
ABS methods for nonlinear systems of algebraic

equations

A. Galántai and E. Spedicato

22-06-2007

Abstract

This paper gives a survey of the theory and practice of nonlinear ABS meth-
ods including various types of generalizations and computer testing. We also
show three applications to special problems, two of which are new.
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1 Introduction

The ABS algorithms have been introduced in 1984 by Abaffy, Broyden and
Spedicato [3] to solve determined or underdetermined linear systems and have
been later extended to linear least squares, nonlinear equations, optimization
problems and integer (Diophantine) equations. The related literature consists
presently of over 400 papers (see Abaffy and Spedicato’s monograph [6] for
a presentation of such techniques as available at the beginning of 1989 and
Spedicato et al. [67] for a review dealing with later results). In the present
paper we give a survey of the results concerning the nonlinear ABS methods
and present some new applications as well.

For convenience, we recall the basic steps of the (unscaled) ABS class for
solving the linear system

Ax = b (A = [a1, . . . , am]
T ∈ R

m×n, m ≤ n).

(a) x1 ∈ R
n, H1 ∈ R

n×n (det (H1) 6= 0), i = 1.
(b) si = Hiai, τi = aT

i xi − bi. If si 6= 0 go to (c), the i−th equation is linearly
independent from the previous equations. Otherwise, if τi 6= 0 stop, the system
has no solution, while if τi = 0, remove equation i, being a linear combination
of the previous ones, so set xi+1 = xi, Hi+1 = Hi and go to (f).
(c) pi = HT

i zi, zi ∈ R
n (zT

i Hiai 6= 0)
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(d) xi+1 = xi − αipi (αi = (ai
T xi − bi)/aT

i pi)
(e) Hi+1 = Hi − Hiaiw

T
i Hi/wT

i Hiai (wi ∈ R
n, wT

i Hiai 6= 0).
(f) Stop, if i = m, xm+1 solves the system, otherwise increment i by one and go
to (b).

The scaled ABS class can be obtained by applying the unscaled class to the
scaled linear system V T Ax = V T b, where V ∈ R

m×m. For later use, we recall
the so called Huang or implicit Gram-Schmidt algorithm, defined by the choices
H1 = I, zi = wi = ai. This algorithm determines the unique solution of least
Euclidean norm of an underdetermined system, if it is started with an arbitrary
vector x1 proportional to a1, usually the zero vector. The solution is moreover
approached, if x1 = 0, monotonically in norm from below. Additionally, the
search directions pi are orthogonal. The algorithm’s stability can be improved
in several ways. Usually one does a reprojection on the search direction, i.e.,
pi = Hi(Hiai), and then defines the update as

Hi+1 = Hi − pip
T
i /pT

i pi.

This modification is called the modified Huang algorithm. Extensive testing
indicates that this reprojected ABS method is very stable. Recently, Gáti [37]
using a significantly improved version of Miller’s automatic roundoff analyzer
program [57] showed that the reprojected Huang is much more stable than the
modified Gram-Schmidt method. For other special ABS methods, we refer to
[6].

The nonlinear ABS-methods are Brown-Brent type projection methods. Their
development was motivated by an idea of Stewart [72] and the fact that the
Brent and Brown methods, when applied to linear systems of the form Ax = b,
belong to the class of linear ABS methods ([5], [6]). The Brown-Brent type
methods are known to be efficient and competitive to the Newton method in
solving nonlinear systems of algebraic equations.

The first method of this type was published by Brown [8] in 1966 (see, also
[61]). Brown [9] proved the local quadratic convergence in 1969. Brent [7] pub-
lished his famous method in 1973. Gay [38] introduced the first class of Brown-
Brent type methods in his Ph.D. thesis in 1975. Later Schmidt and Hoyer [64]
developed a new generalization of the Brown-Brent type methods and proved
various convergence theorems. They also showed the excellent theoretical effi-
ciency properties of the Brown-Brent type methods [65]. Moré and Cosnard [58]
developed an efficient FORTRAN implementation of the Brent method, which
is available through Netlib as Algorithm TOMS 554 [59]. In 1979 Martinez [56]
gave a block generalization of the Brown-Brent type methods, while Schwetlick
[66] included one chapter on the theory and practice of the Brown-Brent type
methods. In 1986 Frommer [20] proved the monotone convergence of the Brown
method in the partial ordering. Two years later he also proved that Brown’s
method is faster than Newton’s method in the partial ordering [21].

Next we explain the basic idea of the Brown-Brent type methods (see also
[65], [66], [58]), which is essentially an extension of the idea of Petrov-Galerkin
methods for linear systems (see, e.g. [62], [33]). Assume that the nonlinear
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systems of algebraic equations are in the form

f (x) = 0 (f : R
m → R

m) , (1)

where f(x) = [f1(x), ..., fm(x)]T . The solution of the system is denoted by x∗.
Using the Newton-method one solves the linearized equation

f(x) + f ′(x)(x+ − x) = 0

for x+ and expects a better approximation to the solution x∗. The Brown-Brent
type methods replace this linearized system by

fj(x) + wT
j (x+ − x) = 0 (j = 1, . . . , m),

where wj is an approximation to ∇fj(x). Given an iterate x one obtains the
next (major) iterate x+ by the following algorithm

y1 = x
for k = 1 : m

Let yk+1 be the solution of fj(yj) + wT
j (y − yj) = 0 (1 ≤ j ≤ k).

end

x+ = ym+1 .
Since yk+1 satisfies the first k linearized equations, one gets the orthogonality
relations

wT
j (yk+1 − yk) = 0 (1 ≤ j ≤ k − 1).

