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Abstract 
We extend the concept of dynamic pricing by integrating it with 

overselling with opportunistic cancellation option, within the framework of 
dynamic policy. Under this strategy, to sell a stock of perishable product (or 
capacity) two prices are offered to customers at any given time period. 
Customers are categorized as high-paying and low-paying ones. The seller 
deliberately oversells its capacity if high paying customers show up, even when 
the capacity is already fully booked by low-paying customers. In that case, the 
sale to some low-paying customers is canceled, although an appropriate 
compensation must be provided. A dynamic programming approach is applied to 
formulate and solve this problem. We develop two models for continuous and 
periodic pricing, depending on the frequency of price changing. The advantage 
of this system over dynamic pricing model is investigated through some 
numerical examples. We also study some structural properties of the optimal 
policies. 

Key words: Dynamic Pricing; Overselling; Opportunistic Cancellation; 
Dynamic programming.   

1. Introduction 
The generic model of dynamic pricing, introduced by Kincaid and Darling [10], is 

applicable in a variety of industries, especially perishable items producers. It can enhance 
the revenue of the firms which produce either manufactured goods with short shelf life 
(such as seasonal goods) or service products (such as flight seats). In dynamic pricing, the 
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price of a given product changes within some sale horizon in order to maximize the total 
revenue earned. This is done by determining the optimal trade-off between two types of 
potential losses,  

 
losing the chance of a better price in future because of selling at a lower price now, 

 
losing the opportunity of an earlier low price offer or in other words the spoilage 
loss-waiting to sell at a higher price. 

The concept of overselling with opportunistic cancellation was proposed by 
Biyalogorsky et al. [1] for the first time. In their model, each unit can be sold in either 
period 1 (now) or period 2 (later). In the first period, the customers are offered two 
options:  

 

Buy the product at the lower price with a cancellation right by the seller, i.e., giving 
the seller the right to cancel the sale for some compensation. 

 

Buy the product at the higher price without the cancellation right by the seller. 
In the second period, only the higher price is proposed, based on the assumption that 

the late customers are willing to pay higher prices (technically speaking, they have higher 
reservation price).  This model shows that overselling with opportunistic cancellation can 
increase profits and improve allocation efficiency. Biyalogorsky et al. [1] also derived a new 
rule to optimally allocate the capacity to customers when overselling is used. They also 
showed that overselling helps limit the potential yield and spoilage losses.  

1.1. Problem Definition 
In this paper, we introduce an integration of dynamic pricing and overselling with 

opportunistic cancellation. It is assumed a given number of units of a product (or capacity) is 
available to sell within a finite time horizon. Demand for this product is stochastic and 
depends on the time of sale as well as its price. Products or capacities left unsold at the end 
of the sale horizon have the salvage value of zero.  

We develop two models, depending on whether price changing is continuous or 
periodical.  

Unlike dynamic pricing models which offer only one price in each sale period, in our 
proposed model customers have two price options. On the other hand, in the model of 
Biyalogorsky et al. [1], although two prices are offered, these prices are unchanged during 
the sale horizon, while in our model price can change in each sale period. In fact, the 
higher price is controlled dynamically. From this point of view, our model fits within the 
framework of dynamic pricing concepts.  

We also investigate the efficiency of the integrated dynamic pricing system (when the 
overselling with opportunistic cancellation option is considered.) This is done through the 
comparison of a dynamic pricing system with and without overselling option. Some 
structural properties of the optimal policies are also derived to get managerial insights into 
the problem of product or capacity pricing. 

Our second model considers periodic pricing policies when overselling with 
opportunistic cancellation is considered. The numerical experiments show that by making 
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5 to 10 reviews it can be expected to have a difference of less than 1% between the 
expected revenues in our two models. 

For a thorough discussion of dynamic pricing models in revenue management, the 
readers are referred to Bitran and Caldenety [4] and Elmaghrabi and Keskinocak [7].  

