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On Search for all d-MCs in a Network Flow 
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A number of problems in several areas such as power transmission and distribution, 

communication and transportation can be formulated as a stochastic-flow network (SFN). 

The system reliability of an SFN can be computed in terms of all the upper boundary points, 

called d-MinCuts (d-MCs). Several algorithms have been proposed to find all the d-MCs in an 

SFN. Here, some recent studies in the literature on search for all d-MCs are investigated. We 

show that some existing results and the corresponding algorithms are incorrect. Then, correct 

versions of the results are established. By modifying an incorrect algorithm, we also propose 

an improved algorithm. In addition, complexity results on a number of studies are shown to be 

erroneous and correct counts are provided. Finally, we present comparative numerical results 

in the sense of performance profile of Dolan and Moré showing the proposed algorithm to be 

more efficient than some existing algorithms. 
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1. Introduction 

 

Network reliability theory has been applied extensively in various real-world systems such as 

computer and communication [1, 17], power transmission and distribution [5, 19], transportation [9, 

24]. Reliability evaluation approaches exploit a variety of tools for system modeling and calculation 

of reliability indices such as bounding methods [7, 16, 21], Monte-Carlo method [5, 6, 27], and 

factoring method [14]. Clancy et al. [5] utilized both the Monte-Carlo simulation and the state space 

decomposition method. In [6], Cook and Ramirez-Marquez employed the Monte-Carlo estimation to 

approximate the probability that the system capacity level is more than a demand level d. Crespo et 

al. [7] developed a method to compute upper bounds and utilized the upper bounds to obtain accurate 

estimates of failure probabilities. Doulliez and Jalnoulle [9] applied the Ford-Fulkerson flow 

augmenting method [10] and gave an iterative state-space decomposition algorithm to decompose the 

state space. Jane et al. [16] first proposed an exact decomposition approach to calculate system 

reliability and then modified it to present a practical bounding algorithm for obtainment of lower and 

upper bounds in computing the two-terminal reliability in large networks. 

 

Among most popular tools, some network-based algorithms are proposed in terms of upper 

boundary points, called d-MinCuts (d-MCs); see [10–13, 15, 18, 22, 25, 26, 28–32].  Once all the 

d-MCs are determined, system reliability can be calculated by some exact methods such as 

inclusion-exclusion [20] and sum of disjoint products [3], or approximating methods such as the 

Monte-Carlo simulation [5, 6, 27]. Thus, determination of all d-MCs is an important step in 

computing system reliability. The search for all d-MCs is an NP-hard problem [4]. In [25], Xue 
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proposed an algorithm using discrete function theory, modular decomposition, and system 

enlarging to generate all the d-MCs for a multistate system having multistate components. Jane et 

al. [15] first defined the notion of a d-MC candidate and then proposed an algorithm that first finds 

all the d-MC candidates obtained from each MC and then checks every candidate for being a d-MC. 

Several algorithms were proposed (see [10−13, 15, 18, 22, 25, 26, 28−32]) to obtain d-MC 

candidates in order to determine d-MCs. Generally, these algorithms consist of two stages, first 

gathering all the d-MC candidates and then determining all the d-MCs by testing the candidates. It 

is thus apparent that by having a smaller number of d-MC candidates in the first stage and by 

improving upon the testing time for each candidate in the second stage, the efficiency of an 

algorithm is increased. 

 

Lin [18] showed that maximal elements of all the obtained d-MC candidates from all MCs form 

the set of all the d-MCs and then proposed an algorithm, which is easy to understand and implement. 

This algorithm generates all the d-MC candidates by an enumeration process and then uses a 

comparative method to specify the set of maximal elements, d-MCs, among all the d-MC candidates. 

Yeh [28] first presented an algorithm which was merely based on the definition but unfortunately had 

a defect [22]. Then, by using some network properties, Yeh [29] proposed another algorithm (denoted 

by Algorithm 1 here). However, the new algorithm turned not to be practical. Moreover, we show 

here that the use of some results presented in [29] for solving the d-MC problem is quite expensive. 

Presenting more results, Yeh [30] proposed another algorithm. However, as will be demonstrated 

here, some results and the computed time complexity of the proposed algorithm in [30] are incorrect. 

In [31], an attempt was made to improve the proposed algorithm in [30] but, because of using an 

incorrect result, an incorrect algorithm (denoted by Algorithm 2 here) was proposed which appears 

to lose some d-MCs [26]. Yan and Qian [26] exemplified the fault of Algorithm 2 and proved new 

results to decrease the number of obtained d-MC candidates, to find some d-MCs without the need 

for testing to eliminate the duplicate d-MCs. As a result, an improved algorithm, being more efficient 

than the proposed ones in [28−31], was proposed (see [26] for a comparative study). Later, by 

pointing out the defect of Algorithm 2, Yeh [32] presented a new technique to decrease number of 

obtained d-MC candidates and a novel approach to avoid production of duplicate d-MCs. Then, using 

new techniques, he proposed an algorithm (denoted by Algorithm 3 here) and showed its efficiency 

in comparison with the ones in [15, 18, 26, 28−31]. Forghani and Mahdavi-Amiri [12] proposed a 

simple algorithm for solving the d-MC problem. They also extended the algorithm to networks with 

budget constraint [11] and multi-commodity networks [13]. 

 

Here, by investigating the proposed algorithms and the given results in [29−31], we show some 

existing results and Algorithm 2 to be incorrect and then give their correct versions. Then, a modified 

version of Algorithm 2 is proposed as an efficient algorithm to find all d-MCs in a stochastic-flow 

network. Moreover, the corresponding complexity results in [29−31] are shown to be incorrect and 

their correct versions are presented. We also show the efficiency of our proposed algorithm in 

comparison with Algorithm 3 using the performance profile of Dolan and Moré [8]. 

 

The remainder of our work is organized as follows. Section 2 describes the required notations, 

nomenclature, and assumptions. A brief introduction is provided in Section 3. In Section 4, some 

existing results, their corresponding algorithms and complexity results are investigated, certain flaws 

are detected and corrections are provided. An improved version of Algorithm 2 is given in Section 4 

and its efficiency is shown using the performance profile of Dolan and Moré on the results obtained 

over one hundred randomly generated test problems. Finally, we conclude in Section 5.  
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2. Notations, Nomenclature, and Assumptions  

2.1. Notations 

 

Here, we use the notations, nomenclature, and assumptions given in [29]. The notations are: 

 

𝐺(𝑉, 𝐸, 𝑊) a stochastic-flow network with the set of edges 𝐸 = {𝑒𝑖| 1 ≤ 𝑖 ≤ 𝑚 − 𝑛}, the set 

of nodes 𝑉 = {𝑒𝑖| 𝑚 − 𝑛 + 1 ≤ 𝑖 ≤ 𝑚}, and 𝑊(𝑒𝑖) denoting the max-capacity of 

𝑒𝑖, for 1 ≤ 𝑖 ≤ 𝑚.  

𝑠, 𝑡 source node 𝑠 ∉ 𝑉  and sink node 𝑡 ∉ 𝑉. 

𝑛, 𝑚 numbers of nodes in 𝑉  and elements in (𝑉 ∪ 𝐸),  respectively.  

𝑝, 𝜎 numbers of MCs and d-MC candidates in 𝐺(𝑉, 𝐸, 𝑊),  respectively. 

𝑒𝑖 𝑖th element in (𝑉 ∪ 𝐸). 

𝐶(𝑒𝑖) capacity level of edge 𝑒𝑖 under system-state (vector) 𝐶 = (𝑥1, 𝑥2, . . . , 𝑥𝑚). 

0(𝑒𝑖) a system vector in which the capacity level is 1  for 𝑒𝑖 and 0 for other edges. 

𝐶𝑖 𝑖th MC in 𝐺(𝑉, 𝐸, 𝑊). 

𝐶𝑖𝑗
𝑑  𝐶𝑖𝑗

𝑑 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) is 𝑗th d-MC candidate (system-state vector) generated from 

𝐶𝑖 in 𝐺(𝑉, 𝐸, 𝑊), where 𝑥𝑘 = 𝐶𝑖𝑗
𝑑  (𝑒𝑘) ≤ 𝑊(𝑒𝑘), ∑𝑥𝑘 = 𝑑, for 𝑒𝑘 ∈ 𝐶𝑖, and 𝑥𝑙 =

𝑊(𝑒𝑙), for 𝑒𝑙 ∉ 𝐶𝑖. 

