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A semidefinite relaxation scheme for quadratically constrained
guadratic problems with an additional linear constraint
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Semidefinite optimization relaxations are among the widely used approaches to find global
optimal or approximate solutions for many nonconvex problems. Here, we consider a
specific quadratically constrained quadratic problem with an additional linear constraint.
We prove that under certain conditions the semidefinite relaxation approach enables us to
find a global optimal solution of the underlying problem in polynomial time.
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1. Introduction

Quadratic optimization has received much attention in the literature and it is a fundamental
problem in optimization theory and practice; see Nocedal and Wright [5], Polik and Terlaky [6],
Shor [8] and Yakubovich [11]. This problem appears in many disciplines such as economic
equilibrium, combinatorial optimization, numerical partial differential equations, and general
nonlinear programming. Recently, there were several results on quadratic optimization. Among
these, using semidefinite optimization (SDO) relaxations, it has been shown that globa optimal
solution can be found in polynomial time using interior point algorithms, see de Klerk [3], Salahi
[7], Sturm and Zhang [10], Y e and Zhang [12], and references therein.

Here, we consider minimizing a quadratic function subject to a quadratic equality constraint with an
additional linear inequality constraint asfollows:

min  xTQx —2g"x + f
st. |lx]1? = B, 1
ax = (or =)c,
where Q € S™™  (space of symmetric nxn matrices), g € R"™,f €R,a€R™ c€ER.
Moreover, we assume that the feasible region of (1) is nonempty and for the case of linear
inequality constraint, it has a strictly feasible point caled x,,.

Obviously, (1) is not a convex problem and classical quadratic optimization algorithms do not
necessarily find a global optimal solution; see Nocedal and Wright [5]. Semidefinite optimization
(SDO) relaxations are one of the widely used approaches to find approximate or global optimal
solutions of such problems; see Fortin and Wolkowicz [4], Polik and Terlaky [6], Salahi [7], Sturm
and Zhang [10], and Y e and Zhang [12]. Here we show that the SDO relaxations enables, us to find
agloba optimal solution of (1), under certain conditions, in polynomial time.

2. SDO Relaxation Approach
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SDO is an extension of linear optimization and in its standard primal form is given by:

min C ¢ X
S.t. Ai‘X:bi, i= 1,...,m,
X Z Opxn

where A€R™™, beR™, AeB=Trace(ABT) and XZ0,,, meansthat X is positive
semidefinite; see Alizadeh [1] and Ben-Ta and Nemorovski [2]. The dual of the primal SDO is
given by

max by

m
zyiAi > C,

i=1

whereAZB means A—B is positive semidefinite. The homogenized version of (1) is:
min xTQx — 2tgTx + ft?
xTx = pt?, (2)
a"tx > (or =)ct?,
t? =1.
It is easy to check that if (t,xT)T is a solution of (2), then % is a solution of (1). Now, we may
write (2) asfollows:

M3o)?=1, (3)

R 2 T
where X = [t tx T] and
tx xx
1

T
—gT -8 0 —Cc -a 1 0
M=[f g],M=[ 1*"],1\/1: 2 ,M=[ “"].
0 -9 Q ! Onx1 Iy z L 3 Onx1 Opxn

One can see that X is a positive semidefinite matrix. Then, let us relax it to a general positive
semidefinite matrix. The relaxed problem becomes:

min Mye X

M;eX =0,

M, e« X = (or =)0,

M;eX =1, (4)

E a Onxn

X = 0(n+1)><(n+1)a
T
where X = [XOO ’;?] Following the duality notion introduced in the introduction, the dual of (4) is
X0
given by
max ys
Z =My —yiMy —y,M; — y3Ms3, )

z= On+1yxn+1y Y220
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(or free for the quality case).

In the sequel, first we discuss conditions under which both (4) and (5) are solvable, and then
give the optimal solution for the original problem (1).

Theorem 2.1. Suppose x, be a feasible solution for (1) (strictly feasible for the case of linear
inequality) and v € null (a™) with xJv # 0 . Then problems (4) and (5) satisfy the Slater
regularity conditions. Therefore, they are both solvable and the duality gap is zero.

1 ut

Proof. Let X = [
u el +uu

T], where u = xo + av and ¢ is a positive constant such that

nel|v||? < (xo"v)?.  Obviously, from the Schur complement theorem, X = O0(n41)xn+1y and
M, X = (or =)0, M3+ X = 1. Moreover,tohave M; « X = 0 isequivalent to having

ne + a?||v||? + 2axliv = 0.

This definitely holds for appropriately chosen o. For the dual problem (5), by choosing
Y1 < Anin(Q) and y, asmall positive number (y, = 0 for the case of equaity), and y; a
sufficiently small negative number, Z will be positive definite, which implies the Slater regularity
of (5).

The following lemma is crucia for constructing a solution of the origina problem from the
solution of (4); see Strum and Zhang [10].

