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Shape Optimization of an Arterial Bypass in Cardiovascular
Systems
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A high performance numerical technique in the study of aorto-coronaric bypass anastomoses
configurations using steady Stokes equations is presented. The problem is first expressed as
an optimal control problem. Then, by using an embedding method, the class of admissible
shapes is replaced by a class of positive Borel measures. The optimization problem in
measure space is then approximated by a linear programming problem. The optimal measure
representing optimal shape is approximated by solving this finite-dimensional linear
programming problem. An illustrative example demonstrates the effectiveness of the method.
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1. Introduction

When a coronary artery is affected by a stenosis, the heart muscle cannot be properly oxygenated
through blood. Aorto-coronaric anastomosis restores the oxygen amount through a bypass surgery
downstream an occlusion (see Figure 1). Improving the blood flow or hemodynamics in the synthetic
bypass graft is an important element for the long-term success of bypass surgeries. It may also
suggest new means in bypass surgical procedures as well as less invasive methods to devise new
shape in bypass configuration [21].

In recent years, a number of algorithms for fast numerical solution of optimal shape design of an
arterial bypass have been developed. For examples, Agoshkov et al. [3] applied optimal control by
perturbation theory and provided a new approach to the problem, with the goal of improving arterial
bypass graft on the basis of a better understanding of fluid dynamics aspects involved in the bypass
study. Rozza [24] numerically investigated a reduced model based on Stokes equations and a
vorticity cost functional (to be minimized) in the down-field zone of bypass based on an adjoint
formulation. Quarteroni et al. [22] proposed a feedback procedure with Navier-Stokes fluid model
based on the analysis of wall shear stress-related indexes. Zahab et al. in [6] discussed creation of a
shape optimization suite consisting of a genetic algorithm, a meshless computational fluid dynamics
solver, and an automated preprocessor. Finally, Abraham et al. in [1] and [2] presents some numerical
studies of non-Newtonian effects on the solution of shape optimization problems involving steady
and unsteady pulsatile blood flow, in an idealized two dimensional arterial graft geometry.

Figure 2 shows a picture of the human heart. Its functioning is very complex and various research
teams are currently trying to develop satisfactory mathematical models of its mechanics, which
involves, among other things, the study of electro-chemical activation of muscle cells. We will not
cover this aspect here, but we concentrate on vascular flow and, in particular, flow in arteries. We
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apply optimal control theory for shape optimization of aorto-coronaric bypass anastomoses based on
an embedding method. We may encounter some aspects of this method in comparison with other
numerical methods for optimal shape design problems. The method is not iterative, it is self-starting,
and it is not restricted to differentiable cost functions. Due to these features, this approach has been
successfully used to solve a variety of control, optimization and shape design problems (see [7]-[11],
[13]-[20] and [25]).

Occlusion

Superior
“Yena Cava

Inferior Vena Cava
Figure 2. The human heart [23]
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2. Mathematical Modelling of the Problem

Consider an idealized, two-dimensional bypass bridge configuration as in Figures 3, 4 and the
domain on Figure 5, where the dotted line represents geometry of the complete anastomosis; T, is
the section of the original artery, I}, is the new anastomosis inflow after bypass surgery, I, isthe
anastomosis outflow.

We consider the following steady Stokes problem [3] in a domain © < R? with boundary T:

—VvAv+Vp=F in,
V.v = in(,
(V= Vin onT,, (1)
v=20 onf U,
ov
—-p.n+ vﬁ = Jour ON Lout U sz,

where v = (u,v)T is the velocity, n = (ny,n,)" is the outward unit normal vector on T, F =
F(x,y) is a force field, v, = vin(%,¥), Gout = our(x,¥) are given vector functions, v =
const > 0 is a kinematic viscosity, vy = {v;, onTyy; Qon f UT, }, and f represents the sensible

part of the bypass bridge determined.
The family of admissible sensible part f is characterized by

Ugq = {f € C**([0,a]); By < f(x) < B, forallx € [0,a]}, )
where €' denotes the space of functions whose first derivatives are Lipschitz continuous, and 3,
and B3 are given constants.

bypass bridge

imain vessell

Figure 3. Idealized, 2-D bypass bridge configuration

sensible part

Figure 4. The dotted curve represents a possible shape variation
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sensible part for the optimization process