Structural properties of optimal policies in classical dynamic pricing models is studied 
by Gallego and Van Ryzin [8], Bitran and Mondeschein [3], Zhao and Zheng [15] and 
Chatwin [6]. Considering a homogeneous demand model that assumes the demand 
intensity to be a time-invariant function of price, Gallego and Van Ryzin [8] proved the 
following structural properties of the optimal policy with one price: 

 

concavity of the expected revenue function, 

 

inventory monotonocity (at any given time, the optimal price decreases in the 
number of items left. 

Bitran and Mondschein [3] and Zhao and Zheng [15] proved the inventory 
monotonocity and concavity of the expected revenue function with a demand model 
employed by Kincaid and Darling [10]. Chatwin [6] showed that the concavity and 
inventory monotonocity properties hold when the price set is discrete, in a model similar to 
the model of Zhao and Zheng [15] with the assumption that the customer arrival rate 
decreases in time. Bitran and Mondeschein [3] considered periodic pricing policies when a 
single price is offered to customers and it can be modified at most K

 

times during the sale 
horizon and the length of each period is also given.  

There is another type of pricing models studied more extensively, known as 
multiclass yield management models. In these models, one can sell some products (for 
example seats in an airline flight) with different prices at the same time due to market 
segmentation. These models can be classified into two categories of static and dynamic 
ones. In static models, it is assumed that the customers who arrive earlier are willing to pay 
the lowest possible price. This type of yield management models were studied first by 
Littlewood [11], see Brumelle and McGill [5] and Robinson [12] for a thorough literature 
review of static models. In dynamic models, a customer can buy one or more classes (not 
only the lowest class) based on his reservation price, which depends on the time of the sale. 
For a discussion of these models, one can refer to Lee and Hersh [9], Bitran and 
Mondschein [2] and Subramanian et al [14].  

The remainder of this paper is organized as follows. In Section 2, the first model in 
which price can change continuously is introduced and some of its properties are discussed. 
Periodic pricing model is presented in Section 3. We illustrate the proposed models 
through some examples in Section 4. Finally in Section 5, some directions of future 
research and conclusion are given.     

2. Continuous pricing model 

A stock (or capacity) of C units must be sold within a time frame, called sale period or 
sale horizon. The value of any stock unit which is not sold during that period will be zero 
afterwards. The total sale period is divided into T discrete intervals, called pricing periods. 
These periods are indexed by t

 

and run backward in time, i.e. period 0t represents the 
end of sale period,  i.e., no more chance for the sale of the product.  
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It is assumed that at most one customer may arrive in each period. The probability of 
arrival in period t  is denoted by t , Tt ,0 .    

2.1 Reservation price 
The maximum amount that a customer is willing to pay for purchasing one unit is called the 

reservation price of that customer. Obviously, a customer purchases only if his reservation price is 
higher than the price set by the seller. On the other hand, since different customers have different 
reservation prices, the reservation price of arriving customers is a random variable. Let 

(.)tF denote the cumulative probability distribution of the reservation price of the customers who 

arrive to purchase one unit in period .t

 

Then,  the definition of reservation price implies  
that the probability that an arriving  customer refuses to purchase (because of the price), is 

( ),t tF p

 

where tp is the price set in period t . 

2.2 Pricing policy 
In each period, the firm offers two prices p and p , where .p p

 

The first price 

p must be chosen from a set of possible prices, called pS . Every member of pS is higher 

than p . Customers have the option of accepting either p or p , which obviously depends 
on their reservation price. If a customer accepts the higher price of p , then the purchased 
unit is delivered (or allocated) to him immediately. This customer is called type I. However, 
the other customers (type II) who accept the lower price of p

 

have to wait till the end of 
sale horizon ( 0t ). Then, the remaining stocks not purchased by type I customers are 
delivered to the customers of type II. Any type II customers who has placed an order but 
not received the stock at the end of sale horizon will be refunded and also be paid a penalty 
of  r. Due to the uncertainty of stocks delivery to the customers of type II, some of them 
refuse to place orders, even if their reservation price is higher than p . The probability that 
a customer of this type with the reservation price higher than p accepts this price and 
waits till the end of sale period is . At the end of the sale horizon, the firm would deliver 
the purchased units to the customers of type II, if it could not find enough customers of 
type I. 