Lemma 2.1. Let X be a symmetric positive semi definite matrix of rank » and G be an arbitrary
symmetric matrix with Ge X > 0. Then, there exists a rank one decomposition of matrix X such
that

r

X = zxixl-T

i=1

and x[Gx; >0, Vi=1,..,r. Ifinpaticular GeX =0, then x/Gx; =0, Vi=1,..,r.

t?[|all?
4(B+tc)
relaxation (4) gives aglobal optima solution of (1) in polynomia time.

Theorem 2.2. Suppose that for somet, B+tc<0 and 1+ > 0. Then, the SDO

Proof. Suppose that X* (of rank r) and (v1,y5,¥3,Z") are optimal solutions for (4) and (5),
respectively. By Lemma 2.1, we have

X=yr_ x;(x)7, (6)
2 2
for which (x}‘)TMlx}‘ =0,Vj=1,..,r. Nowsinceforsome t, B+tc<0 and 1+ —;(;'fl'c) >

0, then by the Schur Complement theorem, M; + tM, = Ons1)x(n+1) - If for the linear inequality
case we have M, e X* =0, then from (M, +tM,) « X* =0, we further have (x)T(M; +
tMy)x; =0,Yi=1,..,r. Moreover, since (x)TM;x; =0,vi=1,..,r, then (x)TM,x; =0,
vi=1,..,r.
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Thus, for at least ak,1 < k < r, we have

*_tq
a=[%]
where t; # 0; otherwise from (x;)"M;x; =0, we have X = 0,51, Since (x;)"Mxj =
|| x;1|2. Thus xj = 0, which isacontradiction. Furthermore, by the com plementarity condition,
X* e Z* = 0. Thuswe have (x;)TZ*x; = 0. Thisfurther implies that

1 (f*)r
T°Qﬁh14%0=0 (7)
* tk
by
One can easily check that
1 T 1 T 1 T
my o (7| S ) = oy o [ |7 S ) = 0y o [ |7 Sy ) =1
o ty o tr . tr
1 (f*)T X
Therefore, [x_k] [1 t’: ] isanoptimal solution for (4) and since (4) is arelaxation of (3), then tj‘
ty k k

isoptimal for (1).

However, if for the problem having linear inequality constraint we have M, « X* > 0, then y; =
0. Now, since M; + tM, = Ons1)x(n+1) fOr some ¢, satisfies conditions discussed before, then
from

(x))T(My + tMy)x} = 0, vi=1,..,r,

we have t(x)"M,x; =0,vi=1,..,r. Therefore, tM, « X* > 0. Since M, « X* > 0, this
impliest= 0. Therefore, if t < 0, then we cannot have M, « X* > 0. Now, suppose that M,
X* > 0and t> 0 satisfying conditions discussed before. To have 8 + tc < 0, we need to have
¢ < 0. Therefore, forc < 0 and conditions on the statement of the theorem for some t, we have

My +tM; = O(ni1)x(n+1)-

Thus, (x))™M,x; =0,vi=1,..,7. Now, for at least one k we have

*
« _ [tk
%= e

where t; # 0 as before. The rest of the proof is given as before. Finally, since an SDO problem can
be solved in polynomial time using the interior point algorithms, then we can find a global optimal
solution of (1) polynomialy under conditions stated in the theorem; see Alizadeh [1] and Sturm
[10].
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Now, let us present a small example for problem (1) with linear inequality constraint with the
following randomly generated data:

1.9003 0.9932 1.2223 0.8917 0.9492 0.2028
0.9932 0.9129 0.8104 1.7569 0.7976 0.1987

Q=| 1.2223 1.8104 1.8436 1.6551 0.9894 |,g=-|0.6038 |, =1,
0.8917 1.7569 1.6551 0.8205 0.9035 0.2722
0.9492 0.7976 0.9894 0.9035 0.2778 0.1988

a=[0.0153,0.7468,0.4451,0.9318,0.4660]", c = 0.91, f=0.
The solution obtained by SeDuMi from solving (4) is

1.0000 -0.2760 0.2175 -0.3376 0.8252 0.2856
-0.2760 0.0762 -0.0600 0.0932 -0.2277 -0.0788
0.2175 -0.0600 0.0473 -0.0734 0.1795 0.0621
-0.3376 0.0932 -0.0734 0.1140 -0.2786 -0.0964 |
0.8252 -0.2277 0.1795 -0.2786 0.6810 0.2357
0.2856 -0.0788 0.0621 -0.0964 0.2357 0.0816

Furthermore, by applying Lemma 2.1 we have the following optimal solution of original problem:

x* =[-0.2760 0.2175 —0.3376 0.8252 0.2856].

3. Conclusions

We proved that a global optimal solution of an indefinite quadratic minimization problem with
one quadratic equality constraint and one linear equality or inequality constraint could be found in
polynomial time by an SDO relaxation under certain conditions.
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