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On the Behavior of Damped Quasi-Newton Methods
for Unconstrained Optimization

M. Al-Baali'’, L. Grandinetti?

We consider a family of damped quasi-Newton methods for solving unconstrained
optimization problems. This family resembles that of Broyden with line searches, except
that the change in gradients is replaced by a certain hybrid vector before updating the
current Hessian approximation. This damped technique modifies the Hessian
approximations so that they are maintained sufficiently positive definite. Hence, the
objective function is reduced sufficiently on each iteration. The recent result that the
damped technique maintains the global and superlinear convergence properties of a
restricted class of quasi-Newton methods for convex functions is tested on a set of standard
unconstrained optimization problems. The behavior of the methods is studied on the basis
of the numerical results required to solve these test problems. It is shown that the damped
technique improves the performance of quasi-Newton methods substantially in some robust
cases (as the BFGS method) and significantly in certain inefficient cases (as the DFP
method).
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1. Introduction

We study the behavior of the recent class of damped quasi-Newton methods, proposed by
Al-Baali [7] for solving the unconstrained optimization problem

minf (x),

xeR
where f is a nonlinear differentiable function. This damped (D-) class resembles that of
Broyden with line searches (see, for example, Dennis and Schnabel [11], Fletcher [12] or
Nocedal and Wright [26]) except that the change in gradients y, =0,,,—0, is replaced
by the hybrid damped-technique

Y« = Ok +(1_(”k)Bk§k ) €))
where ¢, e(O,l] is a parameter, before updating a Hessian approximation B, .
Here, g, = Vf (%), B, ® VZf (%), & =X, — X, and X, is the current estimate of a
solution of the problem.
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We notice that thevalue of ¢, =1 (or 7, =y, ) reduces the damped class of methods to

the Broyden family of methods. The latter family contains the standard BFGS and DFP
methods, while the former class contains for some ¢, #1 the corresponding D-BFGS and

D-DFP methods, respectively. The D-BFGS method was applied to unconstrained
optimization problems for the first time by Al-Baali [4, 5] who extended the D-BFGS
method of Powell [21] for constrained optimization in augmented Lagrange and SQP
methods (for further detail on the latter case, see for example Fletcher [12] Nocedal and
Wright [20] or Gill and Leonard [14].

Although the BFGS method is robust and has several useful numerical and theoretical
properties, it suffers from a certain type of ill-conditioned problems. Therefore, several
modification techniques have been introduced to the BFGS method see for example Yuan,
[25] Zhang et al. [26] Li and Fukushima[16] Xu and Zhang [23] Zhang and Xu [27] Gill
and Leonard [14] Al-Baali, [4,5] Wei et a. [22] Yabe et a. [24] Li et al. [17] Al-Baai and
Khalfan [8] Al-Baali and Grandinetti [7] and the references therein). Since the latter paper
also shows that the above D-technique is preferable to the other modifications for 7 in

the BFGS method, here we consider testing not only the D-technique when introduced
not only to the inefficient DFP method, but also to other members of the Broyden family
of methods. The remainder of our work is organized as follows. In Section 2, we describe the
class of damped methods and consider some safeguarded schemes which maintain the useful
theoretical and numerical properties of the BFGS method. Section 3 describes some
numerical results obtained by applying a selection of methods to a set of standard test
problems. It is shown that the proposed damped technique improves the performance of
quasi-Newton method substantially in some robust cases (like the BFGS method) and
significantly in certain inefficient cases (like the DFP method). Finally, Section 4 gives our
concluding remarks. Sections 5 and 6 are appendices.

2. Damped Quasi-Newton Methods

Hee we describe the D-Broyden class of quasi-Newton methods. At the beginning of each
iteration, a positive definite Hessian approximation B, is used to define the search
direction s, by solving the system of linear equations B, s =—g, . Then, a step-length ¢, is
chosen such that the following Wolfe- Powell conditions hold:

fo =Fia > 060 9 @
and

S v 2—(1-0,) 8 9y, ©)
where o, €(0,0.5) and o, €(0,,1). Note that the |atter inequality ensures that the curvature

condition 5; 7 >0 holds so that the positive definiteness property holds for both the damped

and ‘undamped’ Broyden class of methods. For the next iteration, B, is updated to a new
Hessian approximation,

_ Bk§k5kT B, n 77k77kT

+0,.W, W, , 4
8BS S&n. “

Bk+l = By
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71 Oy 5: B\
where 7, isgiven by (1), and 6, and ¢, are parameters. This class of damped methods is

Wk:(é‘:Bké‘k)ﬂz( T B O ja ®)

reduced to the well-known Broyden family of methods, if ¢, =1 (or y, =y,), for all

k , and to the BFGS and DFP methods, if, in addition, 6§, =0 and 6, =1, respectively. The
corresponding damped methods are referred to as D-BFGS and D-DFP, respectively.

