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Quality function deployment is a well-known customer-oriented design procedure for translating 

the voice of customers into a final production. This is a way that higher customer satisfaction is 

achieved while the other goals of company may also be met. This method, at the first stage, 

attempts to determine the best fulfillment levels of design requirements which are emanated by 

customer needs. In real-world applications, product design processes are performed in an 

uncertain and imprecise environment, more than one objective should be considered to identify 

the target levels of design requirements, and the values of design requirements are often discrete. 

Regarding these issues, a fuzzy mixed-integer linear goal programming model with a flexible 

goal hierarchy is proposed to achieve the optimized compromise solution from a given number 

of design requirement alternatives .To determine relative importance of customer needs, as an 

important input data, we apply the well-known fuzzy AHP method. Inspired by a numerical 

problem, the efficiency of our proposed approach is demonstrated by several experiments. 

Notably, the approach can easily and efficiently be matched with QFD problems. 
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1. Introduction 
 

Global competitiveness has become a big concern for both manufacturing and service companies 

demanding a high quality in their products/services (Karsak et al. [19]). They require some techniques 

such as Quality Function Deployment (QFD) to improve the quality of their products/services and 

satisfy their customers’ needs at a high level (Cherif et al. [12]). QFD, as a widely used customer-

driven method in product development and quality engineering, is a systematic process for translating 

the voice of customers into a final product in various stages (Chen and Weng [10]). Now, companies 

are successfully using QFD as a powerful tool for making strategic and operational decisions. QFD 

starts from marketing research and identification of customers. Then, arriving at the analysis process, 

it attempts to recognize the customer needs (CN) and involve them in the design and production 

stages. The concept of QFD was introduced in Japan by Akao [1] and described in detail by Revelle 

et al. [30]. The Kobe shipyards of Mitsubishi heavy industries was the first company which 

implemented QFD in 1972 (Kim et al. [21]).  

 

Akao [1] defines QFD as “a method for developing a design quality aimed at satisfying the 

customer and then translating the customers’ demands into design targets and major quality assurance 

points to be used throughout the production phase”. The primary functions of QFD include product 

development, quality management and customer needs analysis. Recently, these functions have been 
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extended to some areas such as design, planning, decision making, engineering, management, team 

work, timing and costing. Moreover, QFD has increasingly been applied to transportation and 

communication, electronics and electrical utilities, software systems, manufacturing, services, 

education and research, and many other industries including aerospace, construction, packaging and 

textile (Chan and Wu [5]). The main objectives of QFD are to reduce the length of product 

development cycle to improve the quality and to minimize the total production process costs (Kim et 

al. [21]). As Tseng and Torng [34] report, QFD, if it is appropriately applied, can decrease the 

development time by one-half down to one-third. For example, Toyota and its suppliers, by using 

QFD, were able to reduce the start up production costs by 60% and the development time by one-

third. 

 

QFD employs four sets of matrix diagrams that resemble connected houses; the first one that is 

related to the product design stage is the house of quality (HOQ) for transforming the CNs into the 

design requirements (DRs), a description of product in the language of engineers, which is our 

concern here. The HOQ has six sections: a CNs section, a competitive assessment section, a DRs 

section, a relationship matrix, a trade-off matrix, and a target values section (Park and Kim [29]). The 

objective of HOQ is to determine target levels of a product’s DRs for maximizing the customer’s 

satisfaction. The major problem with HOQ is that the CNs which tend to be subjective, qualitative, 

and nontechnical, have to be translated into DRs that should be expressed in the quantitative and 

technical terms. But, QFD team members usually have established the relationships between CNs and 

DRs and among the DRs themselves subjectively based on the past experience. Therefore, the process 

of quantifying such naturally subjective planning issues in HOQ using various types of mathematical 

programming and corresponding solution techniques has received ever-increasing attention during 

the past decade. In this regard, a summary of the relevant and supportive body of literature will be 

reviewed in Section 2. 

 

In spite of the favorable quantitative research work till now, QFD still experiences several limits 

in applications especially in forming a desired HOQ and thus, it can be improved. This is important 

since a poor HOQ commonly leads to either failure of the product in market or extended product 

development time and cost. Bouchereau and Rowlands [4] report some problems concerning the QFD 

technique such as ambiguity in the voice of customer, need to input and analyze large amounts of 

subjective data, impreciseness in the process of setting target values in HOQ. It necessitates that some 

kind of fuzziness is taken when resolving such problems in the data preparation, formulation and 

analysis of QFD. 

 

Furthermore, in the product design process, there are some limitations on the required resources 

such as time, cost, etc. Because of the multi-dimensional competition, manufacturers should focus 

not only on the product quality but also on the trade-off between the quality and the other resource 

constraints. As a result, they need optimization models and techniques to establish a set of DRs for a 

product maximizing the customer’s satisfaction under given resource constraints (Ting [33] and Lai 

et al. [22]). Meanwhile, some authors (e.g., Karsak [18]) have recently notified that similar to most 

real-world applications, the need for establishing a reasonable trade-off between the multiple 

conflicting objectives in the process of quantifying the HOQ matrix engages us in a multi-objective 

environment. However, in practice, when realistic multi-objective decision problems are considered, 

providing crisp definitions of goal priorities/importances is not an easy task. In fact, from decision 

maker (DM)’s point of view, an inherent uncertainty or vague perception may be latent in priorities 

of the goals. Moreover, the decision space and correlation between the objectives may also affect the 

definition of importance relations among the goals. 
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Briefly, in our work here, a new QFD optimization approach based on fuzzy goal programming 

concept is suggested. We propose a fuzzy mixed-integer linear goal program to optimize the 

compromise solution of a given number of DR alternatives. By using the fuzzy analytic hierarchy 

process (AHP) method, we provide the relative importance of CNs, as a critical input of our model. 

Moreover, a flexible pre-emptive goal hierarchy is applied to take simultaneously the fuzzy goals and 

constraints as well as the uncertain hierarchical levels of the fuzzy goals into account. Applying fuzzy 

set theory into the goal program has the advantage that the DM can express vague aspirations as well 

as priorities by some types of natural language terms. The remainder of our work is organized as 

follows. In Section 2, we give a short literature review on QFD optimization studies. In Section 3, the 

proposed FMILGP model and its equivalent crisp version are provided. Section 4 is devoted to 

computational and analytical results. Finally, concluding remarks are given in Section 5. 