𝐺(𝑉, 𝐸, 𝐶𝑖𝑗
𝑑) network corresponding to 𝐺(𝑉, 𝐸, 𝑊) with 𝐶𝑖𝑗

𝑑  (𝑒𝑘) = 𝑥𝑘 ≤ 𝑊(𝑒𝑘), for 𝑒𝑘 ∈ 𝐶𝑖, 

and 𝐶𝑖𝑗
𝑑  (𝑒𝑘) = 𝑥𝑘 = 𝑊(𝑒𝑘), for 𝑒𝑘 ∉ 𝐶𝑖, if 𝐶𝑖𝑗

𝑑  (𝑒𝑘) = (𝑥1, 𝑥2, . . . , 𝑥𝑚). 

𝑅(𝑉, 𝐸, 𝐶𝑖𝑗
𝑑) residual network corresponding to 𝐺(𝑉, 𝐸, 𝐶𝑖𝑗

𝑑) after sending 𝑑 units of flow from 

node 𝑠 to node 𝑡. 

𝑊(𝐶) max-flow from source node to sink node in 𝐺(𝑉, 𝐸, 𝐶 ), where 𝐶 is a system vector.  

𝜈 max-flow from source node to sink node in 𝐺(𝑉, 𝐸, 𝐶). 

𝑈(𝐶) 𝑈(𝐶) ={𝑒 ∈ (𝐸 ∪ 𝑉)| 𝐶(𝑒) < 𝑊(𝑒)} is the set of unsaturated elements under 

system-state vector 𝐶.  

𝐾𝐶𝑖
(𝐶) capacity of MC, 𝐶𝑖, under system-state vector 𝐶, i.e., 𝐾𝐶𝑖

(𝐶) = ∑ 𝐶(𝑒)𝑒∈𝐶𝑖
.  

| • | number of elements; e.g., |𝑁| is the number of nodes in 𝑁.  

 

3. Preliminaries 

 

The following theorem is an important result concerning search for all d-MCs, originated by Jane 

et al. [15].  

 

Theorem 1.  [15] If 𝐶 is a d-MC, then there exists at least one minimal cut (MC), 𝐶𝑖, so that  

(1) 𝐾𝐶𝑖
(𝐶) = 𝑑, 

(1) (2) 0 ≤ 𝐶(𝑒) ≤  𝑊(𝑒), ∀𝑒 ∈ 𝐶𝑖, 

(3) 𝐶(𝑒) =  𝑊(𝑒), ∀𝑒 ∉ 𝐶𝑖, 

 

We observe that for every d-MC, say 𝐶, there exists at least one MC, 𝐶𝑖, satisfying the relations 

stated in Theorem 1. Thus, in order to determine all d-MCs in a network flow, one can first obtain all 

the system-state vectors satisfying the relations for at least one MC, say 𝐶𝑖, as a d-MC candidate, and 
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then search for d-MCs among them.  It is easily verified that the number of obtained d-MC candidates 

in Theorem 1, corresponding to each MC, is bounded by 

 

𝜎 = 𝑀𝑖𝑛 {(
𝑚 + 𝑑 − 1

𝑑
) , ∏(1 + 𝑀𝑖𝑛{𝑊(𝑒𝑗), 𝑑 })

𝑚

𝑗=1

}. (2) 

 

The proposed algorithms in [12, 14, 18, 22, 26, 28−32], using Theorem 1, first obtain the d-MC 

candidates in the network and then using the definition of d-MC, specify the d-MCs by testing d-MC 

candidates. Thus, generally, an algorithm in search for all d-MCs consists of the following two stages:  

 

1. Obtaining all d-MC candidates based on Theorem 1.  

2. Determining all d-MCs by checking out d-MC candidates, using the definition of d-MC.  

Obviously, every d-MC candidate is not necessarily a d-MC and having a smaller number of d-

MC candidates containing all d-MCs in the first stage can lessen the work in stage 2. On the other 

hand, in stage 2, checking any d-MC candidate 𝐶 for a d-MC requires testing the following two 

conditions:  

(a) 𝑊(𝐶) = 𝑑, (b) 𝑊(𝐶 + 0(𝑒)) > 𝑑, for all 𝑒 ∈ 𝑈(𝐶). 

It is clear that speeding up the procedures for verifications of (a) and (b) in stage 2 can ameliorate 

a proposed algorithm.   

 

4. Corrections 

 

Here, we point out some incorrect published results. We note that an incorrect result is embraced 

within quotations as ‘.’. First, in Section 4.1 we will show flaws in some presented results in [29], 

[30] and [31] and present their corrections. Then, in Section 4.2, we state an incorrect algorithm (the 

proposed algorithm in [31]) and present a modified version of it. Some incorrect complexity results 

(Theorem 7 in [29], Theorem 6 in [30], and Theorem 5 in [31]) are rectified in Section 4.3. Section 

4.4 shows the efficiency of the modified proposed algorithm using numerical results in the sense of 

the performance profile introduced by Dolan and Moré [8]. 

 

4.1. Incorrect Results 

 

It should be kept in mind that an algorithm on search for all d-MCs in a network flow consists of 

two general stages, obtaining d-MC candidates and specifying d-MCs by checking out the candidates. 

To get an efficient algorithm, it has commonly been tried to decrease either the generated d-MC 

candidates in the first stage or the time needed for checking the specifications in the second stage. 

Here, we are going to show that some presented results in [29], [30] and [31] are not generally correct. 

 

In [29], in order to decrease the number of generated d-MC candidates, Yeh stated a result, 

Theorem 3 in [29], and then utilized it in Step 1.1 of Algorithm 1 in [29]. While the use of this result 

is claimed to decrease the number of obtained d-MC candidates,  but, as will be shown later, in reality 

the number of candidates is not changed and the complexity of the algorithm is increased. To explain 

this defect, it should first be noted that theorems 2 and 3 in [29] have typographical errors (𝐶𝑖 is 

printed instead of 𝐶). Also, since, in Theorem 3 in [29], the MC, 𝐶𝑖, is determined to obtain 𝑆𝑖, then 
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condition (4) in this theorem should be written separately after the first three conditions. Hence, 

Theorem 2 below can be a more appropriate statement of Theorem 3 in [29]. Below, note that 𝐶𝑖𝑗 ∝

𝑑(𝐶𝑖) means 𝐶𝑖𝑗 is an obtained d-MC candidate from 𝐶𝑖 and 𝐶𝑖𝑘 = 𝑑(𝐶𝑖) means that 𝐶𝑖𝑗 is an obtained 

d-MC from 𝐶𝑖.  Also, a min 𝑠-𝑡 cut is an MC with a minimal capacity.  

 

Theorem 2. If 𝐶 is a d-MC, then there exists at least one MC, 𝐶𝑖, such that  

 

(1) 𝐾𝐶𝑖
(𝐶) = 𝑑, 

(3) (2) 𝐶(𝑒) ≤  𝑊(𝑒), ∀𝑒 ∈ 𝐶𝑖, 

(3) 𝐶(𝑒) =  𝑊(𝑒), ∀𝑒 ∉ 𝐶𝑖. 

 

Also, if 𝑆𝑖 is a set of all the min 𝑠-𝑡 cuts in 𝐺(𝑉, 𝐸, 𝐶𝑖𝑗), for all the obtained d-MC candidates from 

𝐶𝑖, say 𝐶𝑖𝑗, then  

 

(4) ∑ 𝐶(𝑒) > ∑ 𝐶𝑖𝑗(𝑒), 
∀𝑒 ∈ 𝐶𝑖 ∩ 𝐶∗, ∀𝐶∗ ∈ 𝑆𝑖\𝐶𝑖 ≠ ∅, where ∃𝑒∗ ∈ 𝐶𝑖\𝐶∗ such that 

𝑊(𝑒∗) > 𝐶𝑖𝑗(𝑒∗). 

 

Yeh [29] claimed that using Theorem 2 in Algorithm 1 would lead to a decrease in the number of 

d-MC candidates, which unfortunately turns not to be correct, as explained below. For convenience, 

we first rewrite Algorithm 1 in [29] as Algorithm 1 here.  

 

Algorithm 1 (The proposed algorithm in [29]).  

