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T-lymphocyte Cell Injection Cancer Immunotherapy:
an Optimal Control Approach
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We consider a mathematical model in the form of a system of ordinary differential equations
(ODE) for optimally administrating cancer treatments. The ODE system dynamics characterized
by locating equilibrium points and stability properties are determined by linearization and using
appropriate Lyapunov functions. By applying optimal control theory, we seek to minimize the cost
function associated with the vaccine therapy looking for minimization of the tumor cells. Global
existence of a solution is shown for this model and existence of an optimal control is proven. The
optimality conditions and characterization of the control are discussed.
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1. Introduction

Mathematical modeling of tumor growth and immunotherapy has been approached by a number
of researchers using a variety of models over the past decades [1, 2, 3, 10, 12, 15, 17].

Anew mathematical model of tumor-immune interactions sheds light on the differing roles of the
natural killer (NK) and CD8" T cells in suppressing various tumor cell lines in mice and humans

[7].

Antibacterial and antiviral vaccines are used for prophylaxis. They are effective in preventing
the occurrence of disease when the host encounters the targeted pathogenic microorganism. Cancer
vaccines open an exciting new world for cancer therapy. They are used with a therapeutic intent.
The goal is to stimulate the patient’s immune system to produce specific immune-effector cells and
antibodies targeting preexisting tumor cells to lead to their elimination. Despite decades of studies
and notable successes in murine models, no cancer vaccine has yet achieved approval for use in
human cancers. Advances in immunology such as the discovery of how the immune system
recognizes antigens and how immune responses are regulated have generated renewed interest in
this field. Malignant melanoma has been the tumor most often targeted by vaccines, partly because
of the ready availability of tumor cells and the ease of growth of cells in the laboratory [16]. A few
selected clinical trials will serve as examples [4, 13].

2. Background

2.1. Biological Aspects

*Corresponding Author.

'Department of Mathematical and Computer Sciences, Shahid Chamran University, P.O. Box 83151-61357, Ahvaz, Iran
E-mail: basirzad@scu.ac.ir.

’Department of Mathematical and Computer Sciences, Shahid Chamran University, P.O. Box 83151-61357, Ahvaz, Iran
E-mail: Sanaz.Nazari@gmail.com.


http://iors.ir/journal/article-1-189-en.html

[ Downloaded from iors.ir on 2026-01-30 ]

T-lymphocyte Cell Injection Cancer Immunotherapy 47

NK cells are large granular lymphocytes that do not express markers of either T- or B-cell
lineage. As a constituent of innate immunity, they recognize and destroy tumor cells, among others,
independent of prior exposure. NK cells are thought to play an important role in preventing the
development of clinical cancer by killing abnormal cells before they multiply and grow.

T cells, which carry the CD3" marker, are morphologically small lymphocytes in the peripheral
blood. They develop in the thymus and orchestrate the immune system response to infected or
malignant cells. CD3'CDS8" T cells (also called CD8" T cells) are a critical subpopulation of T-
lymphocytes which can be cytotoxic to tumor cells that a provided that a previous sensitization has
occurred [6].

2.2. The Model Overview

The mathematical structure of the model is built on an earlier modeling work of Pillis [7] in
which the tumor growth, an innate and specific immune response, is represented by a system of
differential equations. The cell populations in this model at time ¢ are denoted by:

* 7(¢), tumor cell population at time .
* N(¥), total level of NK cell effectiveness at time .
* L(), total level of tumor-specific CD8" T-cell effectiveness at time .