If tp and '
tp are set for the pricing period of t , then the definition of reservation 

price implies that the probability of any purchase by a customer of type I and II  are 

(1 ( )) ( )t t t tF p F p and '( ( ) ( ))t t t tF p F p , respectively. The objective is to control the 
type I price of p dynamically in order to maximize the expected profit of the firm (total 
selling revenue minus the total penalty paid to the customer of type II.) 

The maximum number of units (out of C units of stock) that can be offered to the 
customers of type II is C , provided there are not enough customers of type I. Obviously, 
from the optimization point of view it is appropriate to set C

 

equal to C and let the 
model assign to each type of customers. However, usually the management may be willing 
to restrict the maximum number of units sold to the customers of type II.  
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2.3 Dynamic Programming approach 
We apply dynamic programming technique to obtain the optimal solution of this 

problem. The elements of the dynamic programming model are defined as follows. 
( , ) :c c

 
state of  the system, where c

 
and c represent the number of available stocks at the 

beginning of the this pricing period for type I and II customers, respectively, 
(c includes c ). It is assumed that 'c c

 
and 0c . Otherwise, the solution is 

trivial.  
),( ccVt : maximum expected revenue generated from period t till the end of sale horizon,  

if the state of the system is ( , )c c . 

),,( pccVt : maximum expected revenue generated from period t till the end of sale 

horizon,  if the state of the system is ( , )c c

 

and p is the proposed price for the 
customer of type I in period t. 

Then, the recursive equation for period t is as follows.  

1 1( , ) max{ ( ) ( ( 1, )) ( ( ) ( )) ( ( 1, 1))
p

t t t t t t t t
p S

V c c F p p V c c F p F p p V c c

1(1 ( ) ( ( ) ( ))) ( , )t t t t tF p F p F p V c c

 

This recursive equation can be expressed as follows 

1 1 1( , ) max{ ( ) ( ( , )) ( )( ( , ))} ( , ) (1)
p

t t t t t t t t
c cp S

V c c F p p V c c F p p V c c V c c              

where, ),(1 ccVt
c

and ),(1 ccVt
c

can be interpreted as the opportunity cost of 

one stock unit sale to customers of types I and II, respectively.  
The boundary conditions are 

0 ( , ) ( ( )) ( ),V c c c C c p r      if cCc

 

               0,

 

                                       else.                           
and 

)()(),0( rpcCcVt             for Tt ,0                                            (2) 
As mentioned before, a penalty of r

 

is paid to the customer of type II, if the 
purchased units are not delivered. 

2.4 Concavity property 
The following theorem is applied to investigate the concavity of the expected revenue 

function as a function of initial inventory. This property is useful for determining the 
optimal capacity of type I, when the proliferation cost of capacity is linear or convex.   

Theorem1. ),( ccVt is concave in c for any fixed t  and c , if 1, 0r . 
Proof: see Appendix 1. 

2.5.  Monotonocity property 
We use the concavity property of the expected revenue function to examine the 

inventory monotoocity property of the pricing policy with respect to c .  
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Theorem2. For any given t , type I price p

 
is a non-increasing function of c , if 

),( ccVt is concave in c .  

Proof: We must show that if 21 pp  and ),,(),,( 21 pccVpccV tt  then, 

),,1(),,1( 21 pccVpccV tt . 

By definition, ),,(),,(0 21 pccVpccV tt

 

1 1 2 2 2 1 1( )( ( ) ( ) ) ( ( ) ( )) ( , )t t t t t
c

t F p p F p p F p F p V c c

 

1 1 2 2 2 1 1( )( ( ) ( ) ) ( ( ) ( )) ( 1, )t t t t t
c

t F p p F p p F p F p V c c

 

),,1(),,1( 21 pccVpccV tt

 

The concavity property of the expected revenue function implies that,  
),1(),( 11 ccVccV t

c
t

c
.  