 

2. Literature Review 
 

Linear programming (LP) is a well-known method which has recently been applied to finding the 

best set of DRs. Askin and Dawson [3] present an LP model for determining the optimal set of DRs 

based on customer’s preferences. Fung et al. [15] formulate a linear QFD planning model to maximize 

the overall customer’s satisfaction in which attainment of DRs is optimized by allocating resources 

among them. Lai et al. [23] propose a QFD model using a linear physical programming technique to 

optimize the overall customers’ satisfaction in product design. Moskowits and Kim [26] develop a 

decision support system based on an LP formulation to help finding the best set of DRs. 

 

In the above-reviewed studies, it is assumed that the values of DRs can be any point in a continuous 

range while they are often considered discrete in real-world applications. For example, in reality, there 

are no light bulbs with the powers of 57 or 133 watts; but, 25, 60 or 100 watts. In such cases, dynamic 

programming or mixed integer linear programming (MILP) models are suggested (Lai et al. [22]). 

Wasserman [36] develops a 0-1 integer programming model to optimize the product design problem 

under certain resource constraints. Park and Kim [29] introduce a quadratic integer programming model 

in which the correlations between DRs are also incorporated through some cost constraints. Delice and 

Güngör [13] propose a QFD approach combined with an MILP formulation and the Kano model in 

order to obtain the optimized solution from a certain set of DRs. Lai et al. [22] develop a dynamic 

programming approach for the QFD optimization problem. They first suggest an extended HOQ to 

gather more information. Next, limited resources are allocated to DRs using dynamic programming, 

and the target level of each DR is optimized. 

 

The QFD designers believe that the product design process is actually performed in an uncertain 

environment. First, customer's preferences are inherently imprecise and more-or-less vague. Second, 

the relationships between CNs and DRs and also among DRs themselves are qualitatively identified 

and stated by linguistic terms which should be translated into corresponding numerical scales. This 

is intensified when developing an entirely new product for which engineers do not have perfect 

knowledge concerning the impact of engineering characteristics on CNs. In this regard, the use of 

AHP is favorable because AHP uses a hierarchical structure and enables DM to define high levels 

strategic objectives and specific metrics for a better assessment of strategic alignment (Kendrick and 

Saaty [20]). Narasimhan [28] enumerates two advantages of AHP including, (1) facilitating an 

accurate judgment through systematically formalizing and rendering a subjective decision process 

and (2) providing information about the implicit weights of evaluation criteria. Another advantage of 

AHP is that it results in a better communication, leading to a clearer understanding and consensus 

among members of decision-making groups. 
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One useful tool for dealing with imprecision as well as vagueness involved in an AHP method is 

fuzzy set theory. Fuzzy AHP technique was used by researchers to synthesize the opinions of the DM 

to identify the weight of each criterion. Fuzzy AHP approach has shown to be a convenient method 

in tackling practical multi-attribute problems due to its capability to capture the vagueness of human 

thinking and to aid in solving the research problem through a structured manner and by a simple 

process (Tseng and Lin [35]). 

 

Fung et al. [14] suggest a fuzzy rule-base inference model to facilitate the decisions on the target 

values of DRs. Based on a fuzzy technical importance rating of DRs, Chen and Weng [9] formulate 

a fuzzy LP model to find the fulfillment levels of DRs and create a high level of customer’s 

satisfaction. Kahraman et al. [17] propose an integrated framework based on fuzzy QFD and MILP 

formulation to determine the DRs to be considered in designing a product. The coefficients of the 

objective function are obtained from a fuzzy analytic network process approach. Also, fuzzy AHP is 

used to determine three matrices representing the impact of the CNs on each DR, the inter-dependency 

of the CNs and the inter-dependency of the DRs, respectively. Chen and Ko [8] employ the same 

constraints as those in Chen and Weng’s model [9] and present a fuzzy nonlinear model to determine 

the performance level of DRs to maximize customer’s satisfaction. Unlike the existing research, they 

apply the Kano model to classify DRs into three categories based on their importance to customer’s 

satisfaction. Fung et al. [16] develop a fuzzy nonlinear programming formulation of QFD planning 

under imprecise costs and some technical constraints in which the design budgets are also involved. 

Chen et al. [11] propose a fuzzy regression-based LP model to determine the optimal set of DRs in 

which the relationship between CNs and DRs and the correlation among the competitors are simulated 

in a fuzzy frame. Tang et al. [32] develop fuzzy optimization models including the financial 

considerations along with a genetic-based interactive solution approach to determine target values of 

DRs in QFD. Luo et al. [25] propose a methodology involving a market survey, fuzzy clustering, 

QFD and fuzzy optimization to achieve the optimal target settings of DRs of a new product in a multi-

segment market. 

 

In the existing research work, a mixture of DRs was determined considering only a single 

objective; i.e., maximizing the overall customer’s satisfaction. However, in general, the satisfaction 

of CNs is not the only goal in product design, but the other criteria such as cost, development time, 

technical difficulty, and extendibility also need to be involved. In this regard, we need to use a variant 

of multi-objective programming or multi-attribute decision-making approaches. Kim et al. [21] 

present a fuzzy multi-attribute LP model for QFD planning in which the DRs of the product are 

considered as the attributes. In this manner, they formulate a multi-objective optimization model in 

order to find the target values of DRs (attributes) to maximize the overall customer satisfaction. 

Among various existing multi-objective optimization approaches, goal programming (GP), 

originated by Charnes et al. [7], is one of the most powerful and well-applied tools used for 

modeling, solving and analyzing real-world problems that address multiple conflicting objectives for 

which the appropriate target values are assigned by a DM. In classical GP models, unwanted 

deviations from target values defined by the decision maker are minimized in order to reach an 

acceptable solution. 