Select now directions {pk}
m

k=1 such that yk+1 − yk = λkpk (k = 1, . . . , m) holds
with wT

j pk = 0 (j < k) and wT
k pk 6= 0. Then one has

λk = −fk (yk) /wT
k pk

and
yk+1 = yk − fk(yk)pk/(wT

k pk) (k = 1, . . . , m).

The Brown-Brent type methods differ from each other in the selection of pi’s
and wi’s. The Brown method is related to the Gaussian elimination because
its direction matrix P = [p1, . . . , pm] is an approximation of the inverse of the
upper triangular factor of the LU -factorization of f ′(x) (see also [61]). Brent’s
method chooses pk such that yk+1 is the closest solution to yk in the Euclidean
norm. It is an important feature of the Brown-Brent type methods that if fk(x)
is linear function and wk = ∇fk (x), then the kth equation is solved exactly
(see Schmidt, Hoyer [65], Moré, Cosnard [58] and Schwetlick [66]). Bus [10]
and Ypma [73] suggest the elimination of the linear components of a nonlinear
system by transforming it to an equivalent smaller nonlinear system with no
linear components. It is clear however that no such transformation is necessary
in the case of a properly chosen Brent-Brown type method.
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2 Different forms of the nonlinear ABS methods

The present form of nonlinear ABS methods was developed in two steps by
Abaffy, Galántai and Spedicato [5], and Abaffy and Galántai [4] (see also [6]).
In the sequel Im and A (x) = f ′ (x) denotes the m × m unit matrix and the
Jacobian matrix of f(x), respectively.

ALGORITHM N1 (block nonlinear ABS methods)
x1 ≈ x∗, i := 1.
while i ≥ 1

y1 = xi, H1 = Im

Choose V = [V1, . . . , Vr(i)] ∈ R
m×m (Vj ∈ R

m×mj , 1 ≤ r(i) ≤ m) such
that det (V ) 6= 0.

for k = 1 : r (i)

Choose weights τjk ≥ 0 (j = 1, . . . , k) such that
∑k

j=1 τjk = 1.

uk =
∑k

j=1 τjkyj

Pk = HT
k Zk (Zk ∈ R

m×mk , det
(
P T

k AT (uk)Vk

)
6= 0)

yk+1 = yk − Pk

(
V T

k A (uk)Pk

)−1
V T

k f (yk)
Choose Wk ∈ R

m×mk such that WT
k HkAT (uk) Vk = Imk

.
Hk+1 = Hk − HkAT (uk)VkWT

k Hk

end

xi+1 = yr(i)+1 , i = i + 1
end

A particular method is defined by the parameter matrices V = [V1, . . . , Vr(i)],

W = [W1, . . . , Wr(i)], Z = [Z1, . . . , Zr(i)] (V, W, Z ∈ R
m×m) and T = [τij]

r(i)
i,j=1,

where τ11 = 1 and τij = 0 for i > j. By definition uk = [y1, . . . , yr(i)]Tek, where

ek ∈ R
r(i) is the kth unit vector. The partition and the parameter matrices may

vary with the major iterates.
The weight matrix T may represent different strategies for choosing the

”stepsize” (V T
k AT (uk)Pk)−1V T

k f(yk). The parameter set

uk = yk (k = 1, . . . , r(i); T = Ir(i))

corresponds to the Seidel principle and reevaluates the Jacobian matrix ”row”
by ”row”. The choice

uk = y1 (k = 1, . . . , r(i); T = [e1, . . . , e1] ∈ R
r(i)×r(i))

keeps the Jacobian matrix fixed during the minor iterations. Stewart [72] sug-
gested a similar approach for a general class of conjugate direction methods.

The Newton method corresponds to the choice r(i) = 1 (i > 0). If r (i) = m
for all i, then the form of Algorithm N1 is the following.

ALGORITHM N2 (scaled nonlinear ABS methods)
x1 ≈ x∗, i := 1.
while i ≥ 1

y1 = xi, H1 = Im

Choose V ∈ R
m×m such that det (V ) 6= 0.
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for k = 1 : m
Choose the weights τjk ≥ 0 such that

∑k

j=1 τjk = 1.

uk =
∑k

j=1 τjkyj

pk = HT
k zk (zk ∈ R

m, pT
k AT (uk) vk 6= 0)

yk+1 = yk − pk

(
vT

k A (uk) pk

)−1
vT

k f (yk)
Choose wk ∈ R

m such that wT
k HkAT (uk) vk 6= 0.

Hk+1 = Hk − HkAT (uk)vkwT
k Hk/wT

k HkA
T (uk)vk

end

xi+1 = ym+1 , i = i + 1
end

The Brown method is defined by the parameters V = Im, r(i) = m, W = Z =
Im, T = Im. The scaled Huang method is given by the selection r(i) = m, zk =
wk = AT (uk)vk (k = 1, . . . , m). The symmetric conjugate direction (SCD) sub-
class [24], [26] is given by W = Z = Q, vk = C (uk) pk (k = 1, . . . , m). In the lat-
ter case it is assumed that C (x) ∈ R

m×m is continuous and G(x) = C(x)TA(x)
is a positive definite symmetric matrix in B(x∗, δ0). Notation B (x, δ) stands
for the open ball around x with radius δ.

