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A new machine replacement policy based on number of
defective items and Markov chains

M.S. Fallahnezhad®, S.T.A. Niaki®>"

A novel optimal single machine replacement policy using a single as well as a two-
stage decision making process is proposed based on the quality of items produced. In
a stage of this policy, if the number of defective items in a sample of produced items
is more than an upper threshold, the machine is replaced. However, the machine is
not replaced if the number of defective items is less than a lower threshold.
Nonetheless, when the number of defective item falls between the upper and the lower
thresholds, the decision making process continues inspecting and possibly repairing
the machine and the decision making process goes on to collect more samples. The
primary objective of own work is to determine the optimal values of both the upper
and the lower thresholds using a Markov process to minimize the total cost
associated with a machine replacement policy.
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1. Introduction

As the optimal management of equipment replacement is continuously becoming more important
nationally and localy (i.e.,, a a firm level), it is attracting a significant interest in operations
research and management science. The traditional equipment replacement analysis focus on the
evaluation of the keep or replace aternative for each period within the planning horizon for single,
two, or multiple machines. These machines work in series or parallel, where several motivations
such as machine deterioration, technological change, and capacity expansion have been focused.
Solutions generally involve the use of dynamic programming under various assumptions concerning
costs, planning horizon, number of machines and their types.

Two approaches have been applied to the machine replacement problem. In the first approach,
modeling helps to understand how the optima replacement depends on the intensity of
technological change, the rate of capacity expansion, and the deteriorating rate. In the second
approach, the maintenance policy that is being followed in practice is a combination of preventive
and corrective maintenance.

Chand and Sethi [2] defined a deterministic approach improving technological environment in
terms of a periodic process of technological improvements in every existing technology. Goldstein
et al. [5] proposed a planning horizon for the first optimal replacement in an infinite-horizon
problem when two types of machines were considered. The first type is based on existing
technology; the second is based on a not-yet-achieved technological breakthrough to be available at
some unknown future time. They employed a dynamic programming model to generate some
conditional decision rules on optimal replacement. In their formulation, technological
improvements were viewed in terms of purchasing and operating costs, assuming that the
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production capacity and quality characteristics of machines at different or identical technologies
remained constant.

While the objective of a machine replacement problem is to minimize the cost, some researchers
assumed the rate of machine breakdown and repair was known. They tried to minimize the cost of
production, inventories, and backlogs. Sethi et a. [12] developed appropriate dynamic programming
equations and established the existence of the solution using a verification theorem for optimality.
Presman et a. [11] considered a production-planning problem in a two-machine flow-shop
environment with breakdown and repair, subject to upper bound constraints on work-in-process. The
main purpose in their research was to choose admissible input rates to minimize the average surplus
and production costs over an infinite horizon. Niaki and Fallahnezhad [10] employed Bayesian
inference and stochastic dynamic programming to design a decision-making framework in production
environment. Further, Fallahnezhad et al. [3] determined the optimal policy for two-machine
replacement problem using Bayesian inference in the context of the finite mixture model. They
discussed the analysis of time-to-failure data and proposed an optimal decision-making procedure for
machine replacement strategy. Moreover, Falahnezhad and Niaki [4] proposed a dynamic
programming model of the two-machine replacement problem.

Ivy and Nembhard [8] integrated statistical quality control (SQC) and partially observable Markov
decision processes (POMDP) for maintenance decision making of deteriorating systems. In their
work, they employed SQC to sample a real-world system and define the observation distribution for
the POMDP modeling. Simulation methodology was used in their research to integrate SQC and
POMDP to develop and evaluate maintenance policies as a function of process characteristics, system
operating and maintenance costs.

Marsh and Nam [9] studied the equipment maintenance and replacement policies under the
scenarios of increasing customer expectations (in terms of tighter product specifications), loss (in
terms of process deviation), and process drift. The Taguchi loss function was first employed to
estimate the loss due to target deviation. Then, a generalized Brownian motion-to-process was used to
model the problem.