The system of differential equations (Eq. 1-3) describing the growth, death, and interactions of
these populations is given by

% = aT(1—bT) —cNT — D (1)
I @
Lo L+ 22 L — qLT +rNT 3)

=d M. @

These equations have the general initial conditions T(0) = Ty, N(0) = Ny and L(0) = L, where
each initial value is positive. In Eq. (1), the tumor cell population is assumed to grow logistically,
while tumor cells are killed by both the NK cells and CD8" T cells. Pillis introduced a new
functional form for the (CD8" T)-tumor kills term, represented by D in Eq. (2), given explicitly by
Eq. (4). In Eq. (2), the NK cells have a constant source rate o, while death is proportional to the
population of NK cells through the term —fN. The NK cells are also recruited by tumor cells
gr?
h+T?’
cells are inactivated through contact with tumor cells according to a mass-action dynamic. In the
case of the CD8" T cells, in addition to being recruited by interactions with T-cell processed tumor
cells through a Michaelis-Menten dynamic, additional CD8" T cells are stimulated by the
interaction of NK cells with tumor cells. This NK stimulation is represented by the »NT term in Eq.
(3). For all the experiments, model parameters are set to the values given in Table 1.

through a Michaelis—Menten term, serving to provide a saturation effect. Additionally, NK
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Table 1. Estimated patient-specific human variables [7]

Parameters Units Estimated value Description

a Day' 5.14 x10" Tumor growth rate

b cell” 1.02 x 107 1/b is tumor carrying capacity

c cell’ day’ 3.23 x 107 Fractional tumor cell kill by NK cells

B Saturation level of fractional tumor cell kill by

d day >80 CD8+ T cells

N None 136 E);};?ﬁent of fractional tumor cell kill by CD8+

s None 25% 10" Steepness cge;fﬁcient of the tumor-(CD8+ T
cell) competition term

o cells day™ 1.3 x 10" Constant source of NK cells

f day™ 4.12 x 10~ Death rate of NK cells

g day" 25 %102 Maximum NK cell recruitment rate by tumor
cells

h cell? 202 %107 Steep-ness coefficient of the NK cell
recruitment curve

D cell! day™ 1.00 x 107 NK cell inactivation rate by tumor cells

m day”' 2.00 x 10~ Death rate of CD8+ T cells

j day™ 3.75 x 107 Maximum CD8+ T-cell recruitment rate

k cell? 20 %107 Steep.ness coefficient of the CD8+ T-cell
recruitment curve

q cell”’ day” 3.42 x 10" CD8+ T-cell inactivation rate by tumor cells
Rate at which tumor-specific CD8+ T cells are

T cell” day™ 1.1 x 107 stimulated to be produced as a result of tumor
cells killed by NK cells

3. Dynamics

3.1. Determination of Equilibrium Points and their Stability

Theorem 1. Suppose that J is an nxn matrix of real constants. Furthermore, supposeT’)(ic’) is a
vector-valued function that is continuously differentiable in an open ball B,.(p), that?(ﬁ) =0, and
that P (%) has an order at least 2 at p. Then the nearly linear system:

ax

—=JE-P+P®

has the following properties:
(1) The system is asymptotically stable at p if all the eigenvalues of J have negative real parts.
(2) The system is unstable at p if there is at least one eigenvalue of ] with positive real part.

In order to study the equilibrium points of the system and its stability, we set the three equations
(1)-(3) simultaneously equal to zero in order to find the equilibrium.
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For the case Ty # 0, the values of equilibrium points for a non-zero tumor must be found
numerically [6].
In particular, setting (2) to zero and solving for N, yields

3 o(h+T?)
E™ fh4 (f — g)T? + phT + pT3~

Similarly, by requiring (1) to equal zero, we have

Dg = a— abT — cNg,
with D = DT.

Using the last expression in (4) gives an expression for L:

DgsT*
Lg; = (=)™

(d-Dp) )
Finally, setting equation (3) to zero gives
_ _ jDg°T?
Lg, = rNgT/(m P +4qT.) (6)

Equilibrium points of the system (1)-(3) are found by intersecting (5) and (6). The solutions are
graphed in Fig. 1.
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Figure 1. Non-zero equilibrium points of functions

Fig. 2 gives simulations of the phase portraits of these systems. There are two equilibrium points
predicted by the model as denoted by 4 and B. For illustrative purposes, Fig. 2 shows the state
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trajectories predicted by the model for different initial conditions in the simplest case in which the
model has only two state variables (n = 2).
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Figure 2. Simulations of the phase portraits of systems

Stability of the equilibrium is determined by linearization of the system about the calculated
values, and by determining the stability of the linearized system (Fig. 3(a) and Fig. 3(b). The
stability of tumor free points is important from a physiological viewpoint. If the system is in a
healthy state, but the point is unstable, a small perturbation from the a healthy state will cause the
system to move away from the point and evolve toward the stable equilibrium (T # 0).