1
I
inflow P 0 T
oEEE e .
ru > ! [
(021 Q1c 1 de roul 1
L 1
: 0 [ a < 1
ex—inflow 2 outflow:
1
Bz r(r)3

Figure 5. The dotted curve f represents the portion of the boundary that is subjected to change

The weak statement of (1) reads: find v € (H*(Q))? and p € L?(Q) such that

a, @) =bP @) +9(@) Vo EA,
b, v) =0 vy € L2(Q), )
v =Uvf onl UFUTL,,,

where with ¢ we indicate test functions, A = {¢: @ € (H'(2))?,¢ = 00nT;, U fUT,,} and

a (g, f) = fnv Vu. Vﬂdxdy,

b (p, g) = fﬂp V.pdxdy,

9(p) = fﬁ.gdxdy +f Yout - @dr.
Q r

outUsz

3. Transformation onto Fixed Domain

In this section, we transform the problem (3) in weak variational form into a problem on a fixed
domain. This is an efficient technique used in a variety of optimal shape design problems, for instance,
see [16, 17, 18].

Let us consider domains Q; ={0<x<a0<y<f(x)}, 2, ={0<x<a,B, <y <0}, and
0 = 0, U 0,, as shown in Figure 6. Assume that f(x) > 0, and consider the following variable
transformations:
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Py B3
T—1
f —> Y, %
By p------m=== B, ‘
91 Yin 91 <ot
0 a 0 a
Q, sz 9,
p p
2 2 ,Ym
3
Figure 6. Transformation of the domain
T_I:Ql U QZ 4 @,
T'(x)" =&y,
where T~1 is the identity in Q,, and T~1(x, y)T = (x,}%)T in Q.
The Jacobian of T, forall (%,7) € 04, is defined as:
1 0 9
=9 ® f®), detj, =L [g") >0,
B B !

Let v(x,y) = v(T(%,5)): = 2(%§). Then Vv(x,y) = (Jz-1)Vo(%, 7), where
2 2
_[9x Oy
’T‘l‘[a? ay"
ox 9y

The same relations exist for v(x, y), ¢ (x,¥), ¥ (x,¥), p(x, ), F(x,¥), Gout (%, ¥), and v, (x, y).
Using the chain rule, for each scalar function ®(%, 7), we have

(acp _ 00 f'(x) 0@
ox oz PYFix) oy @
0o p 09
9y f(x) a5’
To simplify the notations, from now on we will set (unless otherwise specified):

¥=x7=y0%7) =v0) %) = ¢y PEI) = Pxy),6EF) = p,y),
E(i y) =F(x, Y):Q_out(i;y) = Qout(x' ), 0in(X,9) = vin(x,¥).
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Now, with the new variables, (3) is written as follows:

a(f;v, ) =b(f;p, @) — 91.(f; ) = 92(¢) Vo €B,
b(f;,v) =0 Vi) € L?(0), ®)
c(f;v,vr) =0,

where B = {p:¢ € (H'(0))*and ¢ = 00n Vi, U ¥y, U Ve, }-
We have emphasized the dependence of a(f;.,.),b(f;.,.), and g(f;.) on f. Therefore,

a(f;v,9) = a1(f;0,9) + a2 (v, @), (6)
b(f;p,¢) = b1(fip, @) + b2 (p, @), (7

95 0) = 91(f5 @) + g2(9), (8)
c(fivvp) =a(fivnvp) +@yy), 9)

where
a(five)=v f@ (W' Ur-J7-) 1) + (T0)T Ur-1J7-) (V) det Jr dxdy,

@ (v.9) =v || (W) W) + (7o) (Ppa)) dxdy,

: _ 01 f[) 01 B ¢
n(rne)= [ (o s

> det Jr dxdy,

dp1 09,
b = —— +—)dxd
2(p, 9) f@f(ax + ay) xdy,
91 (f:g) =f E.¢pdet Jrdxdy,
0,
92(9) = f F.odxdy + f Jout - @Ay + f Yout - 9AY,
0, (YoutV¥w,)N0O; YoutV¥w,)N0O,

cl(f:z,zf)=f lv — vy n%f(x)dy+f lv—vp 13 Y1+ f'(x)%dy =0,

Yin Yoq
6 (0,77) = f lv— v, 13 dy = 0.

ng

4. Shape Optimization

Itis assumed that f(x) in (4) is unknown as well as p, v. In order to determine the function f(x),
one can change the problem to an optimal control problem.