 

Karsak et al. [19], by incorporating three goals including cost, extensibility level and 

manufacturability level, present a 0-1 weighted GP model combined with analytic network process 

to determine the DRs for the product design. The results show that cost budget goal has the highest 

weight while extensibility and manufacturability goals are in lower ranks, respectively. Sener and 

Karsak [31], by considering cost budget, extendibility and technical difficulty in addition to 

customer’s satisfaction, use a fuzzy regression to estimate the relationships between CNs and DRs, 

and among DRs themselves. They assign the importance degrees of “very high”, “high”, and 
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“medium” to the overall customer satisfaction, extendibility, and technical difficulty goals, 

respectively. Karsak [18] proposes a fuzzy multi-objective programming model to determine the level 

of fulfillment of DRs that incorporates the inherent imprecise and subjective information in the QFD 

planning process. In the model, fulfillment of DRs and extendibility are the objectives to be 

maximized, whereas technical difficulty is to be minimized. Chen and Weng [10] formulate a fuzzy 

goal programming model to determine a mix of DRs to produce the maximal sum of satisfaction 

degrees of all the goals (i.e., customer’s satisfaction, cost expenditure and technical difficulty). There, 

customer’s satisfaction and cost expenditure goals are given a higher priority level than technical 

difficulty goal. 

 

We believe that, a practical and suitable form of GP in the area of QFD planning is pre-emptive 

GP, because firms usually have a pre-emptive priority for achieving goals that are not addible even 

though in the form of a weighted additive function. In fact, a DM may find determining priority levels 

more straightforward than determining precise weights for the goals. Consequently, a deviation from 

a higher priority level goal is considered to be infinitely more important than a deviation from a lower 

priority goal. However, determining precisely target values as well as priorities of the goals, as done 

in a traditional pre-emptive GP, is also a difficult task along with some errors and shortcomings. In 

the case of a pre-emptive GP, each goal is set to a certain predefined priority level. A series of 

mathematical programming problems are solved sequentially, first considering highest priority goals 

only, and then continuing with lower priority ones, under the constraints imposed by the alternative 

optimal solutions of the problems including higher priority goals. In fact, a traditional pre-emptive 

GP model may be unrealistic, because it assumes infinite trade-offs between different levels of goal 

hierarchy. Moreover, the corresponding sequential techniques may cut-off some interesting parts of 

the solution space. In order to specify the imprecise target levels in an uncertain environment, fuzzy 

goal programming (FGP) approach was introduced by Narasimhan [27]. Recently, Akoz and Petrovic 

[2] have proposed a novel flexible goal hierarchy to implement pre-emptive GP in a fuzzy framework. 

At first, they formulate the imprecise importance relations between the goals via fuzzy binary 

relations in order to substitute the existing hard goal hierarchy with a flexible one. Thereafter, a new 

achievement function is defined as a convex combination of the sum of achievement degrees of the 

fuzzy goals and satisfaction degrees of the imprecise importance relations between them. In the 

achievement function, a parameter which is specified by DM adjusts the trade-off between relative 

priority relations and achievement degrees of fuzzy goals.  

 

Accordingly, here, we propose a new fuzzy mixed-integer linear goal programming (FMILGP) 

model to optimize a compromise solution of a limited number of DR alternatives. Different from the 

other studies in the literature, (a) we practically consider different pre-emptive priorities for the three 

conflicting fuzzy goals using a pre-emptive GP, (b) in the proposed FMILGP model, sum of 

achievement degrees of fuzzy goals and sum of satisfaction degrees of relationships between them 

are simultaneously considered through maximization of an appropriate convex combination objective 

function, (c) fuzzy set theory is employed to resolve vagueness and linguistic characteristics of (1) 

relative importance of CNs by fuzzy AHP and (2) relationships between CNs and DRs as well as 

among DRs themselves. Notably, we, as done in other existing researches, apply fuzzy theory to 

address natural vagueness in providing goals’ target levels as well as inherent ambiguities existing in 

some critical parameters, say cost budget and development time of DR alternatives. 

 

3. Problem Formulation 
 

In this section, the proposed FMILGP model for QFD optimization problem is formulated. In 

order to validate our model, we implement it to optimize a washing machine development problem 

taken from Delice and Güngör [13]. Firstly, HOQ is constructed to represent the information gathered 
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about the development problem (see Figure 1). Secondly, the proposed FMILGP model is used to 

find a combination of optimal values of DRs of the washing machine for maximizing the overall 

customer’s satisfaction. In the considered problem, the five CNs are “Thorough washing”, “Quiet 

washing”, “Thorough rinsing”, “No damage to clothes” and “Short washing time” while the five DRs 

are “washing quality (%)”, “noise level (db)”, “washing time (minutes)”, “rinsing quality (%)” and 

“clothes damage rate (%)”. 

 

3.1. Preparing HOQ 

 

We first determine the relationships among DRs. As mentioned before, determining precisely the 

relationships among DRs is usually a difficult task. We use linguistic terms, as defined in Table 1, for 

this purpose. For each DR, three alternative values are self-made according to the specifications of 

the washing machine problem. Noteworthed, these alternative values are introduced arbitrarily and a 

given DM can use his/her own alternative settings. These alternatives together with their cost budgets 

and development times in the form of triangular fuzzy numbers (TFNs) are presented in Figure 1. 

TFNs have extensively been used in the related literature due to their various advantages including 

intuitiveness, simplicity in data acquisition, and computational efficiency (see Figure 2). It is worse 

to note that most possible values of TFNs for cost budgets are defined based upon the values 

implemented in Delice and Güngör [13], but those for the development times are set by authors 

according to the type and values of DR alternatives, since the development time was not considered 

in [13]. Thereafter, most pessimistic and most optimistic values of TFNs are, as usual, predicted by 

the following equations: 

 

𝐶𝑗𝑟
𝑝
= 𝐶𝑗𝑟

𝑚 − 0.1 ∗ 𝐶𝑗𝑟
𝑚 ∗ (1 + 𝑅𝑎𝑛𝑑(0,1))                                          (1) 

𝐶𝑗𝑟
𝑜 = 𝐶𝑗𝑟

𝑚 + 0.1 ∗ 𝐶𝑗𝑟
𝑚 ∗ (1 + 𝑅𝑎𝑛𝑑(0,1))                                          (2) 