The equilibrium point labeled 4 (Fig. 3(a)) is a stable node (nodal sink), characterized by a
relatively high tumor burden (9.80x10° cells) and a relatively low CD8" cells (4.48x10%cells) level,
corresponds to a relatively "uncontrolled" tumor growth or "tumor escape". The eigenvalues of the
Jacobian corresponding to the point 4 are:

e; = —0.5033, e, = —0.8646, e; = —0.3162.

Thus, the 7=9.80%10® equilibrium point is locally asymptotically stable.

Also, the equilibrium point labeled as B (Fig. (3b)) is an unstable saddle point, characterized by
a relatively low tumor burden (6.2x10 cells) and a relatively high CD8" cells (3.8x10°cells). The
eigenvalues of the Jacobian for the point B are:

e; = 0.5737, e, = —9.723, e3 = —0.0034.

Thus, the 7= 6.80x10’ equilibrium point is unstable, because e; > 0.
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Figure 3. Linearization of the system about the equilibrium points 4 and B

For the case T=0 (healthy state), assume that no tumor is present [7(0) = 0]. Thus

dT dN dL

EZO, E:O—_fN' E=—mL.

Hence, N(t) — UTU and N(t) » 0, as t - . This shows that, without a tumor, the system
converges to a stable state [14].
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Since the system (1)-(3) is highly nonlinear, the stability of the system may also be found
through examining an appropriate Lyapunov function [11]:

V(x) = %LZ + %NZ +1In(T + 1). (7)
3.2. Lyapunov Stability

If, in a ball B, there exists a scalar function V' of the state x, with continuous first order
derivatives, such that

* V(x) is positive definite,
* V(x) is negative definite,
e V(x) > as x - o,

then the equilibrium at the origin is locally stable [11].

Define a Lyapunov function as (7), which is clearly positive definite. Along the trajectories of
the system, we have

) , ) T
V(x) = LL + NN + ——.
(x) 14T

S0,

‘N2
V(x) =1L —mL+k+D2L—qLT+rNT]+N[a—fN+
[aT(1 = bT) — cNT — D ]
+ :
14T

gT?

h+ T2

N — pNT

By plotting the surface and contour graphs of Z(T,L,V(x)) (Fig. 4), we can see that one
equilibrium point is Lyapunov unstable (V(x) > 0) and two equilibrium points are Lyapunov
stable (V(x) < 0). Therefore, Lyapunov stability of the system is in agreement with those
illustrated in Section 3.1.
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Figure 4. (a) surface and (b) contour graphs of proposed Lyapunov functions
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Overall, the parameter set we are working with lies in a region where we have two stable states:
one with a large tumor burden, and one with a zero tumor burden. Our goal is to drive the system
toward the zero tumor burden point.

We test two separate cases, with and without the vaccine therapy (Fig. 5 (a) and 5 (b)), both of
which place us initially in the basin of attraction of the large tumor burden equilibrium point. From
Fig. 4, we see that when the system progresses naturally without any vaccine intervention, the
tumor burden overwhelms the system, and so the patient will not survive. The second approach
employs immunotherapy in the form of an injection of 1.2x10 highly activated CD8'T cells from
day 7 (Fig. 5 (b). This CD8" T cells injection is meant to represent the Tumor Infiltrating
Lymphocyte (TIL) treatments used for certain patients [9]. For an initial tumor challenge of 1x10’
cells, the tumor survives despite the vaccine intervention.

- : : - ; -
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Figure 5. (a) behavior of the system of equations in absence of vaccine (b) behavior of the system
of equations in presence of vaccine

4. Quadratic Control

The optimal treatment approach employs immunotherapy in the form of an injection of highly
activated CD8'T cells. For the model described by (1)-(3), we now use the control u(?) to decrease
the tumor burden while minimizing total vaccine injection. We add the control term to the system of
differential equations.