3 Local convergence results

Several authors ([5], [4], [1], [22], [23], [75], [16], [17], [18], [14], [45], [23], [24],
[26], [27], [28], [29]) proved local convergence results with various techniques
under the following standard assumptions:

∃A (x∗)
−1

, (2)

∃K0 ≥ 0, δ0 > 0 : ‖f (x) − f (y)‖ ≤ K0 ‖x − y‖ (x, y ∈ B (x∗, δ0)) , (3)

∃K1 ≥ 0, 0 < α ≤ 1 : ‖A (x) − A (y)‖ ≤ K1 ‖x − y‖α
(x, y ∈ B (x∗, δ0)) . (4)

The most general local convergence result [23] is given by

Theorem 1 Assume that conditions (2)-(4) hold, Algorithm N1 satisfies

det
(
P T

k AT (uk) Vk

)
6= 0, WT

k HkAT (uk)Vk = Imk
(k = 1, . . . , r (i)) (5)

and the matrices V, P are such that

∥∥∥Pk

(
V T

k A (uk)Pk

)−1
V T

k

∥∥∥ ≤ K2 (k = 1, . . . , r (i) ; i ≥ 1) (6)

holds. Then there exists a number δ∗ > 0 (δ∗ ≤ δ0) such that for every x1 ∈
B (x∗, δ∗), the sequence {xi}

∞

i=1 of the major iterates converges to x∗ with a
speed of Q-order not less than 1 + α.

Condition (6) is equivalent with the condition

‖Rk‖ =
∥∥Pk(V T

k A(uk)Pk)−1V T
k A(uk)

∥∥ ≤ Γ2 (k = 1, . . . , r(i); i ≥ 1) (7)
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provided that A(uk) and A(uk)−1 are uniformly bounded in B(x∗, δ∗). Hence
condition (6) holds if and only if the projectors Rk are uniformly bounded. The
proof of Theorem 1 is also of some interest (see [23], [24], [26], [33]). It is not
only revealing the behavior of the minor iterations but widely usable elsewhere
for similar convergence analysis (see [26], [27], [28], [29], [33]).

The earlier convergence results follow from Theorem 1 (see [24], [26]). For
the three special cases of the ABS methods the following result holds (for proof
and related results, see [24], [26]).

Theorem 2 Assume that conditions (2)-(4) hold. Then
(i) The Brown method is locally convergent if A(x) is strongly nonsingular;
(ii) The scaled Huang subclass is locally convergent if the scaling matrices V
satisfy ‖V − V0‖ ≤ 1

2‖V
−1

0 ‖
(det (V0) 6= 0);

(iii) Let T = [e1, ..., e1] ∈ R
m×m. The SCD ABS methods are locally convergent

if Qi = Q (i ≥ 1) and Q is nonsingular (i ≥ 1).

4 Monotone convergence in partial ordering

We use the natural partial ordering for vectors and matrices; that is, x ≤ y
(x, y ∈ R

m) if and only if xk ≤ yk (k = 1, . . . , m), and A ≤ B (A, B ∈ R
m×m)

if and only if aij ≤ bij (i, j = 1, . . . , m). The function F : R
m → R

m is said to
be convex on a convex set D ⊆ R

m if

F (αx + (1 − αy)) ≤ αF (x) + (1 − α)F (y) (8)

holds for all x, y ∈ D and α ∈ [0, 1]. We recall the following basic result [61].
Assume that F : R

m → R
m is differentiable on the convex set D. Then F is

convex on D if and only if

F (y) − F (x) ≥ F ′(x)(y − x) (9)

holds for all x, y ∈ D. The function F : R
m → R

k is said to be isotone, if x ≤ y
implies F (x) ≤ F (y).

Let F (x) = V T f(x) and Ã(x) = V T A(x). The following result holds for
Algorithm N2 [25].

Theorem 3 Assume that
(i) V is constant for i ≥ 1, F (x) = V T f(x) is continuously differentiable and

convex on R
m, Ã (x) is a nonsingular M -matrix for all x ∈ R

m and Ã : R
m →

R
m×m is isotone;

(ii) Z = W = Qi (i ≥ 1);
(iii) The matrices Qi are nonnegative such that Q−1

i ≥ DiÃ(xi) holds for some
nonsingular Di ≥ 0 (i ≥ 1);
(iv) There exist two nonsingular matrices Q∞ and D∞ such that Qi ≥ Q∞ ≥ 0
and Di ≥ D∞ ≥ 0 (i ≥ 1);
If x1 ∈ R

m is an arbitrary point such that F (x1) ≥ 0 then Algorithm N2 satisfies

x∗ ≤ xi+1 = ym+1 ≤ ym ≤ . . . ≤ y1 = xi (i ≥ 1) (10)

6
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and xi → x∗ as i → +∞.

For arbitrary x0 ∈ R
m, the first Newton step x1 = x0 − [F ′ (x0)]

−1
F (x0)

satisfies the condition F (x1) ≥ 0. Hence Theorem 3 is essentially a global
convergence theorem. The choice of Qi is discussed in [25] and [26] (see also
[33]).

It is possible to define a subordinate ABS algorithm, which provides a se-
quence {x̂i} of approximations such that x∗ ≥ x̂i+1 ≥ x̂i (i ≥ 1) and x̂i → x∗ as
i → +∞ (see [25]). Thus we may have two-sided approximations to the solution
x∗ in the form of inclusion intervals

x̂i ≤ x̂i+1 ≤ x∗ ≤ xi+1 ≤ xi (i = 1, . . . .) (11)

with xi − x̂i → 0 (i → +∞).
A comparison with the Newton method yields the following result [25].