We consider the vorticity as distributed observation (flow control combined with shape


http://iors.ir/journal/article-1-290-en.html

[ Downloaded from iors.ir on 2025-10-25 ]

Shape Optimization of an Arterial Bypass in Cardiovascular Systems 133

optimization) in the down-field zone Q4 of the incoming branch of the bypass, definedas V x v: =

rot(v) = Z—Z - Z—Iy‘; v is the solution of the Stokes equations (1) and the control of the system (4) is
obtained by minimizing the following cost functional:
Jf)=1 (Vxp)idxdy, (10)
Qud

where Q. 4 = Q; — Q,. (see Figure 5).
Furthermore, the derivative of the unknown boundary f(x) is chosen as a control function by the
following dynamical system

d
7~ r o0, (1)
with the boundary conditions

f(0) = Bz and f(a) = B, (12)

where the trajectory function f(x) is absolutely continuous, the control function 6(x) is Lebesgue-
measurable, and F is a continuous function of 6(-). Thus, the optimal shape design problem may be
interpreted as an optimal control problem consisting of minimizing (10), subject to the constraints
(11) and (12).

Definition 4.1. We say that the quadruple 9 = (p, 0, f,v) is admissible if following conditions hold:
(i) F(O()) satisfies (11).

(if) f(-) is adecreasing differentiable function and satisfies (4), (11) and (12).

(iii) (p,v) isasolution of (4).

We denote by P the set of all admissible quadruples. The control problem does not have a
solution unless this set is nonempty.

Theorem 4.2. Each admissible shape of U,,; in (2) can be replaced exactly by one admissible
quadruple 9 = (p, 6, f,v) € P.

Proof. It is enough to introduce an injection correspondence between U,; and P. For example,

EUyg = P,
$U) =®06.f,v.

By definition, ¢ is one-to-one and onto. O
The above theorem enables us to consider the problem of minimizing J(9) over P instead of
minimizing J(f) over U,q.

5. Optimization in Functional Space

In the following, the problem of shape optimization J(9) over P is transformed into another
nonclassical problem which appears to have some better properties from computational point of view.
Let Y=DXQXUXCXXK, where D = (0, UO, UB3), (05 =[0,a] X [F1,B3]), @, U and C
are known compact sets in R such that the pressure p, the optimal control 8(-) and the unknown
boundary f(-), respectively, get their values in these sets. Furthermore, ¥ is a compact subset of
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R? x R?,and Vv gets its values in this set.
For each admissible quadruple P, we correspond a linear continuous functional Ay as follows:

Ag:F — fDF (x, y,p(x),0(x), f(x),Vv(x, y)) dxdy,F € C(Y). (13)

This linear function Ay is defined on the space C(Y) of all continuous real-valued functions F.
Some aspects of this mapping are useful; it is well defined, linear, and positive.

Proposition 5.1. Transformation ¥ — Ay of admissible quadruplesin 2 into the linear mapping Ay
defined in (1) is an injection.

Proof. The proof is similar to proof for Proposition 4.1 of [10]. O

We need to convert (11) and (12) to integral form. For this purpose, let B be an open ball in R?
containing [0,a] X C, and C(B) be the space of all real-valued continuous differentiable functions
onit. Let ¢ € C*(B) and define functions ¢ as follows:

¢°(x,y,p(x),0(x), f(x), Vv)
= ¢p(x, £(2)).- F(0(x)) + ¢ (%, f (1)),
for each (x,y,p,8,f,Vv) € Y. The function ¢? is in the space C(Y), the set of all continuous
functions on the compact set . For each admissible quadruple (p, 9, f,v) € P, we have

(14)

jo $° (0, y, p(x), 0(x), (), V)dlx = fo &7 (6 £ (). FO)) + du(x, £ ()))dlx

f e @0 fO))}dx = ¢(a f(a)) — $(0,£(0)): = Ay, (15)

forall ¢ € C1(B), where ¢(a, f(a)) and ¢ (0, f(0)) are known. Define

qu) (x' Y, p(x): H(X), f(X), VZ)