𝑡𝑗𝑟
𝑝
= 𝑡𝑗𝑟

𝑚 − 0.1 ∗ 𝑡𝑗𝑟
𝑚 ∗ (1 + 𝑅𝑎𝑛𝑑(0,1))                                           (3) 

𝑡𝑗𝑟
𝑜 = 𝑡𝑗𝑟

𝑚 + 0.1 ∗ 𝑡𝑗𝑟
𝑚 ∗ (1 + 𝑅𝑎𝑛𝑑(0,1))                                           (4) 

 

where 𝐶̃𝑗𝑟 = (𝐶𝑗𝑟
𝑝
, 𝐶𝑗𝑟

𝑚, 𝐶𝑗𝑟
𝑜 ) and 𝑡̃𝑗𝑟 = (𝑡𝑗𝑟

𝑝
, 𝑡𝑗𝑟
𝑚, 𝑡𝑗𝑟

𝑜 ) are the TFNs for cost budget and development 

time of rth alternative of DRj, respectively. The TFNs are then converted to their equivalent crisp 

values by using the expected value operator proposed by Liu and Liu [24]. 

 

To estimate the relative importance (i.e., weight) of CNs in HOQ, we use the well-known fuzzy 

AHP approach. Since human knowledge on relative importance of CNs is, in essence, imprecise and 

vague, we apply a fuzzy AHP method to incorporate such uncertainty into AHP formulation. Chang 

[6] introduces a new approach based on the extent analysis method to handle the pair-wise comparison 

scale of fuzzy AHP. The first step in this method is to use TFNs for pair-wise comparison by means 

of the proposed scale. Next, the extent analysis method is employed to obtain priority weights via 

synthetic extent values. Fuzzy evaluation matrix of all the criteria is constructed through a pair-wise 

comparison of different attributes relevant to the overall objective using linguistic variables and 

TFNs. In order to run the fuzzy AHP method, we ask four experts to state relative importance of each 

CN via linguistic terms presented in Table 2 by appropriate TFNs. 
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Figure 1. HOQ for washing machine development problem 

 

Table 1. Linguistic terms for relationships between CNs and DRs and among DRs 

Linguistic terms TFN 

None (0,0,0) 

Very weak (0,0.1,0.2) 

Weak (0.1,0.3,0.5) 

Moderate (0.4,0.5,0.6) 

Strong (0.5,0.7,0.9) 

Very strong (0.8,0.9,1) 

 

Table 2. Linguistic terms for fuzzy AHP 

Linguistic terms TFN 

Equally significant (1,1,1) 

A little significant (1,2,3) 

A little significant to significant (2,3,4) 

Significant (3,4,5) 

Very significant (4,5,6) 

Very significant to completely significant (5,6,7) 

Completely significant (7,7,7) 

 

Let X= {x1, x2, ..,xn} and G ={g1, g2, …,, gm} be an object set and a goal set, respectively. The 

extent analysis values for each goal gi (i.e., 𝑀̃𝑔𝑖
1 , 𝑀̃𝑔𝑖

2 , … , 𝑀̃𝑔𝑖
𝑚 , 𝑖 = 1,2,… , 𝑛) are computed where all 

the 𝑀̃𝑔𝑖
𝑗

, 𝑗 = 1,2, … ,𝑚 are TFNs. Then, the following steps are sequentially performed: 
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Step 1.The value of fuzzy synthetic extent with respect to the ith object is defined: 
 

𝑆𝑖 = ∑ 𝑀̃𝑔𝑖
𝑗
⊗ [∑ ∑ 𝑀̃𝑔𝑖

𝑗
]𝑚

𝑗=1
𝑛
𝑖=1

−1
.𝑚

𝑗=1                                             (5) 

 

Step 2. The degree of possibility of 𝑀̃2 ≡ (M2
p
, M2

m,𝑀2
𝑜)≥𝑀̃1 ≡ (M1

p
, M1

m,𝑀1
𝑜) is defined: 

 

𝑉(𝑀̃2 ≥ 𝑀̃1) = height(𝑀̃1 ∩ 𝑀̃2) =

{
 

 
1,                                    𝑀2

𝑚 ≥ 𝑀1
𝑚

0,                                       𝑀1
𝑝
≥ 𝑀2

𝑜

𝑀1
𝑝
−𝑀2

𝑜

(𝑀2
𝑚−𝑀2

𝑜)−(𝑀1
𝑚−𝑀1

𝑝
)
,                    O.W.

             (6) 

 

Step 3. The degree of possibility for a convex fuzzy number being greater than k convex fuzzy 

numbers 𝑀̃𝑖, 𝑖 = 1,2,… , 𝑘, is defined: 

 

𝑉(𝑀̃ ≥ 𝑀̃1, 𝑀̃2, … , 𝑀̃𝑘) = Min𝑉(𝑀̃ ≥ 𝑀̃𝑖),    𝑖 = 1,2, … , 𝑘                         (7) 

 

Assuming that 𝐴𝑖, 𝑖 = 1, 2, … , 𝑛, are 𝑛 elements and 𝑑′(𝐴𝑖) = 𝑀𝑖𝑛 𝑉(𝑀̃𝑖  ≥  𝑀̃𝑘), 𝑘 = 1,2,… , 𝑛, 

the weight vector is given by 𝑊′ = (𝑑′(𝐴1), 𝑑
′(𝐴2),… , 𝑑

′(𝐴𝑛))
𝑇

. 

 

Step 4. The normalized weight vector is as 𝑊 = (𝑑(𝐴1), 𝑑(𝐴2), … , 𝑑(𝐴𝑛))
𝑇

 where 𝑊 is a vector 

of crisp numbers. 

 

According to the above method, the weight of CNs are calculated and reported as in Figure 1. It 

is confirmed that the most and least important CNs are “No damage to clothes” and “Quiet washing”, 

respectively. 