Hartman and Ban [7] developed a multiple machine replacement model that was characterized as a
parallel flow shop environment. An integer programming formulation was developed in their work to
determine the optimal purchase, salvage, utilization, and storage decisions for each machine over a
finite horizon. They first showed the formulation was hard to solve and then came up with valid
inequalities to improve the lower bound provided by the linear programming relaxation and a
dynamic programming approach to provide initial lower bounds. Grosfeld-Nir [6] presented a two-
state partially observable Markov decision process for machine replacement problem. He proved that
the **dominance in expectation’’ (the expected profit is larger in the good state than in the bad state)
suffices for the optimal policy to be of acontrol limit type (CLT). In other words, continue if and only
if the good state probability exceedsthe CLT.

Here, a new single-machine replacement policy with both single and two-stage decision-making
process is proposed in which the optimal policy is derived based on the quality of items produced.
The quality in each stage is compared with the optimal upper and lower thresholds obtained by a
Markov process modeling. The rest of the paper is organized as follows. The problem is first stated in
Section 2. Then, the notations are presented in Section 3. Next, the single-stage model together with
an illustrative example is proposed in Section 4. Section 5 contains the two-stage modeling along with
anumerical example. Finally, we conclude in Section 6.
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2. Problem Statement and Assumptions

Consider a single machine that produces a specific item. At each stage of the machine replacement
policy, the states of the machine are defined in terms of the quality of items it produces. This quality
is determined using the attribute acceptance sampling plans to accept or reject a production lot. The
accept/reject decision is based on the count of the number of defectives items (see Taylor [13]). If this
number is greater than an upper threshold, then the machine needs replacement. If it is less than a
lower threshold, then the machine continues production. Nonetheless, if it is between the upper and
the lower threshold, then an inspection and possibly repair is needed. After inspection, the machine
returns to its initial state and the decision-making process starts over by collecting more samples. The
objective isto find the optimal values of the thresholds that minimize the total cost associated with the
machine replacement strategy. Furthermore, the following assumptions are used in the modeling
process.

(1) The machine produces the items continuously.
(2) The quality of items produced by the machine isinspected periodicaly.
(3) The machine replacement strategy is employed in every period of item inspection.

3. Notations

To model the problem at hand, the following notations are used.
E (TC): The expected total system cost

E (AC): The expected total cost of accepting (not replacing) the machine
E (RP): The expected total cost of replacing the machine
E (1) : The expected total cost of inspecting and repairing the machine

n : The sample size of a single-stage machine replacement policy
n,: The sample size in the first stage of atwo-stage machine replacement policy

n, : The sample size in the second stage of a two-stage machine replacement policy

N : The number of produced itemsin aperiod

p : The probability of producing a defective item

¢,: The lower threshold for the number of defective items in the first stage

C,: The upper threshold for the number of defective itemsin thefirst stage

C5: Thelower threshold for the number of defective items in the second stage

¢, : The upper threshold for the number of defective itemsin the second stage

| : The cost of inspecting and repairing a possible defect

¢ : The cost of producing a defective item

R : The cost of machine replacement

6, : The minimum acceptable level of the lot quality (accepted quality level (AQL)).

0, : The minimum rejectable level of the lot quality (lot tolerance proportion defective (LTPD))
&,: The probability of type-one error in making a decision

&, . The probability of type-two error in making adecision

P: Thetransition probability matrix

Q : The sguare matrix containing the transition probabilities of going from a non-absorbing state to

another non-absorbing state
R : The matrix containing all probabilities of going from a non-absorbing state to an absorbing state
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(i.e., finished or scrapped product)

A': Anidentity matrix representing the probability of staying in a state

O : The matrix representing the probabilities of escaping an absorbing state (always zero)

M : The fundamental matrix containing the expected number of transitions from any non-absorbing
state to another non-absorbing state before absorption occurs

F: The absorption probability matrix containing the long-run probabilities of the transition from any
non-absorbing state to an absorbing state

p;; : The probability of going from state i tostate j inasingle stage

m;; : The expected long-run number of times that the transient state j is occupied before absorption

occurs, given that theinitial stateis i
f;; + Thelong-run probability of going from a non-absorbing state (i) to an absorbing state (j )

4. Model Development

Consider a machine that produces an item continuously. Depending on the number of decision-
making stages (either one stage or two), a sample of proper size isfirst gathered for inspection. Then,
the decision on whether or not replacing, or repairing the machine is made. The purpose of this
research is to develop a Markovian model to determine the optimum values of the thresholds in each
inspection stage. The paper starts by developing the model for a single-stage and then goes on to
propose the two-stage replacement policy.