0
_ 9oy pC0 00 F LY | (16)
By~ b
From (15) and (16), we obtain
Bs ra
| fo Hy (6,7, p(0), 000), £ (), 7v)dxdy = Ay, 17)

for each ¢ € C1(B).
Now, the integrand function in the objective functional (10) in terms of new variables changes

fo(x,y,p(x),0(x), f(x),Vv) = xq,,(V x v)*det (Jr) =
< By f(x)6u+ B 6v>d J
A0oa ey faay) T

where xq_, is the characteristic function on Q,q (see Figure 5). Thus, minimization of the
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functional (10) over 2 is equivalent to finding A, in the functionals space C*(Y) (C* is the dual
space) that minimizes

Ay (fo) (18)
subject to
Ag(Fp) = ay, Vo € B, (19)
Ay(ly) =0,V € L%(0), (20)
Ay(G) =0, (21)
Ag(Zy) =Dy, YV € C1(B), (22)
where

Fp = xo, (VW' Ur-Jr-) (V1) + (V0" J7-1J7-1)(V2)) det Jr
+ x0,V(TW)T (V1) + (V0)T (V)
d¢pq f'(x)d¢, B 0o, dp1 09,
o (5B ey a7y 7y et re ()
_X®1E'£det ]TI

Ap:= g2(¢),

P L Co LS I VNP U B

b= XoY (ax P rmay @ ay) det r =100 (5 + 55)

Zy = HpXo,

G = Yy 10 =05 13 GO + 2y, 10— 2 131+ F/(0)2dy + 1y, 12— v 115,

Xy in? X, XVeryr X010 X0, and yg, are respectively characteristic functions on y;n, ¥4, Y, €1, 02
and ©;.

6. Measure Theoretical Formulation

Let M*(Y) denote the space of all positive Radon measures on Y. By the Riesz representation
theorem [27], there is a one-to-one correspondence between A € C*(Y) and u € M*(Y) such that

u(F) = LF d,, YF € C(Y). (23)

So, one may change the problem (18)—(22) in functional space to the following optimization problem
in measure space:

Minimize u(fy) (24)
subject to
y(Fg) =y, V9 € B, (25)
u(ly) =0, vip € L(0), (26)
w(G) =0, (27)
U(Zy) =Dy, Vo € CL(B), (28)
1€ M*(Y). (29)

Define the set of all positive Radon measures satisfying (25)-(29) as Q, and topologize the space
M*(Y) by the weak*-topology. Consider the functional 7: Q — R defined by
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I = pu(fo)- (30)

Now, the measure theoretical problem (24)-(29) may be interpreted as the problem of minimizing
J over Q. Thus, it is necessary to verify the existence of a solution for this problem.

Theorem 6.1.

(i) The set Q consisting of all measures satisfying (25)—(29) is compact in M*(Y).

(if) The functional 7: Q — R, defined by (30) is a linear continuous functional on the set Q with
weak*-topology.

(iii) The measure-theoretic problem, which arises in finding the minimum of the functional 7 in (30)
over the set Q of M*(Y), attains its minimum, say u*, in the set Q.

Proof. The proof is similar to Theorems 6.1 and 6.2 of [16]. O

Remark 6.2. Two main advantages for considering this measure theoretic form of the problem are:
(i) The existence of an optimal measure in the sets Q that satisfies (25)—(29) can be studied in a
straightforward manner without needingg to impose conditions such as convexity which may be
artificial.

(ii) The functionals in (24)—(29) are linear although the main problem may be nonlinear.

7. Approximation of the Optimal Measure

The minimizing problem (24)—(29) is an infinite-dimensional linear programming problem and
we are mainly interested in approximating it. It is possible to approximate the solution of the problem
(24)—(29) by the solution of a finite dimensional linear program of sufficiently large dimension.

First, we consider minimization of (24) not over the set Q but over a subset of it defined by
requiring that only a finite number of constraints (25)—(29) be satisfied.

Consider the equalities of (25)—(29). Let the sets {¢;,i € N}, {1;,j € N} and {¢s, s € N} be sets

of total functions respectively in B, L?(®) and C!(B). Now, we can prove the following
proposition.