 

Another important input required to form the HOQ matrix is the normalized relationships between 

CNs and DRs (see Figure 1). Since the mentioned relationships are usually vague, in practice, we 

again employ the linguistic terms presented in Table 1 to estimate the fuzzy relationships among CNs 

and DRs. Afterwards, linguistic terms are translated into corresponding TFNs and the well-known 

method of Wasserman [36], which accounts also for the correlations among DRs, is applied to 

calculate fuzzy normalized relationships between CNs and DRs. Accordingly, the normalized 

relationships are calculated based upon the following equation: 

 

𝑅𝑖𝑗
𝑛𝑜𝑟𝑚 =  

∑ EV(𝑅̃𝑖𝑘
𝑁
𝑘=1 .𝛾̃𝑘𝑗)

∑ ∑ EV(𝑅̃𝑖𝑘.𝛾̃𝑘𝑗)
𝑁
𝑘=1

𝑁
𝑗=1

,     𝑖 = 1, . . . , 𝑀,    𝑗 = 1,… ,𝑁,                            (8) 

 

where 𝑅𝑖𝑗
𝑛𝑜𝑟𝑚 denotes the normalized relationship between ith CN and jth DR, 𝑅̃𝑖𝑘 is the TFN for 

relationship between ith CN and kth DR, 𝛾̃𝑘𝑗 is the TFN for relationship among kth and jth DR, M is 

the number of CNs, and N is the number of DRs. In (8), we use the well-known linear approximation 

of the multiplication of two TFNs (i.e., 𝑅̃𝑖𝑘 and 𝛾̃𝑘𝑗) as given below: 

 

𝑅̃𝑖𝑘 . 𝛾̃𝑘𝑗 = (𝑅𝑖𝑘
𝑝
. 𝛾𝑘𝑗
𝑝
, 𝑅𝑖𝑘

𝑚. 𝛾𝑘𝑗
𝑚 , 𝑅𝑖𝑘

𝑜 . 𝛾𝑘𝑗
𝑜 ).                                                (9) 
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Then, in order to transform the resulting TFN of the multiplication into an equivalent crisp value, the 

expected value operator (Liu and Liu [24]), named EV in (10) below, is applied. Thus, the expected 

value of TFN 𝐴̃ is defined as follows: 

 

EV(𝐴̃) =
𝐴𝑝+2𝐴𝑚+𝐴𝑜

4
                                                            (10) 

 

Notably, for ith CN, we have ∑ 𝑅𝑖𝑗
𝑛𝑜𝑟𝑚𝑁

𝑗=1 = 1. In Subsection 3.2, we develop our FMILGP model 

according to the prepared HOQ. 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 
Figure 2. Membership function of TFN 𝑝̃ 

 

3.2. Proposed FMILGP Model 

 

Hereafter, we define the sets, parameters and decision variables used to formulate the FMILGP 

model. 

 

Sets 
CN         Set of CNs (CN index: i=1,2,…,M ) 

DR         Set of DRs (DR index: j=1,2,…,N ) 

Altj              Set of alternatives for jth DR (j∈DR, Altj index: r=1,2,…,Ij) 

 
Parameters 

Wi              Relative importance (weight) of ith CN 

Rij
norm      Normalized relationship between ith CN and jth DR 

Cjr             Cost of rth alternative of jth DR 

tjr                Development time of rth alternative of jth DR 

di                Minimum satisfaction level (%) of ith CN 

CS        Desired target level of customer’s satisfaction goal 

CO       Desired target level of cost budget goal 

DT        Desired target level of development time goal 

 

Decision variables 

Bjr                 1, if alternative r of jth DR is selected, 0, otherwise (j∈DR, r∈Altj) 

𝜇𝑝̃(𝑥) =
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 < 𝑏 

𝜇𝑝̃(𝑥) = 1, 𝑥 = 𝑏 

𝜇𝑝̃(𝑥) 

1 

0 

a b c 

𝜇𝑝̃(𝑥) =
𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 < 𝑐 

𝜇𝑝̃(𝑥) = 0, 𝑥 ≤ 𝑎 𝜇𝑝̃(𝑥) = 0, 𝑥 ≥ 𝑐 

𝑥 
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yi                    Level of satisfaction for ith CN 

xj                    Fulfillment level of jth DR 

 

Now, our model can be presented as follows: 

 

 Goal 1: ∑ ∑ 𝑐̃𝑗𝑟𝐵𝑗𝑟
𝐼𝑗
𝑟=1

𝑁
𝑗=1 ≤̃ 𝐶𝑂   (11) 

 Goal 2: ∑ 𝑤𝑖𝑦𝑖
𝑀
𝑖=1 ≥̃ 𝐶𝑆   (12) 

 Goal 3: ∑ ∑ 𝑡̃𝑗𝑟𝐵𝑗𝑟
𝐼𝑗
𝑟=1

𝑁
𝑗=1 ≤̃ 𝐷𝑇   (13) 

             𝑦𝑖 = ∑ 𝑅𝑖𝑗
𝑛𝑜𝑟𝑚𝑥𝑗,

𝑁
𝑗=1  ∀𝑖𝜖CN (14) 

             𝑥𝑗 =
1

|𝐼𝑗|
(∑ 𝑟

𝐼𝑗
𝑟=1 𝐵𝑗𝑟),  ∀𝑗𝜖DR (15) 

             ∑ 𝐵𝑗𝑟
𝐼𝑗
𝑟=1 = 1, ∀𝑗𝜖DR (16) 

             𝑦𝑖 ≥ 𝑑𝑖,  ∀𝑖𝜖CN (17) 
             0 ≤ 𝑥𝑗, 𝑦𝑖 ≤ 1, ∀𝑗𝜖DR,∀𝑖𝜖CN (18) 
             𝐵𝑗𝑟𝜖{0,1}, ∀𝑗𝜖DR,∀𝑟𝜖Alt𝑗. (19) 

 

Constraint (11) states that the total expenses should not be more than CO’s target level as much 

as possible. Constraint (12) ensures that the customer’s satisfaction level is prefered to be greater than 

or equal to the corresponding target level. In constraint (13), we try to prevent the violation of DT’s 

target value as much as possible. Eq. (14) determines the level of satisfaction for each CN. Eq. (15) 

guaranties that the fulfillment level of each DR is determined according to the selected alternative. 

Eq. (16) states that for each DR, only one alternative should be selected. Constraint (17) ensures that 

the customer’s satisfaction for each CN is greater than di. 