The above D-Broyden methods is proposed by Al-Baali [7] by extending the D-BFGS
method of Al-Baali [4, 5] for unconstrained optimization on the basis of the
D-BFGS method of Powell [21] for constrained optimization. Al-Baali [5] uses the damped
technique (1) with the choice

%, P <1l-0o,,
1-p
O
¢k = —3 , pk >1+O-3, (6)
P -1
1, otherwise,
where
T
7 O
A S 7
pk 5I;|'Bk5k ( )

0<o,<1, and o, >0, whichisreduced to that of Powell if o, =0.8 and o, = 0.

For sufficiently small values of o, ando,, the choice (6) ensures that 7, 5, is sufficiently
close to the positive value of 5: B, o, and, hence, the damped formula (4) maintains Hessian
approximations sufficiently positive definite. However, the Broyden family satisfies this
property only under the restrictions that y, 5, >0 and 6, >-1/a, , where

T TRp-1
48Oy _nBon (8)
O 7x O Vi
Since a, 20 (by the Cauchy inequality), the above useful property holdsin particular for
the nonnegative members 6, =0 and 6, =1. Another well-known member of the Broyden
family is the symmetric rank 1 (SR1) update, defined by 6, =1/(1-b, ) which does not
belong to the convex class of updates Since this update does not guarantee the above
positive definiteness property and negative values of 6, seem to work well in practice [28]
Al-Baali [2] suggested the switching BFGS/SR1 update, given by the non-positive choice
L , h, <1,
1-b,
0, otherwise.

a, =bh -1, b =

0, = 9
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Although the corresponding method of (9) converges globally for convex objective
functions, its performance is better than that of the robust BFGS method (see for

instance LukSan and Spedicato [18] and the next section). The latter two choices for 6,

aso define the damped D-SR1 and D-(BFGS/SR1) updates, respectively. These damped
updates satisfy the positive definiteness property for sufficiently small values of ¢, .

We now outline the damped-Broyden family of quasi-Newton methods.
Algorithm 2.1. Damped-Broyden Family

0. Give a starting point X, ,a symmetric positive-definite initial Hessian
approximation B, values of o, and o, and set k ==1.
1. Terminate if a convergence test holds.
Compute the search direction s, =-B_'g, .
Find a step-length «, and a new point X, = X, +,S, such that the
following strong Wolfe-Powell conditions hold:
fra < i+ oo O Se |gk+1Sk| <—0,0,5 - (10)
Compute S+ 7 and D

Update B, by the D-Broyden formula (4).

4
5. Choose values for 6, and ¢, and compute 7, .
6
7. Set ki=k+1 and goto Step 1.

This algorithm is reduced to the normal Broyden family of methods if the choice ¢, =1 is
used in Step 5 for all iterations (which is also obtained by substituting o, =1 and
o,=00 into (6)). This choice with, in particular, 6, =0 yied the standard BFGS
method, while ¢, #1, for some k, yields a D-BFGS method. We use in Step 3 the strong

Wolfe-Powell conditions, as commonly used in practice, which imply the Wolfe-Powell
conditions (2)-(3). Note that Al-Baali [7] aso extends the global and suprerlinear
convergence result of Byrd et al. [9], that a restricted Broyden family of methods has for
convex functions, to the class of damped methods.

3. Numerical Analysis

In this section, we test the performance of Algorithm 2.1 for some values of the
updating parameter 6, , which was implemented, as in Al-Baali and Grandinetti [7] in
Fortran 77, using the Lahey software with double precision arithmetic. In Step 0 of the
algorithm, we let the initial Hessian approximation B, = |, the identity matrix, and use

the values of o, =10"* and o, =0.9 in (10). The run was stopped in Step 1 when either
2
Jo]” < max (11,])
where € is the machine epsilon (z 10’16), f.., = f, , or the number of iterations reached
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10°. In Step 3, we used the scheme (2. 6. 4) of Fletcher [12] for obtaining an acceptable step-
length ¢, for the strong Wolfe-Powell conditions (10). This scheme is based on some

function interpolations and firstly tries Fletcher's initial estimate (2. 6. 8) for «, , which is
reduced to one in the limit. In Step 5, some values for 6, were considered as below. The
default value of ¢, =1 was usualy used, but for the damped technique is considered we

let ¢, be defined by formula (6) with several values of o, and o, chosen on the basis of

some results reported in Al-Baali [7] Here, we report the results for the following choices
which differ from those considered by Al-Baali and Grandinetti [7] for the D-BFGS
method. We let

0.5, p, <05 and |6 |a, >05,
o, ={max(min(05,5),v), p, <05 and |6, |a, >05 (11)
1, otherwise,

where v =10"" and
0.5/1- p,|

NAEY .