Theorem 4 Assume that conditions of Theorem 3 are satisfied. Let T =
[e1, . . . , e1] and Q = Ã−1(y1)D1, where D1 ≥ 0 is diagonal. Then the corre-
sponding ABS method N2 is faster than Newton’s method in the partial ordering
provided that they start from the same initial point x1.

Here we remind the similar result of Frommer [21] on the Brown method.

5 Modified nonlinear ABS methods

Although the convergence properties of the nonlinear ABS methods are simi-
lar to those of the Newton method these methods can also be quite expensive.
Several modifications of the ABS methods were developed in order to decrease
the computational cost per major iteration. The applied techniques include
Shamanskii’s idea of multistep methods [44],[26], [52], [15], [11], numerical dif-
ferentiation [50], [52], [68], quasi-Newton updating [48], [47], [46], [34], [36], [39],
truncation of the minor iteration loop [2], [13], [11] and ordering strategies for
the equations [54]. Here we survey those modifications that are supported by
sufficient numerical evidence as well.

5.1 Multistep ABS methods

Shamanskii’s idea of multistep methods [61] was applied to the Brown-Brent
type methods by Brent [7] and Hoyer [42]. It was Huang [44] who applied first
Shamanskii’s idea to the ABS methods.

ALGORITHM N3 (multistep block nonlinear ABS methods)
x1 ≈ x∗, i = 1.
while i ≥ 1

y1 = xi, H1 = Im

Choose V = [V1, ..., Vr(i)] ∈ R
m×m (Vj ∈ R

m×mj , 1 ≤ r(i) ≤ m) such that
det (V ) 6= 0.

7
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for k = 1 : r(i)

Choose the weights τjk ≥ 0 such that
∑k

j=1 τjk = 1.

uk =
∑m

j=1 τjkyj

Pk = HT
k Zk (Zk ∈ R

m×mk , det
(
P T

k AT (uk)Vk

)
6= 0)

yk+1 = yk − Pk

(
V T

k A (uk)Pk

)−1
V T

k f (yk)
Choose Wk ∈ R

m×mk such that WT
k HkAT (uk) Vk = Imk

.
Hk+1 = Hk − HkAT (uk)VkWT

k Hk

end

x(1) = yr(i)+1

for j = 1 : t

y
(j)
1 = x(j)

for k = 1 : r (i)

y
(j)
k+1 = y

(j)
k − Pk

(
V T

k A (uk)Pk

)−1
V T

k f
(
y
(j)
k

)

end

x(j+1) = y
(j)
r(i)+1

end

xi+1 = x(t+1), i = i + 1
end

Using the proof of Theorem 1 we can show the (t + 2)-order convergence of the
multistep ABS methods [26] (see also [33]).

Theorem 5 Suppose that the conditions of Theorem 1 hold with α = 1. Then
Algorithm N3 is locally convergent with Q-order not less than t + 2.

A kind of multistep formulation of the nonlinear ABS methods was also
suggested by Deng and Chen [15].

5.2 Difference ABS methods

The difference Brown-Brent methods save half of the computational work to
calculate the Jacobian matrix, which is a great advantage over the discretized
Newton-method. We recall now the Schmidt-Hoyer generalization of the Brown-
Brent methods.

ALGORITHM N4 (Schmidt-Hoyer-Brown-Brent class)
x1 ≈ x∗, i = 1.
while i > 0

Choose stepsize hi 6= 0 and a regular m × m matrix Qi.
h = hi, R1 = Qi, y1 = xi

for k = 1 : m

8
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ak = 1
h




0
...
0

fk (yk + hRkek) − fk (yk)
fk (yk + hRkek+1) − fk (yk)

...
fk (yk + hRkem) − fk (yk)




Find a regular m× m matrix

Pk =

[
Ik−1 0

0 P̃k

]

that satisfies
P T

k ak = skek.
Rk+1 = RkPk

yk+1 = yk − fk(yk)
sk

Rk+1ek

end

xi+1 = ym+1 , i = i + 1
end

If the stepsize hi is chosen in an appropriate way (e.g. 0 < |hi| ≤ ‖xi − xi−1‖
2

or 0 < |hi| ≤ ‖F (xi)‖) then Algorithm N4 has local quadratic convergence [64].
In Brown’s method Pk is an upper triangular elementary Gauss matrix. In the
Brent method Pk is an orthogonal matrix (e.g. a Householder matrix).

Jeney [50] observed that if the parameter matrices W and Z of the ABS
methods are lower triangular then half of the operations can be saved when
computing P and the update matrices Hk. He developed and analyzed the
following methods.

ALGORITHM N5 (Jeney’s discretized ABS class)
x1 ≈ x∗, i = 1.
while i > 0

Choose stepsize hi 6= 0.
h = hi, H1 = Im, y1 = xi

for k = 1 : m

ak = 1
h




0
...
0

fk

(
yk + hHT

k ek

)
− fk (yk)

fk

(
yk + hHT

k ek+1

)
− fk (yk)

...
fk

(
yk + hHT

k em

)
− fk (yk)




Select zk such that the first k − 1 components are zero and zT
k ak 6= 0.

pk = HT
k zk

yk+1 = yk − fk(yk)pk/(zT
k ak)

Select wk such that the first k − 1 components are zero and wT
k ak 6= 0.