 

In order to address different priorities of the three considered goals, a two-level pre-emptive FGP 

model could be proposed in which customer’s satisfaction goal along with the cost budget goal are 

placed in the first priority level, whereas the development time goal is involved at the second level. 

However, on one hand, we cannot precisely specify that how much the goals at the first priority level 

are more important than the one at the second level. On the other hand, as stated before, such a 

traditional pre-emptive GP model assumes infinite trade-offs between the different levels of the goal 

hierarchy. So, in the next subsection, we suggest a flexible goal hierarchy to be able to efficiently 

incorporate the imprecise priorities into the FGP model. 

 

3.3. Flexible Goal Hierarchy 

 

In order to convert our FMILGP model into its equivalent crisp version, we apply a flexible goal 

hierarchy to form an appropriate achievement function. In this method, the goal importance levels are 

imprecisely defined and represented by fuzzy relations with appropriate membership functions. 

Different linguistic terms can be used to express fuzzy importance relations such as “slightly more 

importance than”, “moderately more important than”, “significantly more important than”, and so on. 

The achievement function is defined as the sum of achievement degrees of all the goals and degrees 

of satisfaction of the relative importance relations among them. As the first priority level goals in the 

considered problem are naturally more important than the second one, we use the linguistic term 

“significantly more important than” in order to denote the importance relation between the fuzzy 

goals in the two levels of goal hierarchy. Suppose that 𝜇𝑖 and 𝜇𝑗 are achievement degrees of the fuzzy 

goals i and j, respectively. Then, the membership function of fuzzy binary relation which says that 

goal i is “significantly more important than” goal j (i.e., µ
𝑅̃(𝑖,𝑗)

) is shown in Figure 3 and expressed 

by  
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𝜇𝑖 − 𝜇𝑗 ≥ µ
𝑅̃(𝑖,𝑗)

,       µ
𝑅̃(𝑖,𝑗)

≥ 0                                                    (20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Membership function of µ
𝑅̃(𝑖,𝑗)

 for “significantly more important than” 

 

Consequently, to formulate the above importance relation between the two levels of goal 

hierarchy, we should subject the equivalent crisp model to the following constraints: 

 

𝜇1 =
𝑈1−∑ ∑ 𝑐𝑗𝑟𝐵𝑗𝑟

𝐼𝑗
𝑟=1

𝑁
𝑗=1

𝑈1−𝐶𝑂
                                                    (21) 

𝜇2 =
(∑ 𝑤𝑖

𝑀
𝑖=1 𝑦𝑖)−𝐿2

𝐶𝑆−𝐿2
                                                       (22) 

𝜇3 =
𝑈3−∑ ∑ 𝑡𝑗𝑟

𝐼𝑗
𝑟=1 𝐵𝑗𝑟

𝑁
𝑗=1

𝑈3−𝐷𝑇
                                                    (23) 

𝜇1 − 𝜇3 ≥ µ
𝑅̃(1,3)

                                                        (24) 

𝜇2 − 𝜇3 ≥ µ
𝑅̃(2,3)

,                                                       (25) 

 

Where Lk and Uk, k=1, 2, 3, represent the admissible tolerances of the considered fuzzy goals, 𝜇𝑘, 

k=1, 2, 3, is the achievement degree of fuzzy goal k, µ
𝑅̃(1,3)

 and µ
𝑅̃(2,3)

 are the achievement degrees 

of fuzzy importance relations in the form of goal 1-goal 3 and goal 2-goal 3, respectively. The desired 

target levels of fuzzy goals as well as their admissible violations for the considered washing machine 

problem are presented in Table 3. Noteworthed, these values were selected by authors according to 

the conditions and specifications of the problem. 

 

Table 3. Goal’s target levels and their admissible violations 

Goal 1- Cost budget Goal 2- Customer’s satisfaction Goal 3- Development time 

CO U1 CS L2 DT U3 

14 16 0.9 0.7 17.5 20 

 

Accordingly, the achievement function of the crisp model is considered as a convex combination 

of the sum of achievement degrees of fuzzy goals and the sum of satisfaction degrees of imprecise 

importance relationship. In this function, 0 ≤ 𝜆 ≤ 1, specified by DM, adjusts the trade-off between 

the two terms of the aggregated objective function. The smaller the value of λ, the more important 

1 

1 0 -1 

𝜇𝑅̃(𝑖,𝑗) 

𝜇𝑖 − 𝜇𝑗  
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satisfying the flexible priority of fuzzy goals while the larger the value of λ, the more important 

achieving the target levels of fuzzy goals. 

 

Now, the equivalent crisp version of our FMILGP model can be formulated as follows: 

 

 Max 𝑧 =  𝜆(∑ µ
𝑘

3
𝑘=1 ) + (1 − 𝜆) (µ

𝑅̃(1,3)
+ µ

𝑅̃(2,3)
)  (26) 

 s.t.  

         Constraints (14)-(19), (21)-(25)  

         𝜇1, 𝜇2, 𝜇3 ≤ 1 (27) 

         µ
𝑅̃(1,3)

,µ
𝑅̃(2,3)

≥ 0  (28) 

                                                       

With the proposed flexible priority structure, DM may simultaneously account for hierarchical 

levels of goals and quantify the importance of goals. Moreover, the computational efficiency of the 

resolution procedure could be enhanced since the two-level pre-emptive structure of the goals is 

aggregated in a single formulation. 

 

4. Computational Results 
 

In this section, we implement the proposed FMILGP approach to select the best set of alternatives 

among the possible combinations of DR alternatives in the given washing machine development 

problem. The crisp model was developed by the GAMS modeling language and solved by the CPLEX 

solver on a computer with 2.4 GHZ processor and 1 GB RAM. The results including the decision 

variables as well as achievement degrees of fuzzy goals and satisfaction degrees of fuzzy binary 

relations, when changing the adjusting parameter λ in the range [0,1], are presented in Table 4. 