 

Step 0. Let 𝑗 = 0,  𝐶𝑖𝑗 = ∅, 𝑆𝑖 = ∅, and 𝑉𝑐 = {𝑎|𝑎 ∈ 𝑉, and (𝑣, 𝑎) or (𝑎, 𝑣) 𝑖𝑛 𝐶𝑖𝑗, where 𝑣 ∈ 𝑉}.  

Step 1. Let 𝑗 = 𝑗 + 1 and use the Implicit Algorithm to find a d-MC candidate 𝐶𝑖𝑗  of the following 

mathematical model:  

 

(1) 𝐾𝐶𝑖
(𝐶) = 𝑑, 

(4) 
(2) 𝐶(𝑒) ≤  𝑊(𝑒), ∀𝑒 ∈  𝐶𝑖, 

(3) 𝐶(𝑒) 𝑊(𝑒), ∀ 𝑒 ∉ 𝐶𝑖, 

(4) ∑ 𝐶𝑖(𝑒) > ∑ 𝐶𝑖𝑗(𝑒),  where 𝑒 ∈ 𝐶𝑖 ∩ 𝐶∗, for all 𝐶∗ ∈ 𝑆𝑖\𝐶𝑖 ≠ ∅. 

 

If no such d-MC candidate exists, then halt.   

Step 2. If 𝐶𝑖𝑗 = 𝐶𝑖,𝑗−1 + 0(𝑒𝑥) − 0(𝑒𝑦), then calculate 𝑊(𝐶𝑖𝑗) by using Algorithm 2 in [29], 

otherwise use the max-flow algorithm.   

Step 3. Use the max-flow algorithm to find 𝑊(𝐶𝑖𝑗). If 𝑊(𝐶𝑖𝑗) = 𝑑, then 𝐶𝑖𝑗  is not a d-MC and go 

to Step 1.  

Step 4. Check 𝐶𝑖𝑗  and find a min 𝑠-𝑡 cut set 𝑆𝑖  by using Algorithm 3 in [29]. Go to Step 1.  

 

Focusing on Step 1 of Algorithm 1 (see Theorem 2), it can be found that 𝑆𝑖 equals all the min 𝑠-𝑡 

cuts in 𝐺(𝑉, 𝐸, 𝐶𝑖𝑗), for all the d-MC candidates generated from 𝐶𝑖, i.e., 𝑆𝑖 = ⋃ 𝑆𝑖𝑗𝑗: 𝐶𝑖𝑗 ∝ 𝑑(𝐶𝑖) . This 

means that in order to determine 𝑆𝑖, the following two steps are needed:  

 

1. Generate all the d-MC candidates by 𝐶𝑖, namely 𝐶𝑖𝑗.  

2. Determine all the min 𝑠-𝑡 cuts in 𝐺(𝑉, 𝐸, 𝐶𝑖𝑗), for all the obtained 𝐶𝑖𝑗 in the first step.  
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Note that subscript 𝑖 in 𝑆𝑖 corresponds to MC, 𝐶𝑖. Thus, in order to determine 𝑆𝑖, all the producible 

d-MC candidates by 𝐶𝑖 should be obtained. Therefore, not only the application of Theorem 2 does not 

decrease the number of obtained d-MC candidates, but it rather increases the complexity of the 

problem as a result of determining all the d-MC candidates and all the min s-t cuts for every d-MC 

candidate 𝐶𝑖𝑗  in 𝐺 (𝑉, 𝐸, 𝐶𝑖𝑗). According to theorems 1 and 2, one can realize that inequality (4) in 

Theorem 2, the fourth restriction in Step 1 of Algorithm 1, does not decrease the number of d-MC 

candidates.  

 

To have an intuitive understanding, consider the experiment conducted by Yeh (Section 7 in [29]) 

for comparison of algorithms 0 and 1 in [29]. In this experiment, it is seen that the number of obtained 

d-MC candidates by both algorithms 0 and 1 in [29] is the same (they were presented under the same 

column, NCan).  However, considering the above explanations, it seems that the results listed in column 

NCan of tables 2 and 3 in [29] are correct (i.e., the numbers of d-MC candidates for both algorithms 0 

and 1 in [29] should be the same). Thus, use of Theorem 2 turns to be more expensive than use of 

Theorem 1 for obtaining the d-MC candidates.  

 

In [30], Yeh employed concept of residual network to lessen the number of usages of the max-

flow algorithm [2] and also presented some new results to improve his proposed algorithm in [28]. 

However, two stated results (‘Theorem 6’ and ‘Corollary 3’) are incorrect. Since these results are 

concerned with complexity results, we discuss them in Section 4.3. Other incorrect results in [30] are 

‘Lemma 3’ and ‘Theorem 5’. Here, we show that they need one more assumption to be applicable, in 

general.  

 

‘Lemma 3’ [30]: Let 𝐶 be a d-MC candidate in 𝐺(𝑉, 𝐸, 𝑊). If there is a path between the source node 

and the sink node in 𝑅(𝑉, 𝐸, 𝐶 + 0(𝑒𝑖)), for 𝑒𝑖 ∈ 𝐸, then 𝑊(𝐶 + 0(𝑒𝑖)) > 𝑑. 

 

‘Theorem 5’ [30]: Let 𝐶 be a d-MC candidate in 𝐺(𝑉, 𝐸, 𝑊). If there is a path between the source 

node and the sink node in 𝑅(𝑉, 𝐸, 𝐶 + 0(𝑒𝑖)), for all 𝑒𝑖 ∈ 𝑈(𝐶), then 𝐶 is a real d-MC; otherwise, 𝐶 

is not a real d-MC. 

 

According to the definition of d-MC candidate, it is readily concluded that 𝑊(𝐶) ≤ 𝑑, for every 

d-MC candidate, say 𝐶. On the other hand, to construct the residual network 𝑅(𝑉, 𝐸, 𝐶), and 

consequently send d units of flow from s to t, we need to have 𝑊(𝐶) ≥ 𝑑. Thus, for ‘Lemma 3’ and 

‘Theorem 5’ to be correct, the assumption 𝑊(𝐶) = 𝑑 should be added. To have an intuitive 

understanding, consider Figure 1 as a network flow. It is obvious that 𝐶3 = {𝑒1, 𝑒3, 𝑒4, 𝑒6} is an MC 

and 𝐶31 = (0, 2, 3, 1, 3, 3) is a 7-MC candidate obtained from 𝐶3. It is straightforwardly seen that 

𝑊(𝐶) = 5, and hence the residual network 𝑅(𝑉, 𝐸, 𝐶31) cannot be constructed by sending a flow of 

7 units. Therefore, ‘Lemma 3’ and ‘Theorem 5’ need an additional assumption, which is 𝑊(𝐶) = 𝑑.  

 

We give the correct form of ‘Theorem 5’ in [30] as Theorem 3 below. The correct version of 

‘Lemma 3’ can be obtained similarly by adding the assumption 𝑊(𝐶) = 𝑑. 

 

Theorem 3. Let 𝐶 be a d-MC candidate in 𝐺(𝑉, 𝐸, 𝑊) and 𝑊(𝐶) = 𝑑. 𝐶 is a d-MC if and only if 

there is a path between the source node and the sink node in 𝑅(𝑉, 𝐸, 𝐶 + 0(𝑒)), for all 𝑒 ∈ 𝑈(𝐶). 
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Figure 1. Network flow for examples 1, 2, and 3 with 𝑊 = (3, 2, 1, 1, 2, 3, 3) 

To improve the proposed algorithm in [30], Yeh [31] presented new results to propose an 

improved algorithm (Algorithm 2 here), which may lose some d-MCs. In fact, in order to decrease 

the number of generated d-MC candidates and avoid generation of duplicate d-MCs, Yeh presented 

‘Corollary 3’ and ‘Theorem 4’, both of which turn to be incorrect. Here, their faults are exemplified 

and their correct versions are presented. 

 

‘Corollary 3’ [31]: Let 𝐶 be a d-MC (candidate) in 𝐺(𝑉, 𝐸, 𝑊 ). If ∑ 𝐶∗(𝑒) ≤  ∑ 𝐶(𝑒), for all 𝑒 ∈
𝑈(𝐶), then d-MC candidate 𝐶∗(≠ 𝐶) is not a real d-MC. 

 

The following example invalidates ‘Corollary 3’. 

 

Example 1. Consider Figure 1 as s network flow. Note that 𝐶1 = {𝑒1, 𝑒4} is an MC and it is clear that 

𝑋 = (2, 2, 1, 0, 2, 3, 3) and 𝑋∗ = (1, 2, 1, 1, 2, 3, 3) are 2-MC candidates generated from 𝐶1. 