3. Periodic pricing with more than one customer in each period 
The purpose of this section is to extend the first model by reviewing the price 

periodically. Furthermore, the arrival of more than one customer in each period is also 
possible. This model is more practical than the previous one because each price change is 
costly and thus firms are not willing to do it often. Thus, it is preferable to revise prices 
periodically and not continuously during the sale horizon. 

In this model, the price structure is the same as in the previous one. During the sale 
horizon, the type II price ( p ) is determined at the beginning of the sale horizon by the 
firm and remains unchanged afterwards. The price of type I, p, as well as the maximum 
number of capacity that can be sold to the customers of type II must be controlled 
dynamically by the model.  The price of type I is selected from a set in every period. Prices 
do not change within a period. On the other hand, because of the penalty paid at the end 
of the sales horizon, the sales to the customers of type II must be limited. 

3.1.  Problem definition  

Let N be the number of times that price can be modified during the sales horizon. 
For notational convenience, we use reversed time index; i.e. N indicates the first pricing 
period while 0  indicates the end of sale horizon. 

It is assumed that the number of arrivals follows a nonhomogeneous Poisson process 
with arrival rate of t . Thus, more than one arrival in each period is possible. Let )( ki pm 

and )( ki pm

 

be the average purchase rate of type I and type II during the ith pricing period, 

respectively, if p and p are set for this period, then by definition (see Ross [13], p. 24) we 
have:  
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1

( ) (1 ( ))
i

i

T

i k t t k

T

m p F p dt   and  
1

( ) ( ( ) ( ))
i

i

T

i k t t t k

T

m p F p F p dt

 
where, iT  is the starting time of the ith pricing period.  

Let  )( kij pX indicates the number of stock units purchased by the j th type 

customers during the ith sales period. If p and p are set for this period, then 

!/)^())(exp(})(Pr{ 1 jjpmpmjpX kikiki

 

!/)^())(exp(})(Pr{ 2 jjpmpmjpX kikiki

The distribution of reservation price in period t

 

is represented by (.)tF . Then, 
following this notation the probability of purchasing by customers of type I and II are 

))(1( pFtt and ))()(( pFpF ttt , respectively, where p and p

 

are the price of one 
stock unit for customers of types I and II, respectively. In this model, the policy is to limit 
the maximum number of capacity units sold to the second type customers to ib . 

3.2. Stockout period 
At the beginning of a period, let the state of the system be ( , )c c and the demand of 

type I during that period exceeds .c

 

Then, the process stops after the arrival of cth 

customer of type I and there will be no more stock for any other of customers afterwards. 
In that case, the orders of all customers of type II placed before this event are canceled and 
these customers will be refunded. To estimate the expected total amount of refund and 
penalty, it is necessary to determine the distribution of the number of customers of type II 
who have placed order before the stock out. 

Lemma 1.   

Let 
1

( | , , )P l c j k denote the probability of selling l units of the capacity to the 

customers of type II before the stock out, given the beginning stock is 1c and the total 
number of demand for the customers of type I and II within that period are j

 

and ,k

 

respectively. Then,  

1 1

1

1 1

! !( 1)!( )!
( | , , )

( )! !( 1)!( 1)( )!

j k c l j k c l
P l c j k

j k l k c j c
                                                (3) 

Proof: Since the number of events (arrival of either type of customers) follows 
Poisson process and the number of events during the period is given, then it is proven that 
the arrival time of each customer within that period is uniformly distributed. On the other 
hand, there are ( )l customers of type II and  1( 1)c

 

customers of type I before the stock 
out. Therefore, the total number of possible events before the stock out is: 

1 1 1

1

( 1)!