Based on the notations defined in Section 3, the expected total system cost can be expressed as:
E(TC)=E(AC)+E(RP)+E(I). (2)

In what follows, the single-machine optimal replacement policy is first derived. Then, the
modeling extends to the two-stage casein Section 5.

4.1. A Single-Stage Single-Machine Replacement Policy

The single-machine optimal replacement policy in a single stage is developed based on the
following scenario. A lot containing n itemsis first inspected. If the number of defective itemsin the
lot is less than or equal to c,, then the machine is in a good state and continues production. If the

number of defective itemsis more than c,, then the machine isin abad state and needs to. Otherwise,
if the number of defective items is greater than c, but less than or equal c,, then the machine is

inspected for malfunctioning, is adjusted or repaired accordingly, and the single-stage decision-
making problem starts over.

A Markov chain process with the following states can model the above scenario.
State 1: The machine needs inspection and possibly adjustment or repair.

State 2: The machine continues production (no replacement is needed).

State 3: The machine needs replacement.

Note that in State 2, when the machine does not require replacement, it is classified as an acceptable
machine that fulfills quality requirements. Hence, the decision-making process stops. Further more, in
State 3, the performance of the machine is not satisfactory and causes to stop the decision-making
process. In other words, states 2 and 3 are absorbing.
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Based on the definition given in Section 2 and the notations given in Section 3 we have.
C, n ) y
Probability of inspecting the machine=p,; = " {i jp' (1-p)"" =F(c,)-F(c,),
i=C;+1
C1

probability of non-replacement = p,, = Z[?]p' (1-p)"" =F(c,),
i=0

probability of replacing the machine=p,, = ' [?jpi (1- p)”fi =1-F(c,),

1=C,+1
where F () represents the cumulative binomial distribution function with parameters nand p.
Hence, the transition probability matrix of this process can be expressed as follows:

12 3

1) P11 Pz P
P=2l0 1 o0]. @)

30 0 1

The P matrix is an absorbing Markov chain with states 2 and 3 being absorbing and state 1 being
transient. Analyzing this absorbing Markov chain requires the rearrangement of the single-step
probability matrix in the following form:

A O
P= : 3
R Q
Rearranging the P matrix in the latter form yields the following matrix:
2 3 1
21 0 O
P=3 0 1 O0]. (4)

1 P2 Pz Pu
Hence, the fundamental matrix M, which is a one-by-one matrix in this case, can be obtained as
follows, where | istheidentity matrix (Bowling et al. [1]):

-1 1
M=m, =(I- = . S
H ( Q) 1-py ©
The value m,; represents the expected long-run number of times that the transient state 1 is occupied

before absorption occurs (i.e., replaced or not replaced), given that the initial state is 1. Hence, the

long-run absorption probability matrix, F, can be calculated as follows (Bowling et a. [1]:
2 3

_ P1o P13
F=MxR=4f,, = fo=—2—1, 6
1 1-py B p11:| ©

where the elements of the F matrix, f,, andf,;, represent the probabilities of a machine not being
replaced and replaced, respectively.