We aso let o, be given by (11) and (12) with <, 05, 1, and |6,| replaced by >, e, oo,

&= (12)

and max (|6,|,1), respectively. The small value of v =10 was used to avoid destroying

the character of the damped technique. Indeed, this value was never used in our
experiments, since we observed that the smallest value for o, and o, was 107, which
rarely occurred in practice. Thus, we employed the damped technique when the values of the
scalars [1- p,| and bh, —1 became sufficiently away from zero, because Al-Badli [7]

showed that these scalars tend to zero and ¢, — 1, when the damped methods converge to
the solution superlinearly for convex functions.

To define the parameter 6, in Step 5, we tried several selections for 6, . Here, we

report the results for the three well known choices of 6, =0, 6, =1 and (9), which

maintain the positive definite Hessian approximations. These choices yield the BFGS, DFP
and BFGS/SR1 and their corresponding D-BFGS, D-DFP and D-(BFGS/SR1) methods,
respectively. We applied these methods (as in Al-Baali and Grandinetti, [7]) to a set of 89
standard test problems, with their names, citations and dimensions (in the range [2,100])
listed in Table 3 in Appendix B.

Asexpected, the DFP method was inefficient, since it failed to solve about 36% of the test
problems and converged very dowly for several other test problems. However, the other
methods solved all the test problems successfully.

To examine the behavior of the successful methods, the numerical results are summarized
in tables 1 and 2. Table 1 represents the ratios of the total number of line searches, function
evaluations and gradient evaluations required by each method to solve al the test

problems in the set to that required by the BFGS method (denoted by T,, T, and T,
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respectively). These ratios clearly show that the damped methods are preferable to the
undamped ones. They indicate that the total number of |, f and g evaluations required to
solve al the tests in the set by the D-BFGS, D-(BFGS/SR1) and D-DFP methods are at
most 57%, 62% and 76%, respectively, of those required by the BFGS method. Thus, the
damped technique improves the performance of the BFGS method substantially and DFP
method significantly.

Since the ratios in Table 1 do not adequately illustrate the performance of the methods,
we also present Table 2. The column headingsA , A; and A, stand for certain ‘average

ratios related, respectively, to the number of |, f and g evaluations required to solve each
test problems by the methods versus those required by the BFGS method, using the fair
rule of Al-Baali (see for example Al-Baali [3] and Appendix B). A value of A <1

(smilarly for A; and Ag) indicates that the performance of a method compared to that
of BFGSis improved by 100(1- A )% in terms of the number of |.

Although the corresponding ratios for each method in Table 2 are larger than those in
Table 1, these ratios maintain the following observations. The damped technique plays an
important role for improving the performance of robust and inefficient quasi-Newton
methods. We observe that the performance of the D-DFP method is a little better than
the standard BFGS method, the other three methods perform substantially better than
BFGS and D-BFGS is the most efficient method. The latter method performs about 24%,
17% and 23% better than the BFGS method in terms of the number of |, f and ¢
evaluations, respectively. Although BFGS/SR1 performs much better than the BFGS
method, D-(BFGS/SR1) also performs a little better than BFGS/SR1 in terms of | and
g and dlightly in terms of f . This observation indicates that the damped technique does

not destroy the features of robust methods. We also note that the most efficient D-BFGS
method is dlightly better than the D-(BFGS/SR1) method.

Table 1. Ratios of total cost as compared to BFGS

Method T, T, T,

D-BFGS 0.532 0573 [0.538
D-DFP 0.736 [0.764 [0.774
BFGS/SR1 0.810 [0.866 [0.932

D-(BFGS/SR1) [0.552 [0.615 [0.579

Table 2. Average ratios as compared to BFGS

Method A A A,

D-BFGS 0.763 [0.826 0.767
D-DFP 0.924 0.971 |0.936
BFGS/SR1 0.841 [0.888 0.872

D-(BFGS/SR1) (0.780 [0.865 [0.802
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4. Conclusion