!( 1)!
l c

l

l c

l cC . 
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Similarly, the total number of possible events after the stock out is 1.
j k l c

k lC  On the 

other hand, the total number of possible events during that period is .
j k

kC  Therefore,  

1
( | , , )P l c j k =

1 11l c j k l c

l k l
j k

k

C C
C

. 

3.3 Dynamic programming model 
Similar to the previous model, we apply stochastic dynamic programming to 

determine p  as well as the sale limit to the customers of type II. Let define, 

( , , , )iV c c p b : the maximum expected revenue generated from period i  till the end of 

sale horizon, if the state of the system is ( , )c c

 

and p is the proposed price for the 
customer of type I in this period and b

 

is the maximum number of available second type 
capacity in period i . 

 For i th pricing period we have: 
1 1

1 2 1 1 2
0 0

( , ', , ) Pr{ ( ) } [ Pr{ ( ) } ( ( , ))
ibc

i i k i k k i
j k

V c c p b X p j X p k jp kp V c j c k

[})(Pr{)],(()})(Pr{
1

12112
cj

kiiiikiki jpXbcjcVpbjpbpX

2 1 1 1 2
0 0

Pr{ ( ) } ( ( | , , ) ( min( , ) (0, min( , )))] (4)
k

i k k i i i
k l

X p k P l c j k c p l b p V c l b

  

In each pricing period we have: 

1 2 1 2
,

( , ) max{ ( , , , }
k i

i i k i
p b

V c c V c c p b                                                             (5)                                        

This dynamic programming formulation can be solved backward in time periods. The 
boundary conditions are the same as in (2).  

4. Illustrated Examples 
In this section, first we present two examples to illustrate the effect of variation of 

different parameters on the optimal value of the expected profit as well as on the optimal 
price. Furthermore, we compare the expected profit earned from the following modes. 

 

Dynamic pricing model integrated with overselling with opportunistic canceling

 

(Hereafter,  it is called OS1 if  price is reviewed continuously and  OS2 if it is 
reviewed periodically) 

 

Dynamic pricing model (proposing only one price at any time), called  benchmark 
model  

Then, we also investigate the efficiency of our models through 2000 randomly 
generated examples by comparing the optimal values of the expected profit from OS1 with 
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that of the same models when the concept of overselling with opportunistic cancellation is 
not considered. 

4.1 Example 1 
Consider a firm has to sell its inventory within a period of 30 days. Customers arrive 

in period t

 
according to a non-homogenous Poisson process with the rate of 15/tt . 

The price set for  type I customer, called ,p

 

is selected from a given set of 

{11,12,..., 24, 25}pS , while the price for type II customer, called ,p  is unchanged during 

all periods and is set equal to 10. If a customer pays ,p

 

he receives one unit of stock 
immediately. However, if he pays ,p

 

he has to wait till the end of sale horizon. 
Furthermore, it is possible that he does not receive his purchased unit, if enough stocks are 
not available at the end of sale horizon, due to the excessive demand by type I customers. 
We assume the firm pays a penalty of r=2 in addition to p

 

to any type II customer who 
does not receive the purchased unit. Suppose 5.0

 

and the firm wants to sell at most 5 
units of capacity to the customers of type II, i.e. 5C . The reservation price of customers 
has a uniform distribution within the interval of 0,30 .

  

Comparison of the optimal price of OS1 and the benchmark model 
In Figure1 the optimal starting price for the customers of type I is plotted versus the 

optimal price of the benchmark model. As this figure shows the optimal starting price of 
this type in OS-1 model is higher than (or equal to) the optimal price of the benchmark 
model. Furthermore, this difference increases with respect to the initial capacity units.  

