing state ( i ) to an absorbing state ( j ) 
 
4. Model Development 
 
     Consider a machine that produces an item continuously. Depending on the number of decision-
making stages (either one stage or two), a sample of proper size is first gathered for inspection. Then, 
the decision on whether or not replacing, or repairing the machine is made. The purpose of this 
research is to develop a Markovian model to determine the optimum values of the thresholds in each 
inspection stage. The paper starts by developing the model for a single-stage and then goes on to 
propose the two-stage replacement policy.  
 
Based on the notations defined in Section 3, the expected total system cost can be expressed as:  
( ) ( ) ( ) ( )E TC E AC E RP E I= + + .             (1) 

 
     In what follows, the single-machine optimal replacement policy is first derived. Then, the 
modeling extends to the two-stage case in Section 5. 
 
4.1. A Single-Stage Single-Machine Replacement Policy 
 
     The single-machine optimal replacement policy in a single stage is developed based on the 
following scenario. A lot containing n items is first inspected. If the number of defective items in the 
lot is less than or equal to 1c , then the machine is in a good state and continues production. If the 
number of defective items is more than 2c , then the machine is in a bad state and needs to. Otherwise, 
if the number of defective items is greater than 1c  but less than or equal 2c , then the machine is 
inspected for malfunctioning, is adjusted or repaired accordingly, and the single-stage decision-
making problem starts over.  
 
A Markov chain process with the following states can model the above scenario.  
State 1: The machine needs inspection and possibly adjustment or repair. 
State 2: The machine continues production (no replacement is needed). 
State 3: The machine needs replacement. 
 
Note that in State 2, when the machine does not require replacement, it is classified as an acceptable 
machine that fulfills quality requirements. Hence, the decision-making process stops. Further more, in 
State 3, the performance of the machine is not satisfactory and causes to stop the decision-making 
process. In other words, states 2 and 3 are absorbing.  
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Based on the definition given in Section 2 and the notations given in Section 3 we have. 

Probability of inspecting the machine = ( ) ( ) ( )
2

1

11 2 1
1

1
c

n ii

i c

n
p p p F c F c

i
−

= +

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑ , 

probability of non-replacement = ( ) ( )
1

12 1
0

1
c

n ii

i

n
p p p F c

i
−

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑ , 

probability of replacing the machine = ( ) ( )
2

13 2
1

1 1
n

n ii

i c

n
p p p F c

i
−

= +

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑ , 

where ( ).F  represents the cumulative binomial distribution function with parameters n and p . 
Hence, the transition probability matrix of this process can be expressed as follows: 

                                             

1         2          3

1 11 12 13

2

3

0 1 0
0 0 1

p p p⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P  .                      (2) 

 
The P  matrix is an absorbing Markov chain with states 2 and 3 being absorbing and state 1 being 
transient. Analyzing this absorbing Markov chain requires the rearrangement of the single-step 
probability matrix in the following form: 

                                             .
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A O
P

R Q
                                     (3) 

Rearranging the P  matrix in the latter form yields the following matrix: 

                                     

   2         3         1  
2

3

1 12 13 11

1 0 0
0 1 0

p p p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P .                       (4) 

Hence, the fundamental matrix M , which is a one-by-one matrix in this case, can be obtained as 
follows, where I  is the identity matrix (Bowling et al. [1]): 

                                    ( ) 1
11

11

1
1

m
p

−= = =
−

M I - Q .                           (5) 

The value 11m  represents the expected long-run number of times that the transient state 1 is occupied 
before absorption occurs (i.e., replaced or not replaced), given that the initial state is 1. Hence, the 
long-run absorption probability matrix, F , can be calculated as follows (Bowling et al. [1]: 

                                   

2                          3

13121 12 13
11 111 1

ppf f
p p

⎡ ⎤
= = =⎢ ⎥− −⎣ ⎦

F = M × R ,                  (6) 

 
where the elements of the F  matrix, 12 13and f f , represent the probabilities of a machine not being 
replaced and replaced, respectively.  
 