Since 𝑋 ≠ 𝑋∗, 𝑈(𝑋) = {𝑒1, 𝑒4}, and ∑ 𝑋∗(𝑒)𝑈(𝑋) ≤  ∑ 𝑋(𝑒)𝑈(𝑋) , ‘Corollary 3’ concludes that 𝑋∗  is 

not a 2-MC, whereas it is easily observed that 𝑋∗ is indeed a 2-MC. 

 

Thus, ‘Corollary 3’ is not necessarily valid. In fact, in ‘Corollary 3’, it is not necessarily concluded 

from ∑ 𝐶∗(𝑒)𝑈(𝐶) =  ∑ 𝐶(𝑒)𝑈(𝐶)  that 𝐶∗ is not a d-MC. Hence, the following lemma is a correct 

version of ‘Corollary 3’.  

 

Lemma 1. Let 𝐶 be a d-MC (candidate) in 𝐺(𝑉, 𝐸, 𝑊 ). If ∑ 𝐶∗(𝑒)𝑒∈ U(C ) <  ∑ 𝐶(𝑒)𝑒∈ U(C ) , then   d-

MC candidate 𝐶∗(≠ 𝐶) is not a real d-MC. 

 

Proof. Since ∑ 𝐶∗(𝑒)𝑒∈ U(C ) <  ∑ 𝐶(𝑒)𝑒∈ U(C ) , there exists an element in 𝑈(𝐶), say 𝑒′, so that 

𝐶∗(𝑒′) < 𝐶(𝑒′) < 𝑊(𝑒′) and consequently, 𝑒′ ∈ 𝑈(𝐶∗). Hence, 𝐶∗ + 0(𝑒′) ≤ 𝐶 and thus, 𝑊(𝐶∗ +
 0(𝑒′)) ≤ 𝑊(𝐶) ≤ 𝑑. Therefore, 𝐶∗ cannot be a d-MC.  □ 

 

Yan and Qian [26] illustrated through an example that ‘Theorem 4’ in [31] had a defect. Here, a 

correct version of ‘Theorem 4’ is presented, exemplifying its flaw.  

 

‘Theorem 4’ [31]: If 𝑋 is a (real) d-MC in 𝐺(𝑉, 𝐸, 𝑊 ) obtained from MC, 𝐶, then each d-MC  𝑋∗(≠
𝑋) must satisfy 𝑋∗(𝑒) ≥ 𝑋(𝑒), for all 𝑒 ∈ 𝐶, and there is at least one component 𝜀 ∈ 𝐶 s.t. 𝑋∗(𝜀) >
𝑋(𝜀).  
 

Utilizing ‘Theorem 4’ of [31] in Step 6 of ‘Algorithm 2’ will result in the omission of some d-

MCs. To see this point, consider the following example.  

 

Example 2. Note that in Figure 1, 𝐶1 = {𝑒1, 𝑒4} and 𝐶∗ = {𝑒2, 𝑒3, 𝑒4} are MCs and 𝑋 =
(1, 2, 1, 1, 2, 3, 3) and 𝑋∗ = (3, 1, 1, 0, 2, 3, 3) are 2-MC candidates generated from 𝐶 and 𝐶∗, 
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respectively. It is obvious that 𝑋 and 𝑋∗are 2-MCs, whereas it can be observed that if one utilizes 

‘Theorem 4’, then either 𝑋 or 𝑋∗ is omitted. Indeed, any one of the 2-MC candidates 𝑋 or 𝑋∗, 

generated earlier, will result in the omission of the other one, by using ‘Theorem 4’.  

 

In fact, in ‘Theorem 4’, it cannot be necessarily concluded from the hypothesis that  𝑋∗(𝑒) ≥
𝑋(𝑒), for all 𝑒 ∈ 𝐶.  Thus, the following lemma is presented as a correct version of ‘Theorem 4’.  

 

Lemma  2. If 𝑋 is a d-MC in 𝐺(𝑉, 𝐸, 𝑊), obtained from MC, 𝐶, then for each d-MC  𝑋∗(≠ 𝑋), there 

is at least one element 𝑒 ∈ 𝑈(𝐶) such that  𝑋∗(𝑒) > 𝑋(𝑒).  

 

Proof. To reach a contradiction, let us suppose that 𝑋∗(𝑒) ≤ 𝑋(𝑒), for all 𝑒 ∈ 𝑈(𝐶). Since for all 𝑒 ∉
𝑈(𝐶), 𝑋∗(𝑒) ≤ 𝑊(𝑒) = 𝑋(𝑒), we have 𝑋∗(𝑒) ≤ 𝑋(𝑒), for all 𝑒 ∈ 𝑉 ∪ 𝐸. Now, since 𝑋∗ ≠ 𝑋, there 

exists at least one element, say 𝑒′, in 𝑉 ∪ 𝐸 so that 𝑋∗(𝑒′) < 𝑋(𝑒′). Hence, 𝑋∗ + 0(𝑒′) ≤ 𝑋 and 

consequently, 𝑊(𝑋∗ + 0(𝑒′)) ≤ 𝑊(𝑋) = 𝑑, which contradicts the fact that 𝑋∗ is a d-MC and 

therefore, the proof is complete. □ 

 

In addition to ‘Corollary 3’ and ‘Theorem 4’, ‘Theorem 2’ in [31] has a (probably typographical) 

error. First, its flaw is demonstrated through an example and then a correct version is proposed and 

proved. 

 

‘Theorem 2’ [31]:  Assume that 𝐶 is a d-MC candidate in 𝐺(𝑉, 𝐸, 𝑊) with 𝑊(𝐶) = 𝑑. If 𝐶∗(𝑒) ≥
𝐶(𝑒), for all 𝑒 ∈ 𝑉 ∪ 𝐸 and d-MC candidate 𝐶∗(≠ 𝐶), then 𝐶 is a real d-MC.  

 

Example 3. Consider Figure 1 as a network flow. It is clear that 𝐶1 = {𝑒1, 𝑒3, 𝑒5} and 𝐶2 = {𝑒1, 𝑒4} 

are MCs. It can be verified that 𝑋 = (1, 2, 0, 1, 1, 3, 3) and 𝑋∗ = (1,2,1,1,2,3,3)  are 2-MC candidates 

generated from 𝐶1 and 𝐶2, respectively. Since 𝑊(𝑋) = 2 and 𝑋∗(𝑒) ≥ 𝑋(𝑒), for all 𝑒 ∈ 𝑉 ∪ 𝐸, 

‘Theorem 2’ concludes that 𝑋 is a 2-MC, which is not true. As a result, ‘Theorem 2’ is not necessarily 

valid.  

 

Now, if one uses “𝐶∗ ≤ 𝐶 , for each d-MC candidate 𝐶∗” instead of the assumption “𝐶(𝑒) ≤
𝐶∗(𝑒), for all 𝑒 ∈ 𝑉 ∪ 𝐸 and d-MC candidate 𝐶∗(≠ 𝐶)” in ‘Theorem 2’, then ‘Theorem 2’ will be 

correct. The correct result is given as Theorem 4 below.  

 

Theorem 4. Assume that 𝐶 is a d-MC candidate in 𝐺(𝑉, 𝐸, 𝑊 ) with 𝑊(𝐶) = 𝑑. If 𝐶 ≥ 𝐶∗, for 

every d-MC candidate 𝐶∗, then 𝐶 is a d-MC.  

 

It should be noted that Theorem 4, being a correct version of ‘Theorem 2’, is a special case of the 

following theorem, proved in [18].  

 

Theorem 5. [18] Every maximal element among all d-MC candidates is a d-MC.  

 

In Theorem 5, the assumption 𝑊(𝐶) = 𝑑 and the existence of the inequality 𝐶∗ ≤ 𝐶, for every d-

MC candidate 𝐶∗, are not necessary, while being needed in Theorem 4. Another significant point to 

consider is that it is possible that 𝐶 and 𝐶∗ are d-MCs, but the inequalities 𝐶 ≤ 𝐶∗  and 𝐶∗ ≤ 𝐶 do not 

hold.  
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4.2. On Algorithm 2 

 

Here, for convenience, we first rewrite the proposed algorithm in [31], Algorithm 2 here, and 

illustrate its defect in Section 4.2.1 and then provide a correcting modified version in Section 4.2.2.  