It is not so hard to justify the outcome of this observation. In dynamic pricing 
models, in order to attract the customers who are not willing to buy expensive items, the 
firm gives them another option by proposing a lower price. However, in OS1 model these 
customers are distinguished from the others and thus it is possible to propose a higher 
price for the customers of type I. 
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Figure 1. The Price path based on initial capacity 
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Comparison of expected revenue of OS models with that of the benchmark model. 
Figure 2 shows the incremental percentage of the expected revenue of OS1 model 

versus that of the benchmark model. This shows that the expected revenue increases up to 
13% if overselling with opportunistic cancellation option is considered. Again, in this case, 
the difference increases with respect to the initial capacity units. By proposing a second 
price, the spoilage loss can also be decreased. On the other hand, the yield loss also can 
also be decreased by proposing higher prices to type I customers. Therefore, it seems 
logical to have higher expected revenue.  

Price change during the sale period  
In Figure 3, the price path through the sale horizon for the fixed capacities of 10 and 

15 are depicted for both OS1 and benchmark model. Clearly, the price decreases in these 
models with respect to time. However, the rate of decrease in type I price in OS1 model is 
less than that in the benchmark model with one price. The result of this observation seems 
logical, because in order to sell the available stocks in OS1 model there is no need to 
decrease the price quickly, when the existence of a second price decreases the possibility of 
having unsold capacity (spoilage loss) at the end of the sale horizon.   
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Figure 2. incremental percentage of the expected revenue of OS1 versus that of the 
benchmark model 
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Figure 3. Price path through the sale horizon  

The effect of type II price 
We study the effect of type II price on the path of type I price, as well as on the 

optimal value of the expected profit as a function of the initial capacity. As Figure 4 shows 
an increase in type II price results in increasing of type I price. 

On the other hand, as Figure 5 indicates, the optimal value of the expected profit also 
increases with respect to type II price, provided that the initial capacity is low. However, 
this is not necessarily true for higher inventories.  
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Figure 4. The Price path based on initial inventory for different second prices  
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4.2  Example 2 
In this example we study the behavior of the second model (periodic review) of 

dynamic pricing model with the option of overselling and periodic review. As mentioned 
before, in this model the arrival of more than one customer in each sale period is possible. 
Consider Example 1 again. To reduce the costs and efforts of price change, only two price 
reviews is scheduled during the sale horizon, at beginning of the eleventh and twenty first 
days of the sale horizon. The arrival of the customers has a non-homogeneous Poisson 
distribution with the rate of 15/tt  where t  represents the remaining time to the end of 
the sale horizon. Other assumptions of example1 hold in this example too. In Figure 6, the 
difference between the expected revenues of two examples is plotted. It indicates that the 
maximum difference between these two models is equal to 1.5%. The difference between 
two models decreases with respect to the initial capacity. According to our numerical 
experiments, when the number of reviews increases, this difference decreases. By making 5 
to 10 reviews, it is expected that the difference between two models drop to less than 1%. 
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Figure 5. The expected revenue based on initial inventory for different second prices  
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Figure 6.  Percentage of difference between the expected revenues of OS1 and OS2 
models  
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4.3 Randomly generated samples 
We examined our first model, OS1, (continuous review) through 2000 randomly 

generated samples. In these examples, the total capacity of C , the arrival rate of t , the set 

of prices pS , the penalty rate r and the probability of a type II customer reservation ( ) 

were generated randomly. We also considered two cases of increasing and decreasing prices 
with respect to time. The histogram of the percentage of increase in expected revenue of 
OS1 model against that of the benchmark model is depicted in Figure 7. Through these 
numerical experiments, we studied the type I price of OS1 model at the beginning of the 
sale horizon against the optimal price of the benchmark model. In all these examples, the 
type I price happens to be higher or equal to the optimal price of the benchmark model. In 
fact, our numerical examples support the findings shown in Figure 1. 
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Figure 7.  Histogram of the percentage of increase in OS1 and the benchmark 
models  

5. Conclusion and Directions of Future Research 
In this paper, we developed and studied two dynamic pricing models that allow a 

firm to oversell its capacity in order to enhance the demand by proposing two prices 
instead of one. In a specific case, we showed that the expected revenue function is concave 
with respect to the number of stocks to be sold. This property leads to proving one that at 
any given time, the optimal price is a non-increasing function of the number of stocks. We 
also showed the revenue of the proposed models is higher than that of the corresponding 
benchmark ones. We also observed that the impact of overselling is highly significant in 
most of our examples.  