 

Table 4. FMILGP solution for various λ values for the washing machine development problem 

λ 
Time 

(s) 
x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 µ1 µ2 µ3 µ𝑹̃(𝟏,𝟑) µ𝑹̃(𝟐,𝟑) 

[0,0.83] 0.159 1.00 0.667 0.333 1.00 1.00 0.883 0.667 0.876 0.897 0.791 0.500 0.993 0.314 0.186 0.680 

[0.83,1] 0.152 1.00 0.667 0.667 1.00 0.667 0.845 0.667 0.845 0.841 0.823 0.658 0.785 0.372 0.286 0.413 

 

As observed, the selected value of DR alternatives for λ∈[0,0.83] is 96%, 46 db, 39 min, 85%, and 

0.6% for washing quality, noise level, washing time, rinsing quality, and clothes damage rate, 

respectively. The result for λ∈[0.83,1] is 96%, 46 db, 36 min, 85%, 0.8%, which means that the 

washing time and clothes damage rate get poorer values. As an expected outcome, the solution 

obtained with a higher λ value has a higher sum of achievement degrees of fuzzy goals whereas by 

decreasing λ, the importance relations are weighted more. In other words, customer’s satisfaction goal 

gets a higher achievement degree, while achievement degree of the development time goal tends to 

decrease. The DM can establish a suitable trade-off between the solutions with a higher sum of the 

achievement degrees and those which may be more interesting in terms of better importance relations 

among the goals. It is worth noting that although the cost budget goal is also in the first priority level, 

the cost budget goal tends to decrease when reducing the development time goal. This is due to the 

data preparation stage in which the given cost budgets of DR alternatives have no inconsistency with 

the corresponding development times. 

 

As observed, although it may always not be so, the considered problem is not very sensitive to 

value of λ so that changing λ in the range [0,0.83] does not alter the outcomes. Accordingly, in the 

following experiments, equal weights are assigned to relative priority relations and achievement 

degrees of fuzzy goals, i.e., λ=0.5. 
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The manager would naturally like to show how the other two goals (i.e., customer’s satisfaction 

and development time) do change when target level of the cost budget goal (i.e., CO and U1) are given 

different values in a certain range. Therefore, CO value is gradually increased from 13.5 (the least 

value for achieving the minimum customer’s satisfaction) to 16.5 (the most possible value) by 

increments of 0.5, while its admissible tolerance is fixed to 15%. Results are given in Table 5 and 

Figures 4 to 5. Notably, the U1 value for the last three records of Table 5 is assumed to be 17.6 (i.e., 

cost of the most expensive combination of DR alternatives), meaning that the corresponding 

admissible tolerances are inevitably less than 15%. As confirmed by Table 5 and Figure 4, customer’s 

satisfaction (∑ 𝑤𝑖
𝑀
𝑖=1 𝑦𝑖) does not constantly improve when increasing the cost budget. In other words, 

although the customer’s satisfaction tends to be improved when the cost budget is increased to 15.5, 

it starts reduction after the point. The reason for this trend is that we fix the desired target level of 

customer’s satisfaction goal (CS) to 0.9, and therefore, the obtained value for µ2 will be greater than 

1 if the customer’s satisfaction goal for these values of cost budget can exceed 0.9. On the other hand, 

as shown in Figure 5, development time (∑ ∑ 𝑡𝑗𝑟
𝐼𝑗
𝑟=1 𝐵𝑗𝑟

𝑁
𝑗=1 ) is not sensitive to cost budget up to 16, 

but, after this point, we will see an erratic trend. Accordingly, it seems that if we change the cost 

budget in the range [14, 15.5], the other two goals will also be in their appropriate conditions 

simultaneously. 

 
Table 5. Sensitivity analysis for CO target values 

CO U1 x1 x2 x3 x4 x5 (∑𝒘𝒊

𝑴

𝒊=𝟏

𝒚𝒊) ∑∑𝒕𝒋𝒓

𝑰𝒋

𝒓=𝟏

𝑩𝒋𝒓

𝑵

𝒋=𝟏

 

13.5 15.4 1.000 0.667 0.667 1.000 0.667 0.842 19.070 

14.0 16.0 1.000 0.667 0.333 1.000 1.000 0.884 19.216 

14.5 16.5 1.000 0.667 0.333 1.000 1.000 0.884 19.216 

15.0 17.1 1.000 0.667 0.333 1.000 1.000 0.884 19.216 

15.5 17.6 1.000 0.667 1.000 1.000 0.667 0.899 19.305 

16.0 17.6 0.667 1.000 0.667 1.000 1.000 0.859 19.300 

16.5 17.6 0.333 1.000 1.000 1.000 1.000 0.832 18.835 

 

 
Figure 4. Customer’s satisfaction versus cost budget target values 
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Figure 5. Development time versus cost budget target values 

 

For better understanding of the effect of changing CO values on customer’s satisfaction, as the 

most critical goal of QFD, we ran a single objective MILP in which customer’s satisfaction is assumed 

to be the only objective function while development time as well as cost budget are posed as 

constraints. To do this, the right-hand side of the development time constraint (as it has the least 

important in reality) is fixed at 20.5 (the maximum possible value) in all the runs, whereas the CO 

value of budget constraint is gradually increased in different runs from the minimum up to the 

maximum possible value. The results for the objective function are given in Table 6. A comparison 

of the table with the previous one confirms the efficiency of the proposed multi-objective GP model 

in establishing a reasonable trade-off between several conflicting goals. In fact, reaching satisfaction 

levels of more than 90% in the single objective model is only possible when providing and expending 

significantly more values of the cost budget and development time, while the multi-objective GP 

model tries to establish a compromise between the three goals since cost budget and development 

time are actually considered as criteria not constraints in the design optimization. Consequently, 

through the proposed FGP approach, significant budget and time savings are obtainable in lieu of a 

little reduction in customer’s satisfaction. This is really an appreciated step in a comprehensive 

optimization of product design and development. Obviously, the same discussion can be performed 

for the fulfillment level of DRs. The proposed multi-objective approach is thus closer to reality than 

the single objective one assuming that both criteria are constraints. 