 

4.2.1. Incorrect Algorithm  

 

To improve the proposed algorithm in [30], Yeh [31] presented a new result, ‘Theorem 4’, to decrease 

the number of obtained d-MC candidates. However, as shown before, the presented result was 

incorrect, and consequently Algorithm 2 turns to be incorrect as well. Yan and Qian [26] illustrated 

the fault of Algorithm 2 through an example and then, without modifying the incorrect result in [31], 

presented a new result to decrease the number of obtained d-MC candidates by finding Lower 

Capacity Limits (LCLs) for some elements in 𝑉 ∪ 𝐸. Also, Yeh [31] pointed out the defect of 

Algorithm 2 and presented a new technique for finding the LCLs and a novel approach to avoid 

generation of duplicates. Here, in order to modify Algorithm 2, we first give Algorithm 2 as proposed 

in [31] and then show its defect again over the same example given in [31].  

 

Algorithm 2 (The proposed algorithm in [31]).  

 

Input: All MCs 𝐶1, 𝐶2,…, 𝐶𝑝 of a stochastic-flow network 𝐺(𝑉, 𝐸, 𝑊) with given unreliable nodes 

and |𝐶𝑖| ≤ |𝐶𝑗|, for 𝑖 >  𝑗.  

Output: All d-MCs.  

Step 1: Let 𝑖 = 𝑗 = 1, 𝑄 = {(the capacity of 𝑒)| 0 ≤  (the capacity of 𝑒) ≤ 𝑊(𝑒), for all 𝑒 ∈ (𝐸 ∪
𝑉 )}, and arrange the MCs according to their element numbers and the number of element capacities 

that are not less than d.  

Step 2: Find a feasible solution, say 𝑋, generated from 𝐶𝑖, using Theorem 1. If no such solution exists, 

then go to Step 7.  

Step 3: If 𝑊(𝑋) = 𝑑, then 𝑋  is not a d-MC and return to Step 2 to find the next feasible solution. 

Step 4: If 𝐶𝑖𝑗
𝑑(𝑒𝑘) = 𝑊(𝑒𝑘), then go to Step 6.  

Step 5: If there is no path from node 𝑠 to node 𝑡 through 𝑒𝑖 in 𝑅(𝑉, 𝐸, 𝐶𝑖𝑗
𝑑 + 0(𝑒𝑖)), then 𝐶𝑖𝑗

𝑑   is not a 

d-MC and return to Step 2 to find the next feasible solution. Otherwise, go to Step 6.  

Step 6: If 𝑘 < 𝑚, then 𝑘 ← 𝑘 + 1 and go to Step 4. Otherwise, 𝐶𝑖𝑗
𝑑   is a real d-MC, and let 𝑄 = 𝑄 ∪

{the capacity of 𝑒 is greater than 𝐶𝑖𝑗
𝑑(𝑒), for all 𝑒 ∈ 𝑈(𝐶𝑖𝑗

𝑑(𝑒)}. 

Step 7: If 𝑖 < 𝑝, then 𝑖 ← 𝑖 + 1, 𝑗 = 1 and go to Step 2. Otherwise, halt.  

 

As pointed out in Section 4.1, making use of ‘Theorem 4’ in Algorithm 2 may miss some d-MCs 

from the desired set of d-MCs. Here, by considering Example 2 in [31] (for which Yeh obtained all 

the 2-MCs by Algorithm 2), this shortcoming will be explained completely. For an easy access, the 

example network is shown as Figure 2. The order of the findings of d-MC candidates generated from 

𝐶𝑖  in Step 2 of the algorithm not being specified, then in Example 2 in [31], one can assume that the 

2-MC candidate 𝐶11 = (3, 1, 1, 1, 1) is obtained before the other 2-MC candidates. In that case, since 

𝑈(𝐶11) = {𝑒2, 𝑒5} and 𝐶11 is a 2-MC, Step 6 in the algorithm adds two new constraints, 𝑥2 > 1 and 

𝑥5 > 1, to the set 𝑄 (see Step 6 in the proposed algorithm in [31]). This results in missing the other 

2-MCs, 𝐶12 = (3, 2, 1, 1, 0) and 𝐶13 =  (3, 0, 1, 1, 2). In the next iteration, if 𝐶21 = (2, 2, 1, 0, 2) is 

considered, then the algorithm gives that 𝑥1 > 2 and 𝑥4 > 0, and consequently the algorithm misses 

the other 2-MCs (the complete solution is given in Table 1).  
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Table 1. Final obtained results of solving Example 2 in [31] by Algorithm 2 

MC 2 -MC candidate A 2 -MC? The new constraint 

𝑪𝟏 =  𝑫𝟐 = {𝒆𝟐, 𝒆𝟓} 

𝐶11 = (3, 1, 1, 1, 1) 
No other 2-MC candidate 

can be generated from 𝐶1 

Yes 𝑥2 > 1,  𝑥5 > 1 

𝑪𝟐 =  𝑫𝟏 = {𝒆𝟏, 𝒆𝟒} 

𝐶21 = (2, 2, 1, 0, 2) 

No other 2-MC candidate 

can be generated from 𝐶2 

Yes 𝑥1 > 2,  𝑥4 > 0 

𝑪𝟑 =  𝑫𝟑 =  {𝒆𝟏, 𝒆𝟑, 𝒆𝟓} None − − 

𝑪𝟒 =  𝑫𝟒 =  {𝒆𝟐, 𝒆𝟑, 𝒆𝟒} None − − 

 

 

 
Figure 2. A network flow with 𝑊 = (3, 2, 1, 1, 2) 

 

Note that, without writing the complete and exact solutions for Example 2 in [31], Yeh claimed 

that the proposed algorithm in [31] (Algorithm 2 here) determined all 2-MCs in this example, whereas 

it is now apparent that this is not correct.  

 

Note that Yeh [31] stated how the MCs must be rearranged before being used in the algorithm 

(“all MCs are rearranged in increasing order of their element numbers. If there is a tie, then the one 

with element capacities greater than or equal to 𝑑 is arranged first [31].”). Since 𝐷3 = {𝑒1, 𝑒3, 𝑒5} has 

2 elements 𝑒1 and 𝑒5 with their capacities being greater than or equal to 𝑑 = 2 and 𝐷4 =  {𝑒2, 𝑒3, 𝑒4} 

has just one element 𝑒2 with the capacity 𝑑 = 2, 𝐷3 is arranged before 𝐷4 and thus, 𝐶3 = 𝐷3  and 

𝐶4 = 𝐷4 are obtained. Yeh incorrectly set 𝐶3 =  𝐷4 and 𝐶4 = 𝐷3.  

 

4.2.2.  A Modified Version of Algorithm 2 

 

Two modified versions of Algorithm 2 have been proposed by Yan and Qian [26] and Yeh [32]. 

As mentioned earlier, due to the use of  ‘Theorem  4’,  Algorithm  2 misses some d-MCs. Note that 

‘Theorem 4’ was presented to decrease the number of obtained d-MC candidates, which unfortunately 

turned not to be correct. To this aim, Yan and Qian [26] presented a new result and used it to obtain 

all the LCLs at the beginning of their algorithm. The proposed approach in [26] works correctly, but 

needs extra work at the beginning of the algorithm. Also, Yeh [32] presented a new technique for 

finding all the LCLs, but as will be shown below, his technique does not work properly. In fact, by 

obtaining LCL, 𝐿(𝑒) corresponding to every element 𝑒 ∈ 𝑉 ∪ 𝐸, one can use the following system, 

instead of the system (1), in Theorem 1 for generating all the d-MC candidates:  
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(1) 𝐾𝐶𝑖
(𝐶) = 𝑑, 

(5) (2) 𝐿(𝑒)  ≤ 𝐶(𝑒) ≤  𝑊(𝑒), ∀𝑒 ∈ 𝐶𝑖, 

(3) 𝐶(𝑒) =  𝑊(𝑒), ∀𝑒 ∉ 𝐶𝑖, 

 

Establishing a theorem (Theorem 1 in [32]), Yeh [32] proposed a technique, given below as 

Technique 1, for determining all the LCLs and d-MCs with only one unsaturated arc.  

 

Technique 1: Find all the LCLs and d-MCs with one unsaturated arc.  

 

Step 0. Let 𝑖 = 1.  

Step 1. Let 𝐿∗ = 0, 𝑈∗ = 𝑀𝑖, and 𝑥𝑗 = 𝑀𝑗, for all 𝑗 = 𝑖.  