Hk+1 = Hk − akwT
k Hk/(wT

k ak)

9
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end

xi+1 = ym+1 , i = i + 1
end

Jeney [50] showed that Algorithm N5 is equivalent with a subclass of Algorithm
N4. Using a very extensive numerical testing on the 100 test problems of [63]
Jeney [49] identified several competitive discretized ABS methods. Jeney [52]
also defined a multistep version of the discretized ABS class.

ALGORITHM N6 (Jeney’s multistep discretized ABS class)
x1 ≈ x∗, i = 1.
while i > 0

Choose stepsize hi 6= 0.
h = hi, H1 = Im, y1 = xi

for k = 1 : m

ak = 1
h




0
...
0

fk

(
yk + hHT

k ek

)
− fk (yk)

fk

(
yk + hHT

k ek+1

)
− fk (yk)

...
fk

(
yk + hHT

k em

)
− fk (yk)




Select zk such that the first k − 1 components are zero and zT
k ak 6= 0.

pk = HT
k zk

yk+1 = yk − fk(yk)pk/(zT
k ak)

Select wk such that the first k − 1 components are zero and wT
k ak 6= 0.

Hk+1 = Hk − akwT
k Hk/(wT

k ak)
end

x(1) = ym+1

for j = 1 : t

y
(j)
1 = x(j)

for k = 1 : m
y
(j)
k+1 = y

(j)
k − fk

(
y
(j)
k

)
pk/(zT

k ak)

end

x(j+1) = y
(j)
m+1

end

xi+1 = x(t+1), i = i + 1
end

Jeney [52] showed that Algorithm N6 is equivalent with a subclass of the multi-
step version of the Schmidt-Hoyer-Brown-Brent methods [42]. Jeney’s compu-
tational results indicate that by increasing t the average CPU time of iterations
decreases significantly [52].

Spedicato, Deng and Chen [68] also introduced a class of difference ABS-type
methods, which can be considered as a variant of Algorithm N4 [50].
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5.3 Quasi-Newton ABS methods

Huang [48], [47], [46], Galántai, Jeney [34], [36] and Ge [39] suggested different
combinations of the quasi-Newton updates and the ABS methods. Here we
discuss the approach due to Galántai and Jeney [34], [36]. In this approach the
Jacobian matrix A is kept fixed within and updated outside the minor iteration
loop using quasi-Newton updates.

ALGORITHM N7 (Iteration i of the quasi-Newton ABS methods)
y1 = xi, H1 = Im

for k = 1 : m
pk = HT

k zk

yk+1 = yk − vT
k f (yk) pk/

(
vT

k Aipk

)

Hk+1 = Hk − HkAT
i vkwT

k Hk/
(
wT

k HkAT
i vk

)

end

xi+1 = ym+1

si = xi+1 − xi

Yi = f (xi+1) − f (xi)
Ai+1 = φ (Ai, si, Yi)

The matrix A0 is given and Ai is updated such that Ai+1si = Yi (i ≥ 0). This
algorithm is still expensive in terms of memory space and cost. However using
the results of [24], [25], [26], [31], [32] it is possible to derive two competitive
special cases, when matrices Hk can be omitted and P = [p1, . . . , pm] is com-
putable in O

(
n2

)
arithmetic operations [34], [36]. These methods and their

multistep versions are the following.

ALGORITHM N8 ALGORITHM N9
y1 = xi y1 = xi

Calculate P = A−1
i V −T Calculate QR = AT

i V
for k = 1 : m P = Q

yk+1 = yk − vT
k f (yk) pk for k = 1 : m

end yk+1 = yk − vT
k f (yk) pk/rkk

xi+1 = ym+1 end

si = xi+1 − xi xi+1 = ym+1

Yi = f (xi+1) − f (xi) si = xi+1 − xi

Ai+1 = φ (Ai, si, Yi) Yi = f (xi+1) − f (xi)
Ai+1 = φ (Ai, si, Yi)

Algorithms N8 and N9 require O
(
m2

)
arithmetic operations and two function

evaluations per step, if the Sherman-Morrison-Woodbury inversion formula
or the fast QR update [19] is used for calculating P and V is diagonal. The
multistep versions of Algorithm N8 and N9 which save on the calculation of P
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are defined as follows.

ALGORITHM N10 ALGORITHM N11

y
(1)
1 = xi y

(1)
1 = xi

Calculate P = A−1
i V −T Calculate QR = AT

i V
for j = 1 : t P = Q

for k = 1 : m for j = 1 : t

y
(j)
k+1 = y

(j)
k − vT

k f
(
y
(j)
k

)
pk for k = 1 : m

end y
(j)
k+1 = y

(j)
k − vT

k f
(
y
(j)
k

)
pk/rkk

y
(j+1)
1 = y

(j)
m+1 end

end y
(j+1)
1 = y

(j)
m+1

xk+1 = y
(t)
m+1 end

si = xi+1 − xi xk+1 = y
(t)
m+1

Yi = f (xi+1) − f (xi) si = xi+1 − xi

Ai+1 = φ (Ai, si, Yi) Yi = f (xi+1) − f (xi)
Ai+1 = φ (Ai, si, Yi)

The cost of one iteration for both algorithms is O(tm2) arithmetic operations
plus t + 1 function evaluations, if V is a diagonal matrix.