Now, the expected total system cost given by Eq. (1) can be derived. The expected acceptance cost, 

( )E AC , is determined by the expected cost of the defective items, ( )c Np , multiplied by the 
absorption probability of accepting the machine (i.e., 12f ). The expected replacement cost, ( )E RP , is 
obtained by the replacement cost, R , multiplied by the absorption probability of replacing machine 
(i.e., 13f ). Also, once a machine goes into one of these two absorbing states (i.e., states 2 and 3), it 
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cannot go back to state 1. Hence, the number of visits to the absorbing states is equal to 1, and the 
expected inspection cost is given by ( )11 1I m − . Therefore, the expected cost for machine 
replacement policy can be expressed as a function of 12f , 13f , and 11m as follows: 

                                       ( ) ( )12 13 11 1E TC cNpf Rf I m= + + − .   (7) 
Substituting for 12f  and 11m , the expected cost Eq. (8) can be rewritten as: 

                           ( ) 12 12 11

11 11 11

1
1 1 1

p p pE TC cNp R I
p p p

⎛ ⎞ ⎛ ⎞
= + − +⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

.  (8) 

In terms of the cumulative binomial distribution, Eq. (8) becomes: 

      ( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

1 1 2 1

2 1 2 1 2 1

1 , 
1 1 1

F c F c F c F c
E TC cNp R I

F c F c F c F c F c F c
⎛ ⎞ ⎛ ⎞−

= + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− + − + − +⎝ ⎠ ⎝ ⎠
    (9) 

where the terms ( )1F c  and ( )2F c  are functions of the probability of producing a defective item p .  

The optimal replacement policy turns into determining the values of 1c and 2c that minimize the 
expected total system cost numerically. Alternatively, in order to determine the boundary limits of 

1c and 2c , the concepts of type-I and type-II error probabilities are utilized. The type-I error, 1ε , 
shows the probability of rejecting the machine when the defective production percent of the machine 
is acceptable and the type-II error, 2ε , is the probability of accepting the machine when the defective 
percentage is not acceptable. Then, by setting the parameters 1p AQLδ= = and 2p LTPDδ= = , in 
case when 1p δ= , the probability of rejecting the machine is less than 1ε  and if 2p δ= , the probability 
of accepting the machine is less than 2ε . Hence, we have 

                          1 13 1 12 1

2 12 2 13 2

    1 ,
    1 .

p f f
p f f

δ ε ε
δ ε ε

= → ≤ → ≥ −

= → ≤ → ≥ −
    (10) 

Based on the above inequalities, the feasible values of 1c and 2c among a set of alternative values are 
first determined. Then, the optimal replacement policy is derived using Eq. (9). To show this, a 
numerical example is given in the next subsection to illustrate the application of the proposed 
methodology. 
 
4.2. An Illustrative Example 
 
To demonstrate the application of the proposed methodology in a single-machine single-stage 
replacement strategy, a numerical example is solved. Consider a single-stage system with the number 
of produced items in a period, 1000N = , the probability of producing a defective item 0.1p = , the 
cost of producing a defective item, 6c = , the cost of machine replacement, 600R = , the cost of 
machine inspection and repair, 300I = , the number of items in an inspected lot, 50n = , 

1 2 1 20.05,  0.2,  0.05,  and 0.1δ δ ε ε= = = = .  
 
The feasible values of 1c and 2c among existing alternatives are first obtained using Eq. (10) as 
follows: 

13 12

12 13

0.05  0.05  0.95,
0.2  0.1  0.9.

p f f
p f f
= → ≤ → ≥

= → ≤ → ≥
 

In other words, the probability of accepting the machine when 1 0.05δ = should be more than 0.95 and 
the probability of rejecting the machine when 2 0.2δ =  should be more than 0.9. Table 1 shows 12 
different alternative combination values of 1c  and 2c together with their probability of rejecting or 
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accepting the machine, of which the ones in bold are feasible. Then, Eq. (9) is numerically solved for 
all feasible sets of Table 1. The results are given in Table 2. Based on the results, the best combination 
value is 1 24 and 6c c= = with the minimum value of the expected total cost being 753.88. 
 