Step 2. Let the value of 𝑥𝑖 be the greatest integer less than or equal to (𝐿∗ + 𝑈∗)/2.  

Step 3. If 𝑉(𝑋) = 𝑑, then let 𝐿𝑖 = 𝑥𝑖 + 1, and go to Step 6.  

Step 4. If 𝑉(𝑋) > 𝑑, then let 𝑈∗ = 𝑥𝑖, and go to Step 2.  

Step 5. If 𝑉(𝑋) < 𝑑, then let 𝐿∗ = 𝑥𝑖, and go to Step 2.  

Step 6. If 𝑖 < 𝑚, then let 𝑖 = 𝑖 + 1, and go to Step 1, else stop.  

 

Now, using an example, we show that Technique 1 does not work properly. Consider Figure 1 as 

a network flow and find its 2-MCs.  Employing Technique 1 to find 𝐿(𝑒7), we obtain:  

 

Step 1. 𝐿∗ = 0, 𝑈∗ = 3, and 𝑋 = (3, 2, 1, 1, 2, 3, 𝑥1).  

Step 2. 𝑥1 = 1 and 𝑋 = (3, 2, 1, 1, 2, 3, 1).  

Step 3. Since 𝑊(𝑋) = 2, we have 𝐿(𝑒7)  =  1 +  1 =  2, which is the desired result.  

 

Next, to find L(𝑒4), we have:  

 

Step 1. 𝐿∗ = 0, 𝑈∗ = 1, and 𝑋 = (3, 2, 1, 𝑥4, 2, 3, 3).  

Step 2. 𝑥4 = 0 and 𝑋 = (3, 3, 3, 0, 1, 2, 2).  

Step 4. Since 𝑉(𝑋 ) = 3 > 2, we have 𝑈∗ = 0.  

Step 2. 𝑥4 = 0 and 𝑋 = (3, 2, 1, 0, 2, 3, 3).  

Step 4. Since 𝑉(𝑋) = 3 > 2, we have 𝑈∗ = 0.  

⋮ 
 

As seen, the algorithm does not terminate.  

 

Hence, the proposed technique by Yeh [32] (Technique 1 above) may turn to work improperly. In 

fact, Technique 1 is faced with a problem when we have U*=0. Thus, to modify Technique 1, it is 

only needed to correct Step 2 as follows. 

 

Step 2. If U*=0, then go to Step 6, else let the value of 𝑥𝑖 be the greatest integer less than or equal to 

(𝐿∗ + 𝑈∗)/2. 

 

Using this technique, Yeh proposed another algorithm (denoted by Algorithm 3 here) to solve d-

MC problem and demonstrated its efficiency in comparison with the proposed algorithms in [15, 18, 

22, 26, 28-31] with respect to time complexity. Next, we first state the proposed algorithm in [32] as 

Algorithm 3, and then propose a new improved algorithm as a modified version of Algorithm 2. 
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Algorithm 3 (the proposed algorithm in [32]).  

 

Step 0: Let 𝑖 = 1, and find 𝐿(𝑒), for all 𝑒 ∈ 𝑉 ∪ 𝐸, using Technique 1, and let Ω={ the related d-MC 

generated from Technique 1}.  

Step 1: Find all feasible solutions, say 𝑋𝑖𝑗, for j=1, 2, …, J, generated from 𝐶𝑖, satisfying the 

following system:  

 

(1) 𝐾𝐶𝑖
(𝑋𝑖𝑗) = 𝑑, 

 (2) 𝐿(𝑒)  ≤ 𝑋𝑖𝑗(𝑒) ≤  𝑊(𝑒), ∀𝑒 ∈ 𝐶𝑖, 

(3) 𝑋𝑖𝑗(𝑒) =  𝑊(𝑒), ∀𝑒 ∉ 𝐶𝑖, 

 

If no such solution exists, then go to Step 6.  

Step 2: If ∑ 𝑊(𝑒) = 𝑑𝑒∈𝑋 , then all d-MC candidates generated from Ci are d-MC, and go to Step 5.  

Step 3: If 𝑊(𝑋𝑖𝑗) ≠ 𝑑, then 𝑋𝑖𝑗 is not a d-MC where j=1,2,…, J. If none of them is a real d-MC, 

then return to STEP 1.  

Step 4: Verify whether d-MC candidate Xij is a real d-MC for j=1,2,…, J, by using Theorem 3. If 

none of them is a real d-MC, then return to STEP 1. 

Step 5: According to Lemma 4, for j=1,2,…, J, if there is 0 < 𝑘 < 𝑖 such that 𝑈(𝑋𝑖𝑗) ⊆ 𝐶𝑘, then 𝑋𝑖𝑗 

is a duplicate d-MC. Find non duplicates and add them to Ω. 

Step 6: If 𝑖 < 𝑝, then let 𝑖 = 𝑖 + 1, and go to Step 2, else Ω is a d-MC set, and stop. 

 

Note that we have considered Algorithm 3 with the correct version of Technique 1. Computing 

the complexity results, Yeh [32] demonstrated that Algorithm 3 is more efficient than the other 

previous proposed ones in [15, 18, 22, 26, 28-31].  

 

Now, we are ready to present our improved algorithm. By using the correct version of ‘Theorem 

4’, as presented in the previous section, a simple technique is provided to find all the LCLs.  Although 

Lemma 2 is the correct form of ‘Theorem 4’, but it is not applicable to Algorithm 2. The following 

lemma, directly obtained from Lemma 2 and useful for Algorithm 2, is established.  

 

Lemma 3. If 𝑋 is a d-MC in 𝐺(𝑉, 𝐸, 𝑊) obtained from MC, 𝐶, and |𝑈(𝐶)| = 1, cosidering 𝑈(𝐶 ) =
{𝑒′}, then each d-MC 𝑋∗(≠ 𝑋) satisfies 𝑋∗(𝑒′) > 𝑋(𝑒′).  

 

Proof. Since 𝑈(𝐶) has only one element, the proof directly follows from Lemma 2. □ 

 

According to Lemma 3, one can find the LCLs when a d-MC candidate with only one unsaturated 

arc is obtained.  For instance, in Figure 1, 𝐶1 = {𝑒1, 𝑒4} is an MC and 𝑋11 = (3,2,1,0,2,3,3) and 𝑋12 =
(2,2,1,1,2,3,3) are two 3-MCs obtained from 𝐶1. Since 𝑈 (𝑋11) = {𝑒4}, by using Lemma 3, it is 

deduced that 𝐿(𝑒4) = 0 + 1 = 1 and similarly, since 𝑈(𝑋12) = {𝑒1}, we find that 𝐿(𝑒1) = 2 + 1 =
3.  

 

It is easily verified that the probability of obtaining the d-MC candidates with only one unsaturated 

arc from an MC, say 𝐶, is increased as the capacity of 𝐶, 𝐾𝐶(𝑊), is decreased. Thus, to enhance the 

effectiveness of Lemma 3 in the modified algorithm, all MCs are arranged in a non-decreasing order 

of their capacities.  

 

A notable common weak point of the proposed algorithms in [28−31] was the production of 

duplicate d-MCs. Yan and Qian [26] compared all the d-MCs obtained by the algorithm for 

eliminating the duplicates. However, the time complexity of the proposed algorithm increased 
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to 𝑂(𝑚𝑝2𝜎2). To liquidate this deficiency, Yeh [32] presented a novel technique based on the 

following lemma stated in [32].  

 

Lemma 4. [32] Let 𝑋 be a d-MC generated from MC, 𝐶𝑖. If 𝑈(𝑋) ⊆ 𝐶𝑗, then 𝑋 is also a d-MC 

generated from MC, 𝐶𝑗.  

 

In accordance with Lemma 4, if 𝑋𝑖𝑗 is a d-MC candidate obtained from 𝐶𝑖 and there is 0 < 𝑘 < 𝑖 

such that 𝑈(𝑋𝑖𝑗) ⊆ 𝐶𝑘, then 𝑋𝑖𝑗 was obtained from 𝐶𝑘 previously and it is now a duplicate. Therefore, 

to avoid production of the duplicate d-MCs, we should gather the d-MCs obtained from 𝐶𝑖, say 𝑋𝑖𝑗, 

for 𝑖 = 1, 2, . . . , 𝑝, such that 𝑈(𝑋𝑖𝑗) ⊈ 𝐶𝑘, for 0 < 𝑘 < 𝑖.  