We showed that the damped technique works well in practice. The technique improves
the performance of inefficient methods significantly and robust methods substantially. The D-
BFGS method was recommended, athough further experiments are required of finding

typical values for o, and o, or other useful choices for the damped parameter ¢, . It is also
worth introducing the self-scaling technique to the efficient damped methods in a manner

similar to that of Al-Baali and Khalfan [8] who showed that combining the damped and
self-scaling techniques yielded a substantial improvement of the BFGS method.
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Appendix A

We now describe the rule of Al-Baali [1], and also for example [3], for comparing two
methods (say M1 and M2) on the basis a set of pair numbers, ssy p, and ¢, for

i=1,2,...,m, related to M1 and M2, respectively. In this paper, m (=89) denotes the
number of test problems and both p, and ¢, denote, for &l i, either the number of line
searches, function evaluations or gradient evaluations required to solve a test i by the M1
and M2 methods, respectively (the latter method is referred to BFGS and the former one
to another method under comparison).
1 m P
Al-Baali modifies the well-known average ratio EZizl q_ to the following modified

‘average’ measure,

1 m
= — r_1
A=t
where I, has the form
&’ P <0,
G

2—&, otherwise,
G;
Itisassumed that r, =1 if both p;,q; — oo, whichisalso used in thefollowing cases. If both
M1 and M2 methods either failed or converged to two different solutions, for some test i,
then we set ; =1 (i.e, p;, =0Q;). Thus, the A, ratio takes all kinds of terminations into

account and always belongs to theinterval [0, 2]. A value of A; <1 indicates that the M2
method reduces the cost of (i.e., improves over) M1 by 100(1— AR)% (or equivalently it is
1/ A, times better than M1). If A, >1, then M1 is better as in the latter sense but
with A; replaced by(2— A;). Note that if the inequality p, <g; holds for al i, then A
is reduced to the usual average of the m ratios (p; /q;).

Appendix B

Here we present Table 3 consisting of some details on the set of test problems used in
this paper. The first column consists of codes and numbers of the tests given in the
original sources.One of these tests is proposed by Fletcher and Powell [13] another can be
seen in Grandinetti [15] and the other tests have been collected and described by Morg, et
a. [19] and Conn, et d. [10]. The second column of the table records the number of
variables n et a. used for each function. We note that the dimensions of 59 test problems
range from 2 to 30 and those of the remaining 30 test problems are either 40 or 100. The
symbol T indicates that the same test function is used again, but with the initial point

multiplied by 100. Thethird column of the table consists of the function names.
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Table 3. The set of test problems

Test Code* Dimension n Function's name
MGHS3 2 Powell badly scaled
MGH4 2 Brown badly scaled
MGH5 2 Bede
MGH7 3t Helical valley
MGH9 3 Gaussian
MGH11 3 Gulf research and development
MGH12 3 Box three-dimensional
MGH14 41 'Wood
MGH16 41 Brown and Dennis
MGH18 6 Biggs Exp 6
MGH20 6,9,12,20 Watson
MGH21 21,101,201, 40, 100 |Extended Rosenbrock
MGH22 41,121,201, 40, 100 |Extended Powell singular
MGH23 10,20, 40, 100 Penalty |
MGH25 107,207, 40, 100  |Variably dimensioned
MGH26 10,20, 40, 100 Trigonometric of Spedicato
MGH35 8,9,10,20, 40, 100 |Chebyquad
CGT1 8 Generalized Rosenbrock
CGT2 25 Another chained Rosenbrock
CGT4 20 Generalized Powell singular
CGT5 20 Another generalized Powell singular
CGT10 30, 40, 100 Toint's seven-diagonal generalization of
Broyden tridiagonal
CGT11 30, 40, 100 Generalized Broyden tridiagonal
CGT12 30, 40, 100 Generalized Broyden banded
CGT13 30, 40, 100 Another generalized Broyden banded
CGT14 30, 40, 100 Another Toint's seven-diagonal
of Broyden tridiagonal
CGT15 10 Nazareth
CGT16 30, 40, 100 Trigonometric
CGT17 8, 40, 100 Generalized Cragg and Levy
CH-ROS 101,201,40, 100 |Chained Rosenbrock
TRIGFP 10,20, 40, 100 Trigonometric of Fletcher and Powell

* MGHm: Collected by Moré et al. [19] where m denotes the number of the

problem test

CGTm: Collected by Conn et al. [10] where m denotes the number of the

problem test

CH-ROS: Given by Grandinetti [15]
TRIGFP: Given by Fletcher and Powell [13].
t: Two initia points were used; the standard point x and 100x.
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