The system with the vaccine injection is then given by

ar _

“-=aT(1—bT) —cNT — D (8)
an _ o _ 9T N _

=0~ fN+-LZoN—pNT (9)
. _ jp*

e mL +k+D2L qLT +rNT + u(t) (10)
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@/m*
s+(L/TYF T (11)

We first analyze the theoretically more tractable quadratic control in order to present a clear
picture of the process.

We minimize the objective functional

Jw) = [ (—L +T—N+ (%) Wuz) dt, (12)

which is a quadratic form with respect to the control u, subject to (8)-(11). First, we prove that there
exists an optimal control that minimizes the objective functional (12).

4.1. Necessary Conditions for Optimality

Theorem 2 (Existence). Given the objective functional J(u) = fotf (-L+T—-N+ (%) wu?)dt,

where U = {u(t) piecewise continuous|0 <u(t) <1 vte]o, tf]} subject to system (8)-(11)
with T(0) =T, N(0) =N, L(0)=L, there exists an optimal control u* such that
minypefo,11/ (W) = J ("), if the following conditions are met:

1. The class of all initial conditions with a control u(t) in the admissible control set along with
each state equation being satisfied is not empty.

2. The admissible control set U is closed and convex.

3. Each right hand side of the state system is continuous, bounded above by a sum of the
bounded control and the state, and can be written as a linear function of u with coefficients
depending on time and state.

4. The integrand of J(u) is convex on U and bounded below by —c, + c3|u(t)|?, with ¢c; > 0.

Proof. The first step is to prove that given an admissible control, the state equations have
bounded solutions. In proving this, a standard existence theory of first-order nonlinear differential
equation, wherein they bound the upper value of the state is given by a function of initial state and
final time. It should be noted here that optimal control solutions have already been found for all
these problems in different papers [5, 8]. So, it is worthwhile to refer to those solutions.

For proving the existence of an optimal control for the state system, the set of conditions 1
through 4 have to be satisfied. Since the boundedness of the solution (for admissible control) has
already been established and the set of controls u(t) € U is closed and convex (by definition), two
of these conditions are automatically satisfied.

For the third condition, the system is bilinear in the control and can be rewritten as

0
f(t.Xw) =a(t,X) + (0),
u

T
where X = (N) and @ is a vector valued function of X. Using that the solutions are bounded, we

L
see that
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a 0 0\ /T 0
0 0 j/\L rag +u

Where c¢; depends on the coefficients of the system.

If (¢, X,u)| < + < o, (|X| +w),

For the fourth condition, we need to show

J&,T,N,L,(1 —e)u; +euy) <(1—e)J(t,T,N,Lu)+ej(t,T,N,L u,).
We analyze the difference of J(t,T,N, L, (1 — e)u, + euy) and (1 —e)J(¢t,T,N, L, u;)
+ej(t,T,N, L,u,) to see that
J@&T,N,L,(1 —e)u, +puy) —[(1—e)J(T,N,Luy)+ej(t, T,N,Luy)] = %(e2 -

e)(uy —up)? .

Since, e € (0,1) implies (e? — e) < 0 and (u; — uy)? >0,
the expression %(e2 —e)(u; — uy)? < 0 this implies that

Jt,T,N,L,(1 —e)u; +puy) < (1 —e)J(t,T,N,L,uy) +¢eJ(t,T,N,L,u,).

Lastly,

—L@) +T(@) —N() + (%) (u(t))2 > —L(t) — N(t) + (%) (u(t))2 > —c, + c3lu(®)|?

With the existence of the quadratic optimal control established, we now characterize the optimal
. . . . d; ;
control using the Pontryagin’s Maximum Principle. In the next theorem, we use d—tl = 1,(t).