 

Using Lemma 3 to find LCLs and applying Lemma 4 to avoid production of the duplicates, a 

modified version of ‘Algorithm 2’ is proposed as Algorithm 4 below.  

 

Algorithm 4 (a modification of the proposed algorithm in [31], Algorithm 2 here).  

 

Input: All MCs.  

Output: All d-MCs.  

Step 1: Let 𝑖 = 𝑗 = 𝑘 = 1, 𝑄 = 𝜙, 𝐿(𝑒) = 0, for all 𝑒 ∈ 𝑉 ∪ 𝐸, and arrange all MCs in a non-

decreasing order of their capacities.  

Step 2: Find a feasible solution, say 𝑋𝑖𝑗, generated from 𝐶𝑖, satisfying the following system:  

 

(1) 𝐾𝐶𝑖
(𝑋𝑖𝑗) = 𝑑, 

 (2) 𝐿(𝑒)  ≤ 𝑋𝑖𝑗(𝑒) ≤  𝑊(𝑒), ∀𝑒 ∈ 𝐶𝑖, 

(3) 𝑋𝑖𝑗(𝑒) =  𝑊(𝑒), ∀𝑒 ∉ 𝐶𝑖, 

 

If no such solution exists, then go to Step 7.  

Step 3: If 𝑈(𝑋𝑖𝑗) = {𝑒} has only one element, then set 𝐿(𝑒) = 𝑋𝑖𝑗(𝑒) + 1.  

Step 4: If there is 0 < 𝑘 < 𝑖 such that 𝑈(𝑋𝑖𝑗) ⊆ 𝐶𝑘, then 𝑋𝑖𝑗 is a duplicate d-MC, and there is no 

need to test it, let 𝑗 = 𝑗 + 1 and go to Step 2.  

Step 5: If 𝑊(𝑋𝑖𝑗) = 𝑑, then 𝑋𝑖𝑗  is not a d-MC, let 𝑗 = 𝑗 + 1 and go to Step 2.  

Step 6: If 𝑋𝑖𝑗(𝑒𝑘) = 𝑊(𝑒𝑘), then go to Step 8, else go to Step 7.  

Step 7: If there is no path from node 𝑠 to node 𝑡 through 𝑒𝑘in 𝑅(𝑉, 𝐸, 𝑋𝑖𝑗 + 0(𝑒𝑘)), then 𝑋𝑖𝑗 is not a 

d-MC, let 𝑗 = 𝑗 + 1 and go to Step 2.  

Step 8: If 𝑘 < 𝑚, then let 𝑘 = 𝑘 + 1 and go to Step 6, else 𝑋𝑖𝑗  is a d-MC, let 𝑄 = 𝑄 ∪ {𝑋𝑖𝑗}, 𝑘 = 1, 

𝑗 = 𝑗 + 1 and go to Step 2.  

Step 9: If 𝑖 <  𝑝, then let 𝑖 = 𝑖 + 1, 𝑗 = 1, 𝑘 =  1 and go to Step 2, else stop (𝑄 is the set of all the 

d-MCs with no duplicates).  

 

Now, Example 2 in [31] is solved again by Algorithm 4. For brevity, the final solution is given in 

Table 2. As seen in Table 2, three LCLs were obtained by Algorithm 4 and, without losing any 2-

MC, the number of candidates decreased to 8, which is exactly the number of 2-MCs. Moreover, the 

algorithm did not find any duplicate 2-MC.  
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4.3. On Complexities 

 

Here, the complexity results of the proposed algorithms in [29], [30], and [31] are closely 

investigated.  

 

4.3.1. Time Complexity of Algorithm 1  

 

According to Lemma 2 in [30], the time complexity of Algorithm 2 in [29] is 𝑂(𝑛). Moreover, 

according to lemmas 5 and 6 in [29], the time complexity of Algorithm 3 in [29] is 𝑂(𝑚|𝐶𝑖|) =
𝑂(𝑚2). Considering Algorithm 1 here, it is seen that it calculates 𝑊(𝐶𝑖𝑗) in steps 2 and 3 and checks 

the second condition given in the definition of d-MC in Step 4. Thus, to determine each d-MC, both 

algorithms 2 and 3 in [29] are implemented and consequently the time complexity for steps 2 to 4 

is 𝑂(𝑚2𝑛). According to Lemma 5 in [29], the time complexity of finding 𝑆𝑖 in 𝐺(𝑉, 𝐸, 𝐶𝑖𝑗) for each 

𝐶𝑖𝑗 is 𝑂(𝑛). Now, let 𝑝 be the number of MCs in 𝐺(𝑉, 𝐸, 𝑊) and 𝜎 be the upper bound of the obtained 

d-MC candidates from each MC through verification of relations (1) ̶ (3) in Step 1.  Therefore, 𝑝𝜎 is 

an upper bound for the number of all solutions, the 𝐶𝑖𝑗, obtained in Step 1. As a result, since we need 

to find 𝑆𝑖 in Step 1, for each 𝐶𝑖𝑗, the time complexity of Algorithm 1 is 𝑂(𝑚2𝑛2𝑝𝜎), and hence the 

following theorem is a correct version of ‘Theorem 7’ in [29].  

 

Theorem 6. The time complexity of Algorithm 1 is 𝑂(𝑚2𝑛2𝑝𝜎). 

 

In addition, according to Theorem 6, it is clearly concluded that the complexity result given by 

‘Corollary 3’ in [30], 𝑂(𝑚2𝑝𝜎), is incorrect and the correct time complexity of the algorithm that 

combines theorems 3 and 4 in [30] (Algorithm 1 here) is 𝑂(𝑚2𝑛2𝑝𝜎). 

 

4.3.2. Time Complexities of the Proposed Algorithms in [30], [31], and Algorithm 4  

 

We first compute the time complexity of Algorithm 2 (the proposed one in [31]) in detail, and then 

find the time complexity of the proposed algorithm in [30] and Algorithm 4 using the obtained result.  

 

Table 2. Final results of Example 2 in [31] obtained by Algorithm 4 

MC 2 -MC candidates Is a 2-MC ? Is a duplicate? The new LCLs 

𝑪𝟏 = 𝑫𝟐 = {𝒆𝟐, 𝒆𝟓} 

𝐶11 = (3, 1, 1, 1, 1) 

𝐶12 = (3, 2, 1, 1, 0) 

𝐶13 = (3, 0, 1, 1, 2) 

Yes 

Yes 

Yes 

No 

No 

No 

− 

𝐿(𝑒5) = 1 

𝐿(𝑒2) = 1 

𝑪𝟐 = 𝑫𝟏 = {𝒆𝟏, 𝒆𝟒} 
𝐶21 = (2, 2, 1, 0, 2) 

𝐶22 = (1, 2, 1, 1, 2) 

Yes 

Yes 

No 

No 

− 

𝐿(𝑒1) = 2 

𝑪𝟒 = 𝑫𝟒

= {𝒆𝟐, 𝒆𝟑 𝒆𝟒} 

𝐶41 = (3, 2, 0, 0, 2) 

𝐶42 = (3, 1, 1, 0, 2) 

𝐶43 = (3, 1, 0, 1, 2) 

Yes 

Yes 

Yes 

No 

No 

No 

− 

− 

− 

𝑪𝟑 = 𝑫𝟑

= {𝒆𝟏, 𝒆𝟑 𝒆𝟓} 
None − − − 
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● Time complexity of the proposed algorithms in [30] and [31]: In [31], Yeh in Theorem 5 

erroneously claimed that the time complexity of his proposed algorithm, Algorithm 2 here, 

was 𝑂(𝑚𝑛𝑝𝜎). We will show that the time complexity of Algorithm 2 is indeed 𝑂((𝑚2 +

𝑛2√𝑚)𝑝𝜎).  
 

Since the number of MCs is 𝑝, then the time complexity of arranging MCs in Step 1 is 𝑂(𝑝log𝑝).  