Now, the expected total system cost given by Eq. (1) can be derived. The expected acceptance cost,
E(AC), is determined by the expected cost of the defective items, ¢c(Np), multiplied by the

absorption probability of accepting the machine (i.e., f,,). The expected replacement cost, E (RP), is
obtained by the replacement cost, R , multiplied by the absorption probability of replacing machine
(i.e., f,3). Also, once a machine goes into one of these two absorbing states (i.e., states 2 and 3), it
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cannot go back to state 1. Hence, the number of visits to the absorbing states is equal to 1, and the
expected inspection cost is given by | (mll—l). Therefore, the expected cost for machine

replacement policy can be expressed as afunction of f,,, f,5, and m,; asfollows:

E (TC)=cNpf, +Rf;+1(my-1). (7)

Substituting for f,, and m,, , the expected cost Eq. (8) can be rewritten as:
E(TC):ch&JrR(l—&ju[&j. 6)

1-py — P 1-py

In terms of the cumulative binomial distribution, Eq. (8) becomes:

£ (TC ) —eNp—— (&) F(c) J+|[F(°2)‘F(C1))J, ©

1 F(,)+F () " [1_1—F )+Fe)) F ) F e

wheretheterms F (c,) and F(c,) are functions of the probability of producing a defectiveitemp.

The optimal replacement policy turns into determining the values of “1and C2that minimize the
expected total system cost numerically. Alternatively, in order to determine the boundary limits of
c,and c,, the concepts of type-l and type-ll error probabilities are utilized. The type-l error, &,

shows the probability of rejecting the machine when the defective production percent of the machine

is acceptable and the type-ll error, ¢, , isthe probability of accepting the machine when the defective

percentage is not acceptable. Then, by setting the parametersp =, =AQL andp =6, =LTPD , in

case when p = 6, , the probability of rejecting the machineislessthan ¢ and if p =6,, the probability

of accepting the machineisless than¢, . Hence, we have
p=06, > f3<g — f,21-g, (10)
p=0, > f,<¢e, > fz21-¢,

Based on the above inequalities, the feasible values of ¢, and ¢, among a set of aternative values are

first determined. Then, the optima replacement policy is derived using Eq. (9). To show this, a
numerical example is given in the next subsection to illustrate the application of the proposed
methodology.

4.2. An lllustrative Example

To demonstrate the application of the proposed methodology in a single-machine single-stage
replacement strategy, a numerical example is solved. Consider a single-stage system with the number
of produced items in a period, N =1000, the probability of producing a defective item p =0.1, the
cost of producing a defective item, ¢ =6, the cost of machine replacement, R =600, the cost of
machine inspection and repair, | =300, the number of items in an inspected lot, n =50,
6,=0.05, 5,=0.2, £ =0.05 and ¢, =0.1.

The feasible values of c,and c,among existing alternatives are first obtained using Eq. (10) as

follows:
p=005— ;<005 - f,,>0.95

p=02 - f,<01 > f;>09.
In other words, the probability of accepting the machine when ¢, = 0.05 should be more than 0.95 and
the probability of rejecting the machine when ¢, =0.2 should be more than 0.9. Table 1 shows 12
different alternative combination values of ¢, and c,together with their probability of rejecting or
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accepting the machine, of which the onesin bold are feasible. Then, Eq. (9) is numerically solved for
al feasible sets of Table 1. The results are given in Table 2. Based on the results, the best combination
valueis ¢, =4 and ¢, = 6 with the minimum value of the expected total cost being 753.88.

Tablel. Thefeasible values of ¢, and ¢, among alternatives

Probability of rejecting the Probability of accepting the
machine when &, =0.2 machine when &, = 0.05 C2 g
0.99981 0.53838 3 1
0.99980 0.8809 5 1
0.99976 0.98872 7 1
0.99870 0.83914 4 2
0.99857 0.97866 6 2
0.99815 0.99860 8 2
0.97979 0.98702 6 4
0.97399 0.99916 8 4
0.95747 0.99997 10 4
0.87011 0.99924 8 6
0.80110 0.99997 10 6
0.642783 0.99999 12 6

Table 2. The expected total cost for different feasible combinations of ¢,and c,

Cy C, P11 P P13 E(TC)
1 7 0.84407 0.03379 0.12214 2223.93
2 6 0.65850 0.11173 0.22977 1178.47
2 8 0.83040 0.11173 0.05787 2068.91
4 6 0.33903 0.43120 0.22977 753.88
4 8 0.51093 0.43120 0.05787 91341
4 10 0.55945 0.43120 0.00935 980.96