Proposition 7.1. Let Q(M,, M,, M3) be a subset of M*(Y) consisting of all measures satisfying

H(Ey) = ap, 1 =12,..., My, (31)
uly) =0,j=12,..,M,, (32)
HG) =0, (33)

‘U(Zd)s) = A¢s’ S = 1,2, ...,M3. (34)

As M, M, and M5 tend to infinity, o(M, My, M3) = )H(fo) tendsto g = ierfu (fo)-

inf
Q(My,M3,M3
Proof. The proof is similar to Proposition 2 of [11]. O

The first stage of the approximation is completed successfully. As the second stage, from Theorem
(A.5) of [26], we can characterize a measure, say u*, inthe set Q(M,, M,, M3) at which the function
u = u(fy) attains its minimum. It follows from a result of Rosenbloom [28], as stated next.

Proposition 7.2. The measure u* inthe set Q(M,, M,, M3) at which the function u — u(f,) attains
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its minimum has the following form

My+My+Mz+1

IR O] (35)

k=1
where , €Y and k;, =0, k =1,2,--,M; + M, + M5 + 1.

Here, 8y (1) is unitary atomic measures supported by singleton sets {t}, where (€Y, and
Sy () (F) = F(y,), forall F € C(Y). Therefore, the measure theoretical optimization problem (24)—
(29) is now equivalent to the following nonlinear optimization problem,

Minimize 2 K fo(tk) (36)
. k=1
subject to
My+My+Mz+1
Z Ko Fp, () = @i = 1,2, ..., My, 37)
k=1 - B
My+My+Mz+1
Z e Ly, () = 0,j = 1,2, ..., My, (38)
k=1
My+My+Mg+1
Z KE G ) = 0, (39)
k=1
My +My+Mz+1
Z K Zp, (th) = Dps, s = 1,2, ..., M3, (40)
k=1
Kp=0,k=12,..,M +M,+M;+1, (41)

where the unknowns are the coefficients kj and supports ,, k = 1,2,..., My + M, + M3 + 1.
It would be computationally convenient if we could minimize the function 7 only with respect to the

coefficients «y, k =1,2,..,M; + M, + M3+ 1, which leads to a finite-dimensional linear
programming problem. However, we do not know the supports of the optimal measures. The answer
lies in approximation of this support, by introducing two dense subsets in Y.

Proposition 7.3. Let o be a countable dense subset of Y. Given € > 0, ameasures g € M*(Y) can
be found such that

(" — ()l <
=) (Fy)| < e i =12, My,

=@ (1y,)| <€ j =12, M,
(" — DG <e
(W —DZp )l <€ s=12,..,M;.

where the measure f has the following form
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My+My+Mz+1

B= ) Ky, (42)

k=1
and the coefficients k, are the same as the ones in the optimal measure (35) and ¢, € o.
Proof. See the proof of Proposition I11.3 in [26]. O

Thus, the nonlinear programming (36)—(41) can be approximated by the following linear

programming problem
L

Minimize Z K; fo(t) (43)
=1
subject to
L
2 K Fp (1) = @i = 1,2, ..., My, (44)
=1 B
L
Zkl Illij(ll) = O'j =12, ""MZ' (45)
=1
L
z K G(ll) = O, (46)
=1
L
Z K, Zp () = Ay, 5 = 1,2, ..., Ms, (47)
=1
K=>01=1,..,L, (48)

where ¢, | = 1,2, ..., L, belongsto ¢ and L is large enough. The procedure to construct a piecewise
constant control function from the solution {x;} of the linear programming problem (43)—(48), which
approximates the action of the optimal measure, is based on the analysis presented in subsection 6.1
in [15].

8. Computer Simulation

To test our methodology, we consider a test problem on simplified configurations. Wall curvature
was considered only in the zone of the incoming branch of the bypass (0 < x < 4). Velocity values

v;, at the inflow are chosen in such a way that the Reynolds number Re = % has order 103. The
inlet Poiseuille velocity profile is chosen based on [4]:

Vin = (=0.475(y — 1)(y — 2),—0.475(y — D)(y — 2))".