 

Table 6. Results of single objective MILP for customer’s satisfaction 

 

CO x1 x2 x3 x4 x5 (∑𝒘𝒊

𝑴

𝒊=𝟏

𝒚𝒊) ∑∑𝒕𝒋𝒓

𝑰𝒋

𝒓=𝟏

𝑩𝒋𝒓

𝑵

𝒋=𝟏

 

1 13.5 infeasible 

2 14.0 1.000 0.667 0.333 1.000 0.667 0.785 18.695 

3 14.5 1.000 0.667 1.000 1.000 0.333 0.800 18.794 

4 15.0 1.000 0.667 0.333 1.000 1.000 0.884 19.218 

5 15.5 1.000 0.667 0.333 1.000 1.000 0.884 19.218 

6 16.0 1.000 0.667 0.667 1.000 1.000 0.941 19.591 

7 16.5 1.000 0.667 0.667 1.000 1.000 0.941 19.591 
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In order to assess the impact of considering fuzziness to capture the involved uncertainties as well 

as efficiency of the flexible goal hierarchy, we compare the results of fuzzy model with those of 

deterministic one. To do this, we formulate and solve the deterministic form of proposed model 

through a traditional two-level pre-emptive MILGP in which the first priority level goals are assumed 

to be infinitely more important than the second one. To provide the input data for the deterministic 

model, the most possible values of fuzzy parameters are applied. Also, a crisp AHP approach, rather 

than the fuzzy one, is used to determine the relative importance of CNs. The normalized relationships 

among CNs and DRs are also studied in certain environment. The corresponding two-level pre-

emptive MILGP is formulated as follows: 

 

First level: 

 Min 
𝑑1

Max  (𝑐𝑜𝑠𝑡)
+ 𝑑2  (29) 

 s.t.  

 Constraints (14)-(19)  

 ∑ ∑ 𝑐𝑗𝑟𝐵𝑗𝑟
𝐼𝑗
𝑟=1

𝑁
𝑗=1 − 𝑑1 = 𝐶𝑂  (30) 

 (∑ 𝑤𝑖
𝑀
𝑖=1 𝑦𝑖) + 𝑑2 = 𝐶𝑆  (31) 

 𝑑1, 𝑑2 ≥ 0, (32) 

 

where 𝑑2, in the objective function of first level, is a dimensionless quantity. So, to normalize and 

appropriate for the sum, we divide 𝑑1 by Max (cost). Also, we assume that both goals in (29) 

belonging to the first priority level are of the same importance while it may not be so. 

 

Second level: 

 Min 𝑑3  (33) 

 s.t.  

 Constraints (14)-(19)  

 ∑ ∑ 𝑡𝑗𝑟
𝐼𝑗
𝑟=1 𝐵𝑗𝑟

𝑁
𝑗=1 − 𝑑3 = 𝐷𝑇  (34) 

 ∑ ∑ 𝑐𝑗𝑟𝐵𝑗𝑟
𝐼𝑗
𝑟=1

𝑁
𝑗=1 ≤ 𝐶𝑂 + 𝑑1  (35) 

 (∑ 𝑤𝑖
𝑀
𝑖=1 𝑦𝑖) ≥ 𝐶𝑆 − 𝑑2  (36) 

 𝑑3 ≥ 0, (37) 

 

where dk, k=1, 2, 3, is the unwanted deviation from the desired target level of goal k. 

 

The above two models must be sequentially solved. At first, the mathematical model related to the 

first level is solved to find the best values of unwanted deviations from the corresponding goals’ 

aspiration levels, i.e., d1 and d2. Thereafter, these values are imposed to the model of the second level 

through constraints (35) and (36). The solution of the second level is used as the final solution of the 

MILGP model. The deterministic results compared to the fuzzy ones with λ=0.5 are presented in 

Table 7. As observed in the last three columns of Table 7, although the customer’s satisfaction in the 

fuzzy model is slightly (1%) less than the one in the crisp model, the obtained values for cost budget 

and development time objectives in the fuzzy environment are significantly better than those in a 

deterministic condition. Moreover, fuzzy solution is naturally more robust than the deterministic one, 

because the former is optimized according to the support of all fuzzy parameters. In fact, the fuzzy 

solution remains valid when the uncertain parameters accept their values in a wide range due to a 

disorder in the real condition, whereas the deterministic solution must be validated repeatedly by a 

sensitivity analysis. 
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Table 7. A comparison between deterministic and fuzzy results 

 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 ∑∑𝒄𝒋𝒓𝑩𝒋𝒓

𝑰𝒋

𝒓=𝟏

𝑵

𝒋=𝟏

 ∑𝒘𝒊

𝑴

𝒊=𝟏

𝒚𝒊 ∑∑𝒕𝒋𝒓

𝑰𝒋

𝒓=𝟏

𝑩𝒋𝒓

𝑵

𝒋=𝟏

 

Deterministic 1.00 0.67 0.67 1.00 1.00 0.91 0.67 0.92 0.92 0.88 15.800 0.892 19.500 

Fuzzy 1.00 0.67 0.33 1.00 1.00 0.88 0.67 0.88 0.90 0.79 15.000 0.884 19.216 

 

5. Concluding Remarks 
 

We developed a new fuzzy mixed-integer linear goal programming model to determine an optimal 

solution from a given set of alternatives of design requirements in QFD. In the proposed model, we 

aimed to maximize an aggregate function of the achievement degrees of three conflicting objectives 

including cost, customer’s satisfaction and development time. We proposed a flexible goal hierarchy 

in which the sum of achievement degrees of fuzzy goals and satisfaction degrees of the priority 

relations between them were taken simultaneously. Also, to determine relative importance of each 

customer’s need, a fuzzy AHP approach was proposed. The results inspired by a washing machine 

development problem in the literature were compared with both single objective and hard pre-emptive 

GP models. By several experiments, it was shown that the proposed approach could be useful for 

QFD planning process. With the proposed flexible priority structure, decision maker may take into 

account hierarchical levels of goals and quantify importance of the goals at the same time. The 

proposed method depends on two critical inputs including: (1) target values, admissible tolerances 

and relative importance of the fuzzy goals, and (2) controllable parameter γ. In fact, this approach can 

easily be matched with the characteristics of various QFD problems by using the other goals’ target 

values and admissible violations, displacing the goals across the hierarchy or changing the linguistic 

terms for their relative importance, or applying other proper values of γ. 
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