Theorem 3. (Characterization). Given an optimal control u* and solutions to the corresponding
state system that minimizes the functional J(u) = fotf (—L +T—N+ (%) Wuz) dt subject to
condition (8)-(11), there exist adjoint variables A; fori=1, 2, 3, satisfying

— P =X = =1+ A(—a+2abT +oN + ay) + Ay (- s+ pN) + 25 (- 222+

T (h+T2)2 (k+D?)?2
ql — rN)
=y = 1 M (eT) + 2y (f =2+ pT) + 25(=1T)
% =X =1+ A (ay) +A3(m — (ﬁ‘;kf)z - k]szz +qT)
o )
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U (e
el ) @A) ey
(s+ ) ()
RO B @)

Ay
(5 +(7) )
A where Ai(tf) =0, fori=1,2,3. Moreover, u*(t) can be represented by

u*(t) = min (1, (— %3)+),

where,

0, r<o.
Proof. For this functional, the Hamiltonian is given by

gT%N
h+T?2

H=—L+T—N+(3)wu?+2,(aT(1 - bT) = cNT = D) + 2, (o — fN +

2
A5 (=mlL + 2 — qLT + 7NT +u). (10)

— pNT) +
jD?L
k+D2

Since the control is bounded, we form the Lagrangian as follows:
L=H4+w,®)u(t) —w, (t)(l — u(t)).

Here, H is the Hamiltonian as defined in (10) and w;(t) = 0 are penalty multipliers such that
w; (Hu(t) = 0 and w, (t)(l — u(t)) = 0 at the optimal control u*.

. L .. AL L _ 0H
To characterize u*, we analyze the necessary optimality condition = 0. Here, Pl
—w;+wy, =wu+; —w; +w, =0.

Using standard optimality arguments, we characterize the optimal control for u(t) as

u*(t) = min <1, (— %)Jr)

We also note that the second derivative of the Lagrangian with respect to u is positive, and so a
minimum occurs at u*.


http://iors.ir/journal/article-1-189-en.html

[ Downloaded from iors.ir on 2026-01-30 ]

58 Basirzadeh and Nazari

5. Numerical Simulations for Quadratic Control

The problem of numerical integration of the tumor system with vaccine can now be considered
as a two boundary value problem for which the initial states of the control variables are known and
the final states of the co-state variables are known. Here, we present the numerical solution of the
controlled nonlinear tumor system with vaccine to explore the possibility of the optimal control of
this system. a numerical solution of the controlled tumor system is displayed in Figures 6(a)-(d).
One can see that the largest dose of vaccine is administered at the beginning of the time period, and
then is lowered to a small but non-zero and very slowly decreasing level for the remainder of the
treatment period. The tumor is driven to near-zero, while the population of immune cells is rising.

18 : - : . 3‘103

I

Time Time

u(t)

CD+8 Teell

Figure 6. Quadratic control situations: 7 (0) = 1x107 cell, N (0) = 3x10° and L (0) = 100
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Therefore, this is where the optimal control proves to be of some use. The protocol suggested by
the optimal control algorithm dictates that the vaccine be administered continuously over relatively
long periods of time-on the order of days. Fig. 6 shows the evolution of the system with the optimal
control treatment administered. Optimal control therapy is superior to traditional pulsed therapy in
the sense that the tumor burden is driven to low levels, and the NK cell population stays at higher
levels for longer periods of time. For the weaker immune system, traditional therapy fails to bring
the system into the desirable basin of attraction at all (see Fig. 5 (b)), whereas the optimal control
protocol does successfully pushs the system into the zero tumor burden basin of attraction.
Therefore, the medicine eventually can be shut off, and the tumor continues to diminish to zero
without further intervention.

6. Conclusion

We characterized the ODE system dynamics by locating equilibrium points and determining
stability properties. By applying optimal control theory, we seeked to minimize the cost function
associated with the vaccine therapy looking for at minimization of the tumor cells. Global existence
of a solution was shown for the model and existence of an optimal control was proven. An analysis
and a numerical integration example for the controlled system were carried out. The protocol
suggested by the optimal control algorithm dictates that the vaccine be administered continuously
over relatively long periods of time, on the order of days.
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