5. A Two-Stage Machine Replacement Policy

In a first inspected two-stage single-machine replacement strategy, assume a lot containing n,
items is inspected first. If the number of defective itemsin the lot is less than or equal to c,, then the
machine isin agood state and is accepted. If the number of defective itemsis greater than c,, but less
than or equal c,, the machine is inspected and possibly adjusted or repaired. Then the decision-
making process starts over. Otherwise, if the number of defective items is more than c,, then the
machine is evaluated in the second stage. In the second stage, a lot containing an additional n, items
is inspected. If the total number of defective items is less than or equal c,, then the machine is
accepted. If the total number of defective items is greater than c,, but less than or equa c,, the

machine is inspected and possibly adjusted or repaired. Then the two-stage decision-making process
starts over. Otherwise, if the total number of defective items is more than c,, then the machine is

rejected and should be replaced.

Similar to the single-stage replacement strategy, a Markov chain process with the following states can
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model the above scenario.
State 1: The machine should be inspected.
State 2: The second stage replacement policy should be applied to the machine.
State 3: The machine should be accepted.
State 4: The machine should be replaced.
Then, based on the notations given in Section 3, we have:

G . .
the first stage probability of accepting the machine = p,, = Z[r_lljp' (1-p)"" =F(c,),

io\ !

L n i n,—i
probability of deciding in the second stage = p,, = Z ( ilJp' (1-p)* =1-F(c,),
i=C,+1

2 n i n,—i
the first stage probability of inspecting the machine=p,, = > [ iljp' (1-p)™" =F(c,)-Fi(cy),

i=c;+1

the second stage probability of accepting the machine = p,, = Z[n?}p‘ (1-p)™" =F,(cq),
io\ !
the second stage probability of inspecting the machine = p,,

Cy n . r
i=C3+1
Ny . .
the second stage probability of rejecting the machine=p,, = Y [r:sz' (1-p)™" =1-F,(c,),
i=C4+1

where F,(.) and F,(.) denote the cumulative binomial distribution functions of stage 1 and stage 2 of

the decision making process. In this case, the transition probability matrix P can be expressed as
follows:

1 2 3 4
Upy P Pz O
p_2 Py O Pp Pu . (11)

JO0O 0 1 0
J0 0 0 1

Again, analyzing this absorbing Markov chain requires the rearrangement of the single-step
probability matrix in the following form:

A O
P= . (12)
R Q
Rearranging the P matrix in the latter form yields the following matrix:
3 4 1 2
31 0 O O
40 1 0 O

P (13)

1 P 0 py p12.
2[ Py Py Pn O
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The fundamental matrix M can be obtained as follows (Bowling et al. [1]):

1 2
L1 1 P12
M=(1- Q)-l _Mu=1-Ppy Mp=-Pp | | 1-Pu—PePa 1-Pu—PpPxy (14
My =—Py  My=1 2 P22 1-py

1-py = PP 1-Pi— PPy

where m; represents the expected number of times in the long-run that the transient state
i, (i=12), is occupied before absorption occurs (i.e., accepted or rejected), given that the initial
stateis 1.

The long-run absorption probability matrix, F, can then be determined as follows (Bowling et al.
[1]):

1 P
F=MxR 1-pPy —PPx 1-Py—PiPa |:p13 0 }
P2 1-py P2z P
1-py = PP 1-Pi— PP
3 4
1 P13+ P12Pos P1oP24

_ 1- Py — P1aPa 1-py; = PiPa (15)

2| PPzt (1_ pll) Pos (1_ pll) P24
1- Py — PP 1-py —PwPa

where f, isthe probability of machine replacement.

Now, the expected total system cost can be obtained using Eq. (1). Assuming that at the start of the
process the machine is in state one, the expected acceptance cost is simply the acceptance cost
(cNp) multiplied by the probability of accepting the machine (i.e., f,;). The expected replacement

cost is the replacement cost (R ) multiplied by the probability of machine replacement (f14 :1—f13) .