Blood kinematic viscosity v =% is equal to 4 x 107°m?2s~1, blood density is p = 1gcm™3

and dynamic viscosity is u =4 x 1072gcm™1s71; % is mean inflow velocity related with v;,,
while D is the arterial diameter (3.5 mm); see [4] and [23].
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1.5 T T

0.5 4

-05 | 1 1 | |
0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 7. The approximate optimal artificial control

1.6 ]

1.4 -

1.2 ,

0 0.5 1 1.5 2 2.5 3 35 4
Figure 8. The exact optimal shape in the zone of the incoming branch of the bypass

2.2 T T |

0.8 L ! ! ! | I !
0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 9. The approximate optimal shape of the bypass with fitting of degree 4

The geometric parameters are a = 4, 5, = 1, f, = —1, and S5 = 2. In objective function (10),
we select Q.4 = [0.5,4] x [0, f], and in dynamical system (11) and (12), F(8) = —82(x). The
functions in (1) are chosen as follows:
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FOo,y) = (v, 29", gour(x,y) = (xy,xy)".

For total functions of this example, we use M, test functions ¢ € B and M, test functions ¥ €
L?(©) of the forms

P(,y) = (x 1 (y = B2 — B, x"1(y — B2 (v — B2)")".
Y(x,y) =x1y,
aq,a,,as,by,by, b3 € {1,2,...}, ¢1,c;, €{0,1,2,... }.

Moreover, we consider M5 functions ¢, (x, f(x)) € C1(B) of three following types: Polynomials
of the form:

x%f2 d,,d, €{0,12..},

and functions with compact support as:
] X X _
sin (Zk”(E))' 1—cos (Zk”(E))’ k=12..),

and finally, the piecewise constant functions as:

o - {1, if x € J,
€10, otherwise,

(e-1)a ea

where J, = ( = %)

e =1,---,E; for more details, see [10] and [11].

O | | | | |
0 100 200 300 400 500 600

Figure 10. The transient behavior of the objective function over iterations

Theset Y =D x Q@ X U x € x K will be covered with a type grid, where the grid will be defined by
taking all points in Y as ¢ = (x;, v, 01,0, fi, Vv;). The points in these grids will be numbered
sequentially from 1 to L.
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Figure 11. The adapted mesh of the domain Q

IsoValue

MWo.o4asz2162
Mo.0533797
Mo.0615431

0.0697066

M o.0941969
Mo.1023

Mo.110524
Mo 130032 i

Figure 12. The contour of u(x,y)
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IsoValue
M .0.0773883
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Figure 13. The contour of v(x, y)
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Figure 14. The contour of p(x,y)
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Figure 15. The vector field of the velocity and pressure (u, v, p)T

We solved the corresponding linear programming problem by means of a home-made revised
simplex method [5] with L = 3072, M; = 3, M, = 4 and M; = 9. The optimal value of the cost
function turned to be 7* = 4.7218 x 10~8. We find the control function shown in Figure 7. This
control function was used to design the optimal shape of bypass anastomoses in Figure 8. A numerical
software was used to smooth the sensible part as shown in Figure 9 (see [29] for smoothing methods).
Figure 10 illustrates decrease of the objective function over iterations for solving of the linear
programming problem.

For this example, the approximate optimal shape of bypass, shown in Figure 9, is obtained as
follows:

f(x) =2.0342 — 0.1994x + 0.0973x2 — 0.0706x> + 0.0105x*.

By putting f in the weak form (3) of the stokes equation (1), and using FREEFEM++ software
[12], the contours of u, v, p and the vector field of (v, p)T are presented in Figures 11-15.

9. Conclusion

The theory of optimal control based on notations of the measure theory, functional analysis and
linear programming was applied in order to optimize the shape of the zone of the incoming branch of
the bypass (the toe) into the coronary. We fused the embedding procedure to convert the shape
optimization problem to an optimal control problem. Then, to each admissible control-state, a linear
continuous functional was associated. Correspondence between continuous positive linear functionals
and positive Borel measures lead to an optimization problem in measure space. The transformed
problem in measure space is an appropriate formulation of the optimal shape design problem since it
is a linear programming problem in measure space. The solution of this linear programming problem
was then approximated by the solution of a finite-dimensional linear program which is attractive for
consistent numerical computations. The sub-optimal shape was found from the solution of the
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corresponding linear programming. An interesting feature of this procedure is its straightforwardness.
We estimate the optimal control and so the optimal shape directly, with no need for an initial solution.
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