The local linear convergence of these methods were proved for the Broy-
den update in [27], [28], [29], [33]. The computer experiments indicated that
Algorithms N8 and N9 are almost as good as the Broyden method based on
inversion or QR factorization, respectively. The QR factorization based multi-
step algorithms are somewhat better than the multistep Broyden method using
QR factorization. The inversion based multistep algorithms and the multistep
Broyden method are about the same. These experiments were published in [34],
[36], [35], [51].

Spedicato and Huang [71] reports numerical experiments with Newton-like
methods and Huang’s quasi-Newton ABS method [46].

6 ABS methods on special nonlinear systems

The intrinsic properties and the freedom of parameter selection make the ABS
methods applicable to several problems. Spedicato and Huang [69] developed
an application of nonlinear ABS methods to nonlinear least squares problems.
Spedicato and Huang [70] also showed that the nonlinear ABS methods can
be applied to nonlinear underdetermined systems with Jacobians of maximum
row rank. Recently, Ge and Xia proved the convergence of ABS methods for
singular nonlinear systems with rank defects [40], [41].

Here we present two applications that effectively handle the special sparsity
structure of the given problems. The third application outlines a new way for
the possible handling of the very ill-conditioned cases of the central trajectory
method of linear programming.
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6.1 ABS methods on bordered nonlinear systems

For special nonlinear systems the ABS methods can be quite effective. Consider
the block bordered nonlinear systems of the form

fk(xk, xq+1) = 0, k = 1, . . . , q,
fq+1(x1, . . . , xq+1) = 0,

(12)

where xk ∈ R
mk , fk ∈ R

mk (k = 1, . . . , q + 1), and
∑q+1

k=1 mk = m. Let

x =
[
xT

1 , . . . , xT
q , xT

q+1

]T
∈ R

m and

F (x) =
[
fT
1 (x), . . . , fT

q (x), fT
q+1(x)

]T
∈ R

m. (13)

Then the Jacobian matrix of system (12) has the block bordered or arrowhead
structure

J(x) =




A1 B1

A2 B2

. . .
...

Aq Bq

C1 C2 · · · Cq D




, (14)

where

Ak =
∂fk(x)

∂xk

∈ R
mk×mk (k = 1, . . . , q) , D =

∂fq+1(x)

∂xq+1
∈ R

mq+1×mq+1 , (15)

and

Bk =
∂fk(x)

∂xq+1
∈ R

mk×mq+1 , Ck =
∂fq+1(x)

∂xk

∈ R
mq+1×mk (k = 1, . . . , q) . (16)

Let

S (x) = D(x) −

q∑

k=1

Ck (x)A−1
k (x)Bk(x) (17)

and xi =
[
xiT

1 , . . . , xiT
q , xiT

q+1

]T
∈ R

m. It can be shown [30] that Algorithm N1
takes the following form on problem (12).

ALGORITHM 12 (Iteration i )
Step 1:
for k = 1 : q

Solve Ak

(
xi

)
4xk = −fk

(
xi

k, xi
q+1

)
for 4xk.

xi,1
k = xi

k + 4xk

end

Step 2:
Calculate S(xi) = D(xi) −

∑q
k=1 Ck

(
xi

)
A−1

k

(
xi

)
Bk(xi).

Solve S
(
xi

)
4xq+1 = −fq+1

(
xi,1

1 , . . . , xi,1
q , xi

q+1

)
for 4xq+1.

13
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xi+1
q+1 = xi

q+1 + 4xq+1

Step 3:
for k = 1 : q

xi+1
k = xi,1

k − A−1
k

(
xi

)
Bk

(
xi

)
4xq+1

end

This form is identical with Method 2 of Hoyer and Schmidt [43] and the basic
corrected implicit method of Zhang, Byrd and Schnabel [74]. The latter paper
contains details of computer testing on a parallel computer.

6.2 Nonlinear ABS methods in constrained optimization

We investigate nonlinear optimization problems of the form

f (x) → min
hj (x) = 0, j ∈ J = {1, 2, . . . , p} ,
gi (x) ≤ 0, i ∈ I = {1, 2, . . . , m} ,

(18)

where f, gi, hj : R
n → R (i ∈ I, j ∈ J) are smooth enough. Let

L (x, µ, λ) = f (x) +
∑

j∈J

µjhj (x) +
∑

i∈I

λigi (x)

and z =
[
xT , µT , λT

]T
. A point z∗ =

[
x∗T , µ∗T , λ∗T

]T
is said to be a Kuhn-

Tucker point (KTP) if it satisfies

∇xL (x, µ, λ) = 0,
hj (x) = 0 (j ∈ J) ,
gi (x) ≤ 0 (i ∈ I) ,
λigi (x) = 0 (i ∈ I) ,
λi ≥ 0 (i ∈ I) .

(19)

Under a regularity assumption, conditions (19) are necessary for the optimality
of x∗ in optimization problem (18). There are several methods to solve (19),
especially in the case of I = ∅. For details and references we refer to [53].

Definition 6 A function φ : R
2 → R is called NCP-function if it satisfies the

complementarity condition

φ (a, b) = 0 ⇔ a ≥ 0, ab = 0, b ≤ 0.