The expected inspection cost is the inspection cost (1) multiplied by the number of machine
inspections at stage 1 (i.e.,m;; —1) plus inspection cost (1 ) multiplied by the number of machine

inspections at stage 2 (i.e.,m,, —1) multiplied by the probability of continuing to the second stage
(plz) . Therefore, the expected cost for a two-stage machine replacement policy can be expressed as
follows:

E(TC)=cNpf3 +R (1-fy3)+]1 ((m11_1)+(m22 -1) plz)v (16)
or
E (TC)ZCNp(l p1;+ plspz; )+ R (1_1 p1;+ plspz: J+
11 7 PP 11~ PP (17)
(ewtan o )
1-py = PP 1- Py — PPy
which leads to:
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1

{1_ F1(02)+ Fl(cl)_(l_ Fl(CZ))(FZ (04)_ F, (Cs)) _1J

+
! : (18)
1- Fl(CZ)+ Fl(cl)
-1|(1-F(c
(1_ F1(02)+F1(Cl)—(l— Fl(CZ))(Fz(C4)—F2(c3)) ( 1( 2))
Then, similar to what was derived in asingle stage case, we have
p=51 e d flszl—{;'l (19)

p=0, »> 1-f;21-¢,.
In the next subsection, a numerical example is given to illustrate the application of the proposed
methodology.

5.1. An lllustrative Example

Consider a two-stage system with the number of produced items in a period, N =1000, the
probability of producing a defective item, p =0.15, the cost of producing a defective item, ¢ =5, the

cost of machine replacement, R =600, the cost of machine inspection and repair, 1 =200, the first
sample size in an inspected lot, n,=50, the second sample size, n,=40,
06,=0.16,=0.2,¢ =0.01, and ¢, =0.02.
In order to determine the feasible values of c,,c,,c;, andc, among existing alternatives, using Eq.
(19), we have

p=01— f,;3>0.99,

p=02 - 1-f ;>0.98.

In other words, the probability of accepting the machine when s, = 0.1 should be more than 0.99

and the probability of rejecting the machine when &, = 0.2 should be more than 0.98. Table 3 shows
16 different aternative combination values of c,,c,,c,, and c,together with their probabilities of

rejecting or accepting the machine, of which the ones in bold are feasible. Then, Eqg. (18) is
numerically solved for al feasible sets of Table 3. The results are given in Table 4. Based on the
results, the best combination value is ¢, =2,¢, =5,¢, =1, and ¢, =10with the objective function

value being 7215.411.
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Table 3. Thefeasiblevauesof c,,c,,c,, andc,

Probability of rejecting the Probability of accepting the C, | C3 | Ch | C
machine when &, =0.2 machine when 9, =0.1
0.998019 0.449585 5 1] 5 1
0.99771 0.947088 5 1 ]10] 1
0.996658 0.643003 5 1] 5 2
0.994605 0.983135 5 1 10| 2
0.989752 0.991352 10 | 1 | 5 1
0.988169 0.999602 10 | 1 10| 1
0.982807 0.99606 10 | 1 | 5 2
0.972484 0.999878 10 | 1 |10 ]| 2
0.990382 0.601092 5 2 | 5 1
0.990078 0.948952 5 2 |10] 1
0.989042 0.713564 5 2 | 5 2
0.98702 0.983329 5 2 |10 ] 2
0.951783 0.995294 10 | 2 | 5 1
0.950318 0.999617 10 | 2 |10 ] 1
0.945359 0.997148 10 | 2 | 5 2
0.935804 0.999879 10 | 2 |10 ] 2
Table 4. The expected total cost for different combination values of c,,c,,c5, andc,
c, c, Cs Cy E(MC)

1 5 1 10 9321.193

1 10 1 10 26001.17

2 5 1 10 7215.411

6. Conclusion

The optimum value of control thresholds in an acceptance sampling design for a machine
replacement problem was determined numerically using a Markovian approach. We developed a
general model for the expected cost by considering acceptance, replacement, and inspection costs.
The model was then used to determine the optimum value of control thresholds for a single-stage and
a two-stage replacement strategy. Numerical examples were solved to demonstrate the application of
the proposed approach.
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