Table1. The feasible values of 1c and 2c among alternatives  
Probability of rejecting the 

machine when 2 0.2δ =  
Probability of accepting the 

machine when 1 0.05δ =  2c  1c  

0.99981 0.53838 3 1 
0.99980 0.8809 5 1 
0.99976 0.98872 7 1 
0.99870 0.83914 4 2 
0.99857 0.97866 6 2 
0.99815 0.99860 8 2 
0.97979 0.98702 6 4 
0.97399 0.99916 8 4 
0.95747 0.99997 10 4 
0.87011 0.99924 8 6 
0.80110 0.99997 10 6 
0.642783 0.99999 12 6 

 
Table 2. The expected total cost for different feasible combinations of 1c and 2c  

1c  2c  11p  12p  13p  ( )E TC  
1 7 0.84407 0.03379 0.12214 2223.93 
2 6 0.65850 0.11173 0.22977 1178.47 
2 8 0.83040 0.11173 0.05787 2068.91 
4 6 0.33903 0.43120 0.22977 753.88 
4 8 0.51093 0.43120 0.05787 913.41 
4 10 0.55945 0.43120 0.00935 980.96 

 
 
5. A Two-Stage Machine Replacement Policy 
 
     In a first inspected two-stage single-machine replacement strategy, assume a lot containing 1n  
items is inspected first. If the number of defective items in the lot is less than or equal to 1c , then the 
machine is in a good state and is accepted. If the number of defective items is greater than 1c , but less 
than or equal 2c , the machine is inspected and possibly adjusted or repaired. Then the decision-
making process starts over. Otherwise, if the number of defective items is more than 2c , then the 
machine is evaluated in the second stage. In the second stage, a lot containing an additional 2n  items 
is inspected. If the total number of defective items is less than or equal 3c , then the machine is 
accepted. If the total number of defective items is greater than 3c , but less than or equal 4c , the 
machine is inspected and possibly adjusted or repaired. Then the two-stage decision-making process 
starts over. Otherwise, if the total number of defective items is more than 4c , then the machine is 
rejected and should be replaced.  
 
Similar to the single-stage replacement strategy, a Markov chain process with the following states can 
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model the above scenario. 
State 1: The machine should be inspected. 
State 2: The second stage replacement policy should be applied to the machine. 
State 3: The machine should be accepted. 
State 4: The machine should be replaced. 
Then, based on the notations given in Section 3, we have: 

the first stage probability of accepting the machine = ( ) ( )
1

11
13 1 1

0

1
c

n ii

i

n
p p p F c

i
−

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑ , 

probability of deciding in the second stage = ( ) ( )
1

1

2

1
12 1 2

1

1 1
n

n ii

i c

n
p p p F c

i
−

= +

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑ , 

the first stage probability of inspecting the machine = ( ) ( ) ( )
2

1

1

1
11 1 2 1 1

1

1
c

n ii

i c

n
p p p F c F c

i
−

= +

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑ , 

the second stage probability of accepting the machine = ( ) ( )
3

22
23 2 3

0

1
c

n ii

i

n
p p p F c

i
−

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑ , 

the second stage probability of inspecting the machine = 21p  

 ( ) ( ) ( )
4

2

3

2
2 4 2 3

1

1
c

n ii

i c

n
p p F c F c

i
−

= +

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑ , 

the second stage probability of rejecting the machine = ( ) ( )
2

2

4

2
24 2 4

1

1 1
n

n ii

i c

n
p p p F c

i
−

= +

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∑ , 

where ( ) ( )1 2.  and .F F  denote the cumulative binomial distribution functions of stage 1 and stage 2 of 
the decision making process. In this case, the transition probability matrix P can be expressed as 
follows: 