Everywhere differentiable NCP-functions are

φ (a, b) = ab +
1

2
(max{0, b− a})2 , (Evtushenko-Purtov)

φ (a, b) = ab + (max {0, a})2 + (min{0, b})2 , (Evtushenko-Purtov)

φ (a, b) = (a + b)
2

+ b |b| − a |a| . (Mangasarian)
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Using any complementarity function one can write the Kuhn-Tucker condi-
tions (19) as an equivalent nonlinear system Fφ (z) = 0, where Fφ : R

n+p+m →
R is defined by

Fφ (z) =




∇xL (x, µ, λ)
h1 (x)
...
hp (x)
φ (λ1, g1 (x))
...
φ (λm, gm (x))




= 0. (20)

This kind of equivalence was first given by Mangasarian [55], who also gave the
first technique to construct NCP-functions.

Under the following assumptions Kanzow and Kleinmichel [53] defined a
class of Newton-type methods for solving the nonlinear system

Fφ (z) = 0. (21)

Let z∗ =
[
x∗T , µ∗T , λ∗T

]T
be a KTP of problem (18).

(A.1) The functions f , gi and hj (i ∈ I, j ∈ J) are twice differentiable with
Lipschitz-continuous second derivatives in a neighborhood of x∗.

(A.2) The gradients ∇gi (x∗) (i ∈ I∗∗) and ∇hj (x∗) (j ∈ J) are linearly
independent, where I∗∗ = {i ∈ I | λ∗

i > 0}.
(A.3) yT∇2

xxL (x∗, µ∗, λ∗) y > 0 for all y ∈ R
n, y 6= 0, yT∇gi (x∗) = 0

(i ∈ I∗∗) and yT∇hj (x∗) = 0 (j ∈ J).
(A.4) I∗ = I∗∗, where I∗ = {i ∈ I | gi (x∗) = 0}.
(A.5) The NCP-function φ satisfies

∂φ
∂a

(λ∗

i , gi (x∗)) = 0 (i ∈ I∗∗) ,

∂φ
∂b

(λ∗

i , gi (x∗)) 6= 0 (i ∈ I∗∗) ,

∂φ
∂a

(λ∗

i , gi (x∗)) 6= 0 (i /∈ I∗∗) ,

∂φ
∂b

(λ∗

i , gi (x∗)) = 0 (i /∈ I∗∗) .

(22)

Kanzow and Kleinmichel [53] proved the following result.

Theorem 7 (Kanzow and Kleinmichel). Let z∗ =
[
x∗T , µ∗T , λ∗T

]T
be a KTP

of problem (18). Suppose that the assumptions (A.1)-(A.5) hold at z∗. Let
φ : R

2 → R be a continuously differentiable NCP-function. Then the Jacobian
matrix F ′

φ (z∗) is nonsingular.

15

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-0
5-

25
 ]

 

                            15 / 25

http://iors.ir/journal/article-1-28-en.html


The Jacobian matrix F ′

φ (z) is given by




∇2
xxL (x, µ, λ) ∇h1 (x) . . . ∇hp (x) ∇g1 (x) . . . ∇gm (x)

∇h1 (x)
T

... 0 0

∇hp (x)
T

(
∂φ
∂b

)

1
∇g1 (x)T

(
∂φ
∂a

)

1
... 0

. . .(
∂φ
∂b

)

m
∇gm (x)

T
(

∂φ
∂a

)

m




,

where (
∂φ
∂a

)

i
= ∂φ

∂a
(λi, gi (x)) (i ∈ I) ,

(
∂φ
∂b

)

i
= ∂φ

∂b
(λi, gi (x)) (i ∈ I) .

(23)

This Jacobian matrix has the block structure

F ′

φ (z) =




A C B

CT 0 0
D 0 E



 , (24)

where the diagonal matrix E may become singular. The Newton-type methods
suggested by Kanzow and Kleinmichel [53] take special care of this singularity
by first solving a reduced linear system and then making a correction step. Note
that in [53] the inequality constraints precede the equations hi (x) = 0 and the
Jacobian F ′

φ (z) is permutationally similar to (24).
Here we suggest another approach using Algorithm N1 with parameters V =

Z = W = I. For this special case it can be shown (similarly to Theorem 2) that
it is locally convergent if the Jacobian matrix at the solution is strongly block
nonsingular (i.e., block LU-decomposable). The following result indicates that
it is indeed the case and by applying the special ABS method we can avoid the
handling of the zero diagonals in E.

Lemma 8 If F ′

φ (z∗), A and CT A−1C are nonsingular, then F ′

φ (z∗) is block
strongly nonsingular and its LU-decomposition is given by




I 0 0
CTA−1 I 0

DA−1 DA−1C
(
CT A−1C

)−1
I







A C B
0 −CT A−1C −CT A−1B
0 0 W


 ,

where W = E −DA−1B + DA−1C
(
CT A−1C

)−1
CT A−1B is also nonsingular.

