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Partial-Fraction Decomposition Approach to the M/H2/2
Queue

J. Arkat"”, M. Hosseinabadi Farahani?

Here, a two server queueing system with Poisson arrivals and two different types of customers
(M/H2/2 queue) is analyzed. A novel straightforward method is presented to acquire the exact and
explicit forms of the performance measures. First, the steady state equations along with their Z-
transforms are derived for the aforementioned queueing system. Using some limiting behaviors of
the steady-state probabilities along with partial fraction decomposition as a simple algebraic
procedure, the problem reduces to the solution of a system of linear equations.
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1. Introduction

Consider a queueing system with Poisson arrivals, two different types of customers and two
parallel servers. A customer is of type i with probability p; withp; > 0and },;p; =1 fori = 1,2.
The inter-arrival and service times of a customer of type i are independent and exponentially
distributed random variables with parameters A; and y;, respectively. Directly from the definition, it
is easily deduced that

A
pi = 71 @

where 1 is the overall arrival rate and hence is the sum of the arrival rates of the two types of customers
(i.e., 1 = X; 4;). With probability p;, the service time has an exponential distribution with parameter
u; and therefore, its probability density function (pdf) is given by

£ =) pie ™), @

The above pdf is the pdf of hyper-exponential distribution with parameters y; and p;. Therefore,
the model is the queue M/H2/2, where H2 denotes a hyper-exponential distribution with two phases.

One of the most challenging problems in queueing theory is to investigate multi-server queues.
The queue M/H2/2 is a special case of GI/G/s for which Pollaczeck [7] gives a procedure to calculate
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the mean waiting time when the service time distribution has a rational Laplace transform with
distinct poles. However, considerable effort is needed to obtain numerical results. The queue M/H2/2
can also be considered as a special case of M/G/2, which has been studied by some researchers.
Hokstad [5] used the supplementary variable technique in order to analyze this queue. Although the
approach is noteworthy from the methodological viewpoint, the analytical problem has not been
solved. Cohen [2] investigated the queue M/G/2 when the service time distribution is a mixture of
negative exponential distributions by analyzing the workloads at various servers. The author obtained
an expression for the Laplace-Stieltjes transform of the stationary waiting time distribution. The
presented analysis was relatively intricate but useful for developing approximations. Knessl et al. [6]
also used the supplementary variable method and an integral equation approach to obtain the
stationary distribution of the number of customers in the queue M/G/2. The GI/H2/s queueing system
is also a general case for M/H2/2. De Smit [3, 4] presented an approach to identify the distribution of
waiting times and queue lengths for the queue GI/H2/s. He reduced the problem to the solution of the
Wiener-Hopf-type equations and then used a factorization method to solve the system. Although the
approach is methodologically remarkable, but the method is rather complicated and the results are
based on some conditions the validity of which validity have not been established. Due to time
consuming and intricacy of the proposed approaches for obtaining exact solution, there has been much
interest in developing approximation methods for the queues M/G/s and M/Hm/s [1, 8].

Here, a straightforward approach is presented to obtain explicit forms for the performance
measures of M/H2/2 queueing system. First, the steady state equations of the system are derived and
transformed using Z-transform. Then, based on a probabilistic argument and partial-fraction
decomposition method, the problem is reduced to solving a system of linear equations. In addition to
the simplicity and directness of the proposed partial-fraction decomposition method, it has the
capability to be used in studying more complicated multi-server queues.

The remainder of our work is organized as follows. The steady state equations of the system are
derived in Section 2. The details of the Z-transform and partial-fraction decomposition method are
presented in Section 3 and the concluding remarks are given in Section 4.

2. Steady State Equations

In order to derive the steady state equations, the state of the system is defined by (nij), where n
is the number of customers in the system, i is the number of customers of type 1 being served and j
is the number of customers of type 2 being served. For simplicity, let r;,, s,, and q,, be the limiting
probabilities of the states (n20), (n02) and (n11), respectively, for n = 2 and similarly, , r; and
s, be the limiting probabilities of the states (000), (110) and (101), respectively. The steady state
equations are

ATty = pyry + Uz5, 3

A+ py)ry = 1470 + 2013 + 2G> 4)

A+ pz)s1 = ;Mo + 21352 + 111G2 ®)

A+ 2p1)ry = A4y + 2p1pia 73 + P1M2s3 (6)

(A4 2p3)s2 = A251 + 2p2p2S3 + P21 q3 (7

A+ + p2)qz = Aory + 4451 + 2o a3 + 2p1fpS3 + (D1t + P2k2)q3 )
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(A4 2p1)1 = Arp_1 + 2p1faTns1 + PilaGni,n 2 3 9)
(A + 2uz)sp = Asp_q + 2P2paSp1 + P2l1Gne1, 1 = 3 (10)
A+ g + 12)qn = AQn_1 + 2P201 1 + 2P1H2Sne1 + (P11 + P2l2) Qe = 3. (11)