Possible extension of this research include (i) study the structural properties of 
general OS1 models, (ii) incorporating the learning (updating both the arrival rate and the 
reservation price distribution as time passes), (iii) allowing cancellation, (iv) incorporating 
costs for price changes, and (v) considering replenishment option during the sale horizon. 

In this study, competition was not considered. Incorporating the effect of 
competition makes our models much more useful for practical purposes.  
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Appendix 1:  

Proof of theorem 1.  We must show that )],1(),1([
2

1
),( ccVccVccV ttt holds 

for all 0c . This is done by constructing a policy to sell up to c units of the capacity over 0,t , 

with an expected revenue not less than ),1([
2

1
ccVt  )],1( ccVt . Our  approach is similar 

to that of Zhao and Zheng [15].  

Suppose that there are four pools of inventories, labeled as1,2 , 1 and 2 . At time t , 
there are 1c units of capacity in pool 1, 1c units in pool 2 , and c

 

units in each of 
pools 1 and 2 . Let 1P and 2P be the optimal policies of the first price and 1P

 

and 2P

 

be 
the second price policies for pools1

 

and 2

 

respectively. Using these policies for pools 1

 

and 2 , the total revenue from these pools is )],1(),1([ ccVccV tt . For pools 1 and 2

 

we construct 1P and 2P (by modifying 1P and 2P respectively) and 1P

 

and 2P

 

(by 

modifying 1P

 

and 2P

 

respectively)  that may be suboptimal for selling up to c

 

items 

in 0,t , but they together would generate at least the same total revenue as that of pools 1

 

and 2 . Now, for a realization of the demand process in pool 1

 

we generate three identical 
copies for the other three pools. Let ))()(( ii pp , 0,t , be the realized first price 

process under )( ii PP , 2,1i and ))()(( ii pp , 0,t , be the realized second price 

process under )( ii PP , 2,1i . Starting from t , set )(),(min)( 212 ppp

 

and 

)(),(max)( 211 ppp

 

for the first price and )(),(min)( 212 ppp

 

and 

)(),(max)( 211 ppp

 

for the second price until 0t , the first time when the total 

number of first type capacity units sold in pool1 becomes one less than that of pool 1. Let 
)2,1)(()( ipp ii  and )2,1)(()( ipp ii  for ]0,( 0t . 

Now it must be shown that together pools 1

 

and 2

 

under policies 1P and 1P

 

and 

2P and 2P

 

generate exactly the same revenue as pools1

 

and 2

 

do under 1P and 1P and 

2P and 2P . In time interval 0, tt , the only time pool )2(1 and pool )2(1 may generate 

different revenues is when a customer arrives at and )()( 21 pp . There are three 
possibilities for the arriving customer:  

)i She does not buy any unit of the first type capacity in all pools because her 

reservation price is less than )(1p or she buys one unit of the second type capacity in all 
pools.  

)ii She buys in each of the four pools one unit of the first type capacity because her 
reservation price is greater than the first proposed price. 
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)iii Because the customers reservation price is between )(1p and )(2p , she buys 

one unit of the first type capacity in pools1

 
and 2

 
and one unit of the second type capacity 

in pools 1 and 2 ( 1).  
Case )(i does not make any difference since she does not contribute any revenue to 

any of the pools or generates p units of revenue in each of the pools. Case )(ii does not 
matter either, because the total revenue generated from this customer in pools1

 

and 2

 

is 
)()( 21 pp , which is the same as that in pools 1 and 2 . When case )(iii happens, 0t is 

reached. At 0t , the generated revenue from selling one unit of the first capacity in pools1

 

and 2 , and that of pools 1 and 2

 

is equal to )(1p . This customer buys one unit of the 

second type capacity in pool 2

 

and 1

 

(in the case that pool 2

 

has not any remained 
capacity, the customer does not buy from pools 1

 

and 2 ). Therefore, we can observe that 
the total generated revenue in pools1 and 2  is equal to that of pools 1 and 2 . 