The proof of the Lemma is easy by direct calculation. Coleman and Fenyes
[12] points out that many authors assume that A = ∇2

xxL (z∗) is positive def-
inite. In such a case, CTA−1C is also positive definite, provided that C has
maximum column rank. For other assumptions, see [60], [12] and [53].
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Consider now one step of Algorithm N1 (V = Z = W = I) on the partitioned
system

Fφ (z) =




F1 (x, µ, λ)

F2 (x)
F3 (x, λ)



 ,

where F1 (z) = F1 (x, µ, λ) = ∇xL (x, µ, λ),

F2 (x) =




h1 (x)
...
hp (x)


 , F3 (x, λ) =




φ (λ1, g1 (x))
...
φ (λm, gm (x))




and r = 3 (n1 = n, n2 = p, n3 = m). We also partition ui accordingly, that is

ui =




ui

1

ui
2

ui
3



 ,

where ui
1 ∈ R

n, ui
2 ∈ R

p and ui
3 ∈ R

m. By direct calculation and the choice
τji = 0 (j > 1) we have the following special algorithm:
Step 1:
u1 = zk, 


A C B

CT 0 0
D 0 E



 = F ′

φ

(
u1

)
;

Step 2:

u2
1 = u1

1 − A−1F1

(
u1

)
,

u2
2 = u1

2,

u2
3 = u1

3;

Step 3:

u3
1 = u2

1 − A−1C
(
CTA−1C

)−1
F2

(
u2

1

)
,

u3
2 = u2

2 +
(
CT A−1C

)−1
F2

(
u2

1

)
,

u3
3 = u2

3;

Step 4:

W = E − DA−1B + DA−1C
(
CTA−1C

)−1
CT A−1B,

u4
1 = u3

1 −
(
−A−1B + A−1C

(
CT A−1C

)−1
CT A−1B

)
W−1F3

(
u3

1, u
3
3

)
,

u4
2 = u3

2 +
(
CT A−1C

)−1
CT A−1BW−1F3

(
u3

1, u
3
3

)
,

u4
3 = u3

3 − W−1F3

(
u3

1, u
3
3

)
,
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Step 5:
zk+1 = u4

It is clear that we can avoid inversions when implementing the algorithm.
Preliminary numerical testing in MATLAB indicates that the algorithm works
well if CTA−1C is well-conditioned.

6.3 An ABS application to the primal-dual interior pro-

gramming method of linear programming

Consider the standard linear programming problem

cT x → min, Ax = b, x ≥ 0, (A ∈ R
m×n)

and its dual problem

bT y → max, AT y + s = c, s ≥ 0.

The central trajectory method is related to the solution of the penalized LP:

cT x − µ

n∑

j=1

ln (xj) → min, Ax = b, x > 0,

where µ > 0 is a parameter (µ → 0). The Karush-Kuhn-Tucker conditions for
this problem are

Ax = b, x > 0
c − µX−1e = AT y,

where X =diag(x1, . . . , xn) and e = [1, 1, . . . , 1]
T
. Defining s = µX−1e and

S =diag(s1, . . . , sn) one can rewrite the KTP equations in the form

Ax = b, x > 0
AT y + s = c, s > 0
XSe − µe = 0.

(25)

Denoting by (x (µ) , y (µ) , s (µ)) the solution of (25) for a given µ > 0 we call the
set Γ = {(x (µ) , y (µ) , s (µ)) | µ > 0} the central trajectory (path) of the primal
linear program. Equation (25) has a special structure, where nonlinearity occurs
only in the third subset of equations in the form xisi = µ (i = 1, . . . , n). In
primal-dual algorithms, steps are generated by applying the Newton method to
the three equalities of (25) with obvious restrictions on the iterates

(
xk, yk, sk

)
,

that is with
(
xk, yk

)
> 0. The search direction of the Newton step at the point

(x, y, s) is defined by




0 A 0

AT 0 I
0 S X








∆y
∆x
∆s



 = −




rP

rD

XSe − σµe



 ,
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where rP = Ax− b, RD = AT y + s− c, µ = xT s/n and σ ∈ [0, 1] is a governing
parameter. Eliminating both ∆s and ∆x, one has the so called normal equation

AD2AT ∆y = t
(
D2 = S−1X

)
,

which is often solved by a Cholesky algorithm or a sparse Cholesky algorithm
if A is sparse. Note that A is fixed, while D and t change with the Newton
iterations.

Assume that m < n and rank(A) = m. The normal equation AD2AT x = t
can be written in the form

ADy = t, DAT x = y. (26)

The minimal least squares solution of the first equation y = (AD)
+

t belongs to

Range(AD)
T
. Hence the second equation has a unique solution.

So the suggested solution scheme is to solve ADy = t first, then solve
DAT x = y. The first equation can be solved with the Huang method start-
ing from the 0 vector. It gives the requested minimal least squares solution
at the cost of at least mn2 flops (1 flop=1 arithmetic operations of the type
+,−,×, /).

The system DAT x = y can be written as AT x = D−1y. The latter can be
solved with any ABS method. The ABS method also detects m independent
equations. Since the latter system matrix is constant we can reuse the search
vectors pi of the first iteration in the subsequent Newton steps. Thus the cost
of solving AT x = D−1y is 4m2 + m flops per iteration.

Altogether the cost of the suggested solution scheme is at least mn2+4m2+m
flops per iteration. Since n > m, this cost is at least m3 + 4m2 + m flops per
iteration. The forming of AD2AT requires O

(
m2n/2

)
flops per iteration. The

cost of (dense) Cholesky is (1/3)m3 + 2m2 flops. The Cholesky decomposition
is the winner by a factor 2 in complexity terms if m is small relative to n. If m
is close to n the difference is small. However there are three reasons in favor of
the suggested approach. First, it uses the matrix AD (A) the condition number
of which is the square root of the condition number of AD2AT (AAT ). Second,
as we pointed out in the first section, the Huang method is extremely stable
in floating point arithmetic. For very ill-conditioned and numerically unstable
cases the suggested approach can be useful although a full scale computational
testing is yet to be performed. The third reason is that the Huang method
proved to be very competitive on vector computers.
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