In Step 2, Algorithm 2 finds a d-MC candidate using an implicit enumeration to solve the existing 

system given in Theorem 1. Although solving the system (1) in Theorem 1 has its own complexity, 

the authors in [12, 15, 18, 22, 26, 28-32] commonly disregard this complexity when calculating the 

time complexity of their algorithms. Therefore, we do the same in our analysis. The best time 

complexity of the max-flow algorithm [2], and so the time complexity of Step 3 is 𝑂(𝑛2√𝑚). It is 

obviously seen that the time complexity of Step 4 is 𝑂(1). Since 𝑈(𝐶𝑖𝑗
𝑑) is bounded by m (the number 

of arcs in 𝐸) and the time complexity of searching for a path from the source node to the sink node is 

𝑂(𝑚), the time complexity of Step 5 is 𝑂(𝑚2). The time complexity of updating the set 𝑄, and hence 

the time complexity of Step 6 is 𝑂(𝑚). The time complexity of Step 7 is vividly 𝑂(1). Thus, the time 

complexity of steps 3 ̶ 6 is 𝑂(𝑚2 + 𝑛2√𝑚). Since steps 3 ̶ 6, the main steps in the algorithm, are 

executed 𝑝𝜎 times the time complexity of Algorithm 2 is 𝑂(𝑝𝑙𝑜𝑔𝑝 + (𝑚2 + 𝑛2√𝑚)𝑝𝜎) = 𝑂((𝑚2 +

𝑛2√𝑚)𝑝𝜎), disregarding the computing complexity corresponding to Step 2 as mentioned above.  

Therefore, the following theorem gives the correct result.  

 

Theorem 7. The time complexity of ‘Algorithm 2’ is 𝑂((𝑚2 + 𝑛2√𝑚)𝑝𝜎). 
 

As stated in [31], the time complexity of the proposed algorithms in [30] and [31] are the same 

(see Theorem 6 in [30] and Theorem 5 in [31]). Therefore, according to Theorem 7 here, ‘Theorem 

6’ in [30] is incorrect and the following theorem gives the correct result. 

 

Theorem 8. The time complexity of the proposed algorithm in [30] is 𝑂((𝑚2 + 𝑛2√𝑚)𝑝𝜎). 
 

● Time complexity of Algorithm 4: It is noted that except for steps 3 and 4, Algorithm 4 is similar 

to Algorithm 2. The time complexity of Step 4 is 𝑂(𝑚𝑝2𝜎) [31] and the time complexity of Step 3 is 

vividly 𝑂(𝑚). As a result, using the above explanations, the time complexity of Algorithm 4 is 

𝑂(𝑚𝑝2𝜎) +  𝑂 ((𝑚2 + 𝑛2√𝑚)𝑝𝜎) =  𝑂(𝑚𝑝2𝜎). Since 𝑂(𝑝) = 𝑂(2𝑛−2) and 𝑂(𝑛) ≤ 𝑂(𝑚) ≤

𝑂(𝑛2) [23], 𝑂 ((𝑚2 + 𝑛2√𝑚)𝑝𝜎) ≤ 𝑂(𝑚𝑝2𝜎), and consequently we have the following result.  

 

Theorem 9. The time complexity of Algorithm 4 is 𝑂(𝑚𝑝2𝜎). 
 

It should be kept in mind that the proposed algorithms in [28−31] may obtain duplicate d-MCs, 

and thus, similar to the proposed algorithm in [26], these algorithms need to compare all the obtained 

d-MCs to remove the duplicates, increasing the time complexity of the algorithms to 𝑂(𝑚𝑝2𝜎2). 

Therefore, 𝑂(𝑚𝑝2𝜎2) is the time complexity of the proposed algorithms in [26, 28−31] in the case 

of not generating any duplicate. Thus, according to Theorem 9, Algorithm 4 is more efficient than the 

proposed algorithms in [18, 22, 26, 28−31]. Yeh [32] also showed his proposed algorithm (Algorithm 

3 here) is more efficient than the ones proposed in [18, 22, 26, 28−31]. In fact, the time complexity 

of Algorithm 3 is 𝑂(𝑚𝑝2𝜎) [32] which is the same as the one for Algorithm 4. To show the efficiency 

of Algorithm 4 in comparison with the other algorithms, in the next section we generate one hundred 

random test problems and compare algorithms 3 and 4 in the sense of the performance profile of 

Dolan and Moré [8].  
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4.4. Numerical results 

 

Here, we make some numerical comparisons between our MATLAB implementation of 

algorithms 3 and 4. All the experiments were done on the computer, Intel(R) Core(TM) 2 Duo CPU 

2.40 GHz, with 2 GB of RAM. Since the time complexity of both algorithms 3 and 4 are the same 

(𝑂(𝑚𝑝2𝜎)), to show the practical efficiency of our proposed algorithm, we compare these algorithms 

on one hundred randomly generated test problems and give a summary of the obtained results in the 

sense of Dolan and Moré’s performance profile [8]. To generate random networks, we use Algorithm 

5 below in MATLAB R2011b. Since we need a connected network for the d-MC problem, Algorithm 

5 first generates a path from node 1 as the source node to node 𝑛 as the sink node, and then adds up 

the remaining random arcs. 

 

Algorithm 5: Generate a random connected network (using MATLAB). 

 

function [𝑀] = CreateNetwork( 𝑛, 𝑐, 𝑒, 𝑝) 

𝑀 = zeros(𝑛, 𝑛); 

𝐴 =  2: 𝑛; 

prevNode =  1; 

for 𝑖 =  1: 𝑛 − 1 

        𝑡 =  1 + floor(rand ∗ (𝑛 −  𝑖)); 

        newNode =  𝐴(𝑡); 

        𝑀(prevNode, newNode) = 1 + floor(rand ∗  𝑐); 

        𝑀(newNode, prevNode) = 𝑀(prevNode, newNode);    

        𝐴(𝑡)  =  0; 

        𝐴 =  𝐴(𝐴 >  0); 

        prevNode = newNode; 

end;   

edgesCount = 𝑛 −  1; 

for 𝑖 =  1: 𝑛 

for 𝑗 =  𝑖 + 1: 𝑛 

   if edgesCount <  𝑒 && 𝑀(𝑖, 𝑗)  ==  0  

      if rand <=  𝑝 

         𝑀(𝑖, 𝑗)  = floor(rand ∗  𝑐); 

         𝑀(𝑗, 𝑖)  =  𝑀(𝑖, 𝑗); 

         edgesCount = edgesCount + 1; 

      end; 

   end 

end 

end; 

end. 

 

Since the d-MC problem is NP−hard and a personal computer has its limitations, we generated 

only random networks of medium-size with 𝑛 = 5, 6, 7, 8, 9 as the number of nodes. We also 

considered 16 as the maximum number of arcs for each network and generated 20 random networks 

associated with each value of  𝑛. Moreover, the demand level 𝑑 in each network was assigned to be 

a random integer-valued variable between 𝜈/2 and 𝜈 with 𝜈 being the maximum flow of the network. 
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Figure 3. CPU time performance profiles for algorithms 3 and 4 

 

To have an appropriate comparison, we made use of the performance profile of Dolan and Moré 

[8]. For any time 𝑇, the performance profile gives 𝑝𝑒𝑟(𝑇), as the percent of solved problems in time 

𝑇 by the algorithms. Using this profile, an algorithm is preferred to another one when its performance 

graph falls above the other [8]. Figure 3 gives a diagram of the performance profile. We considered 

a 100×2 matrix in which column 1 and 2 have all the running times of algorithms 1 and 2, 

respectively. We divided each row into the minimum number in the row and obtained a new matrix 

of running times. Then, we considered the maximum number in the new matrix as the length of the 

horizontal axis. The vertical axis gives the percentage of solved problems in the desirable time. In 

Figure 3, the horizontal axis shows that Algorithm 4 solved some problems 8 times faster than 

Algorithm 3, and the vertical axis illustrates that Algorithm 4 solved more than 60 percent of the test 

problems faster than Algorithm 3. As a result, Algorithm 4 has shown to be more efficient than 

Algorithm 3. 

 

5. Conclusion 

 

Evaluating reliability of a network flow or determining probability that the maximum flow of 

network is not less than a specified demand level 𝑑 can be done in terms of d-MinCuts (d-MCs).   

Several algorithms were proposed in the literature to search for and determine all upper boundary 

points in network flows.  Here, some published studies were investigated and a number of flaws in 

their results were pointed out. In addition, the correct versions of the results were given and a modified 

algorithm correcting an existing incorrect algorithm was presented. The efficiency of the modified 

algorithm was established and compared to other existing algorithms using the Dolan and Moré 

performance profile [8] on the numerical results obtained over randomly generated test problems. 

Moreover, the time complexities given for some existing algorithms were shown to be incorrect and 

the correct time complexities were established.  
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