Now, we must show that pools 1

 

and 2

 

have enough inventory to satisfy every 
demand that is satisfied in pools 1

 

and 2 . By definition, in 0, tt , the number of first and 

second type capacity sold in pool )2(1 must be the same as in pool )2(1 . At 0t , a sale of 

the first type capacity takes place in pools1

 

and 2 , and we have a sale of the second type 
capacity in pool 1

 

and 2 (in the case that pool 2

 

has no more capacity, there is not any 
sales in pools 1

 

and 2 ). Immediately after 0t , the first type capacity in pools1

 

and 

1 ( 2 and 2 ) are be equal. Therefore, every first or second type customer that is satisfied in 
pool )2(1 is also satisfied in pool )2(1 . Because we assume that C , there isn t any 
problem to satisfy the second type customers in every pool.  

In case 0t never occurs, pool1 sells at most 1c units of the first type capacity 

because )()( 21 pp for 0,t . In this case, pool 2  sells at most 1c  units of the first 

type capacity either because otherwise 0t must have occurred. 

We have shown that the total revenue in pools 1

 

and 2

 

is equal to that of pools 1

 

and 2 . Now, we have to show that the total penalty paid in pools 1 and 2

 

is less than or 
equal to that of pools1 and 2 . According to the proposed pricing policy, if 0t does occur, in 

0t we have the same pricing policy in pools )2(1 and )1(2 . At 0t , if pool2

 

has any 

remained first type capacity, pools 2 and 1

 

can sell one unit of the second type capacity to 
the  customer, else they would not sell any unit to the second type customer ( 2P ). 

After 0t , the total first and second type capacities that have been sold to the customer in 

pool 1

 

would be the same of that in pool 2 , if the first type capacity sold in pool2

 

was 
greater than 1c . Therefore if and only if the firm paid penalty in pool 2 , the firm might 
pay penalty in pool1 . Because pools 1 and 2 pay penalty for one unit more than the pools 
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1and 2

 
(if the firm has to pay any penalty) we can see that the total penalty in pools1

 
and 2 is more or equal to that of pools 1 and 2 . 

If pool 2 has no more first type capacity at 0t , we have only one sale for the first type 

capacity in pools1

 
and 2 , and we have no sale in pools 2

 
and 1 ( 2P ). According to 

the pricing policy the total penalty in pools )2(1 and )2(1 will be equal at the end of the 

sales period, therefore the total penalty in pools1 and 2 is equal to that of pools 1 and 2 . 
In case that 0t never occurs, because the total first and second type capacities that are 

sold in pool2

 

is equal to that of pool1 , we would pay penalty in pool 1

 

if and only if a 
penalty has to be paid in pool2 . Because in this case pools 1

 

and 2

 

pay penalty for one 
unit more than pools 1

 

and 2

 

(if the firm has to pay any penalty) we can see that the total 
penalty in pools1 and 2 is more or equal to that of pools 1 and 2 . 

In summary, our constructed policies with c

 

units of the first type capacity generates 
greater or equal revenue as do the optimal pricing policies in pool 1

 

and 2

 

with 1c and 
1c units of the first type capacities. Thus the randomized policy that chooses with equal 

probability between 1P , 1P

 

and 2P , 2P

 

sells up to c

 

units of capacity can generate 

expected revenue of )],1(),1([
2

1
ccVccV tt . 

We use the concavity property of the expected revenue function to show the 
inventory monotoocity

 

property of the pricing policy in c . On the other hand, concavity 
property of the expected revenue function can be useful for determining the optimal first 
type capacity when the proliferation cost of capacity is linear or convex.    
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