                                 

 1          2           3           4
1

11 12 13

2 21 23 24

3

4

0
0

0 0 1 0
0 0 0 1

p p p
p p p

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

P .     (11) 

 
Again, analyzing this absorbing Markov chain requires the rearrangement of the single-step 
probability matrix in the following form: 
 

                                 
⎡ ⎤
⎢ ⎥
⎣ ⎦

A O
P =

R Q
.                                                        (12) 

Rearranging the P  matrix in the latter form yields the following matrix: 

                               

3          4         1          2

13 11 12

23 24 21

1 0 0 03
0 1 0 04

01
02

p p p
p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

P .                                                     (13) 
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The fundamental matrix M can be obtained as follows (Bowling et al. [1]): 

    ( )

1                                      2

12
11

11 12 21 11 12 2111 11 12 12

221 21 22 22 11

11 12 21 11 12 21

1
1 11

1 1
1 1

p
p p p p p pm p m p

m p m p p
p p p p p p

−
⎡ ⎤
⎢ ⎥− − − −= − = −⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥= − = −⎣ ⎦
⎢ ⎥− − − −⎣ ⎦

-1M = I - Q ,    (14) 

where iim  represents the expected number of times in the long-run that the transient state 
,  ( 1,2)i i = , is occupied before absorption occurs (i.e., accepted or rejected), given that the initial 

state is 1. 
  
The long-run absorption probability matrix, F , can then be determined as follows (Bowling et al. 
[1]): 

12

11 12 21 11 12 21 13

23 2422 11

11 12 21 11 12 21

1
1 1 0

1
1 1

p
p p p p p p p

p pp p
p p p p p p

⎡ ⎤
⎢ ⎥− − − − ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥− ⎣ ⎦
⎢ ⎥− − − −⎣ ⎦

F = M × R  

                    
( ) ( )

3                                                 4

1 13 12 23 12 24

11 12 21 11 12 21
                             

2 22 13 11 23 11 24

11 12 21 11 12 21

1 1
1 1

1 1

p p p p p
p p p p p p

p p p p p p
p p p p p p

+⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥+ − −
⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

,                  (15)  

where 14f  is the probability of machine replacement.  
 
     Now, the expected total system cost can be obtained using Eq. (1). Assuming that at the start of the 
process the machine is in state one, the expected acceptance cost is simply the acceptance cost 
( )cNp multiplied by the probability of accepting the machine (i.e., 13f ). The expected replacement 
cost is the replacement cost ( R ) multiplied by the probability of machine replacement ( )14 131f f= − . 
The expected inspection cost is the inspection cost ( I ) multiplied by the number of machine 
inspections at stage 1 (i.e., 11 1m − ) plus inspection cost ( I ) multiplied by the number of machine 
inspections at stage 2 (i.e., 22 1m − ) multiplied by the probability of continuing to the second stage 
( )12p . Therefore, the expected cost for a two-stage machine replacement policy can be expressed as 
follows: 

( ) ( ) ( ) ( )( )13 13 11 22 121 1 1E TC cNpf R f I m m p= + − + − + − ,             (16) 
or 

  

( ) 13 12 23 13 12 23

11 12 21 11 12 21

11
12

11 12 21 11 12 21

1
1 1

11 1 1 ,
1 1

p p p p p pE TC cNp R
p p p p p p

pI p
p p p p p p

⎛ ⎞ ⎛ ⎞+ +
= + − +⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞−
− + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠⎝ ⎠

                         (17) 

which leads to: 
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( )
( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
1 1 1 2 2 3

1 2 1 1 1 2 2 4 2 3

1

1 1

E TC

F c F c F c
cNp

F c F c F c F c F c

=

⎛ ⎞+ −
⎜ ⎟ +
⎜ ⎟− + − − −⎝ ⎠

 

( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

1 1 1 2 2 3

1 2 1 1 1 2 2 4 2 3

1
   1

1 1

F c F c F c
R

F c F c F c F c F c

⎛ ⎞+ −
⎜ ⎟− +
⎜ ⎟− + − − −⎝ ⎠

 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )( )

1 2 1 1 1 2 2 4 2 3

1 2 1 1
1 2

1 2 1 1 1 2 2 4 2 3

1 1
1 1

   
1

1 1
1 1

F c F c F c F c F c
I

F c F c
F c

F c F c F c F c F c

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− +
⎜ ⎟− + − − −⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞− +
⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟− + − − −⎝ ⎠⎝ ⎠

.  (18) 

 
Then, similar to what was derived in a single stage case, we have 

                                                    1 13 1

2 13 2

  1
  1 1 .

p f
p f

δ ε
δ ε

= → ≥ −

= → − ≥ −
             (19) 

In the next subsection, a numerical example is given to illustrate the application of the proposed 
methodology.  
 
5.1. An Illustrative Example 
 
     Consider a two-stage system with the number of produced items in a period, 1000N = , the 
probability of producing a defective item, 0.15p = , the cost of producing a defective item, 5c = , the 
cost of machine replacement, 600R = , the cost of machine inspection and repair, 200I = , the first 
sample size in an inspected lot, 1 50n = , the second sample size, 2 40n = , 

1 2 1 20.1, 0.2, 0.01,  and 0.02δ δ ε ε= = = = . 
In order to determine the feasible values of 1 2 3 4, , ,  and c c c c  among existing alternatives, using Eq. 
(19), we have 

13

13

0.1  0.99,
0.2  1 0.98.

p f
p f
= → ≥

= → − ≥
 

     In other words, the probability of accepting the machine when 1 0.1δ =  should be more than 0.99 
and the probability of rejecting the machine when 2 0.2δ =  should be more than 0.98. Table 3 shows 
16 different alternative combination values of 1 2 3 4, , ,  and c c c c together with their probabilities of 
rejecting or accepting the machine, of which the ones in bold are feasible. Then, Eq. (18) is 
numerically solved for all feasible sets of Table 3. The results are given in Table 4. Based on the 
results, the best combination value is 1 2 3 42, 5, 1,  and 10c c c c= = = = with the objective function 
value being 7215.411. 
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Table 3.  The feasible values of 1 2 3 4, , ,  and c c c c  
Probability of rejecting the 
 machine when 2 0.2δ =  

Probability of accepting the 
machine when 1 0.1δ =  

4c  3c  2c  1c  

0.998019 0.449585 5 1 5 1 
0.99771 0.947088 5 1 10 1 
0.996658 0.643003 5 1 5 2 
0.994605 0.983135 5 1 10 2 
0.989752 0.991352 10 1 5 1 
0.988169 0.999602 10 1 10 1 
0.982807 0.99606 10 1 5 2 
0.972484 0.999878 10 1 10 2 
0.990382 0.601092 5 2 5 1 
0.990078 0.948952 5 2 10 1 
0.989042 0.713564 5 2 5 2 
0.98702 0.983329 5 2 10 2 
0.951783 0.995294 10 2 5 1 
0.950318 0.999617 10 2 10 1 
0.945359 0.997148 10 2 5 2 
0.935804 0.999879 10 2 10 2 

 
Table 4. The expected total cost for different combination values of 1 2 3 4, , ,  and c c c c  

1c  2c  3c  4c  ( )E TC  
1 5 1 10 9321.193 
1 10 1 10 26001.17 
2 5 1 10 7215.411 

 
 

6. Conclusion 
 
     The optimum value of control thresholds in an acceptance sampling design for a machine 
replacement problem was determined numerically using a Markovian approach. We developed a 
general model for the expected cost by considering acceptance, replacement, and inspection costs. 
The model was then used to determine the optimum value of control thresholds for a single-stage and 
a two-stage replacement strategy. Numerical examples were solved to demonstrate the application of 
the proposed approach. 
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