Since the sum of limiting probabilities is equal to one, we have

n0+r1+sl+2(rn+sn+qn)=1. (12)

n=2

3. Z-Transform and Partial-Fraction Decomposition

Four Z-transform functions are defined as follows:

R(z) = ) nz" (13)
S(z) = Z n (14)
n=1
Q@) = ) ra (15)
oo =1
(z) = Z 7,2" = R(z) + S(z) + Q(2) + 7. (16)

n=1

Multiplying Eq. (4) by z, Eq. (6) by z? and Eq. (9) by z", and then summing the products, we get

<2u1 (1 - p—l) + (1 - z)) R(z)

(17)
Sl Q(2) = 2pypars + (prmo + (U (1 + py) + A)1)z — Apry 22,
Similarly, using Egs. (5), (7) and (10), we obtain:
<2u2 (1 - p—z) +A(1 - z)> S(2)
(18)

H1 D2

Q(2) — 2up2s1 + (A2pamo + (U (1 + py) + Ay)s1)z — Ay5122

Multiplying Egs. (4) and (5) by z, Egs. (6) and (7) by z2 and Eq. (11) by z™, and then summing
the products, we get

(1 - M +A(1- z)) 00

19
2u1p, 2u;p4 S(2) + (Ayry +/1151)z (19)

R(z) +
- ((}L + uy)por + (/1 + Uz)p1S1 — 2/11P27T0)Z — 201 pa1 — 20420151
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Considering Eq. (16), the following equation is obtained:
NA)=RA)+S()+0Q() +my =1. (20)

By solving the system of equations (3) and (17)-(20), we can calculate o, s;, R(2), S(z) and
Q(2) in terms of r;. Then, by using Eq. (16), I1(z) can be determined as a function of r;. Hence, we
need another equation, in terms of r;, in order to obtain I71(z). The limiting property of the functions
R(2), S(z) and Q(z) can be used to obtain the necessary equation. Considering the function R(z),
the limiting probability 7, can be obtained using Eq. (13) as follows:

an
1, = =—R(2)

— 21)

z=0

The above equation holds for n > 1. It is evident that when n tends to infinity, the limiting probability
1, converges to zero. Hence, we can write

an
%1_{2101”,1 = llm <a_nR(Z) =0) = 0. (22)

As mentioned before, R(z) can be obtained by solving the system of equations (3) and (17)-(20) as a
function of r;. Because of the lengthiness of the R(z) function, it is not presented here and thus,
instead of the explicit form, the following simple form is presented:

5 i 4 i
5 azt 41 Y4 b
R(Z) — Zl—o alZ Tl 21—0 LZ : (23)
*ocizt

where a;, b; and c; are functions of the parameters 1, 4,, pu; and pu,. In (23), the numerator is a
polynomial of degree five and the denominator has four distinct roots as follows:

b zu—\//12+2(/12—/11)(é1/1— Ha) + (b = #2)* + 2 (24)
B, =t VA2 +2(4; - /11)(1;1/1— Ha) + (i — 2)” + 24 (25)
hy = 2u— 22+ 4, - /11)(/;1/1— up) + 4(uy — )% + A (26)
hy = 2u++22 +4(A, — ,11)(;;1/1— Ho) 400 — 1)* + 2 27)

Lemma 3.1. The roots of the denominator of fraction (23) are real numbers.
The proof of the above lemma is given in the Appendix. Considering this characteristic, it is possible
to decompose (23) to the sum of a polynomial of degree one and four simple fractions as follows:
+ g
R(2) = (do + eory + dy2) + Zf‘ CLE, (28)

where dg, eq, dy, f; and g; are functions of the parameters /11, Ay, pq and p,. Taking (28) into
consideration as the last form of R(2), it is straightforward to obtain the nth derivative:
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n

d n i gll

According to (22), we have
l + l
lim <n'( U E fit g ”) 0. (30)

By solving the above equation in terms of r;, we get

s fo
%‘5&( i=1h{‘>

nET s+ 9i\
llm( i=1h_ln>

(31)

n—oo
The following lemma is useful for simplifying the above equation.
Lemma 3.2. hy is minimum among the roots of the denominator of (23).

See the Appendix for a proof. By dividing the numerator and the denominator of (31) into h,, we can

write
lim (£, + S i)
1%1_{130 (.91 +X, " /h1)n)
When n tends to infinity, (h;/hy)™, for i = 2, 3,4, also tend to infinity and hence we have
= —h (33)
g1

As mentioned before, f; and g, are functions of the parameters 4,, 4,, ¢y and p, and thus ry is
obtained as a function of these parameters as well. By determining r, it is straightforward to obtain
I1(z), and therefore the performance measures of the queueing system. For example, the mean length
of the queue is given by

d
L=—TI()| . (34)
dZ z=1
Defining A, u, a; and b; as
A=A +2, (35)
W= p+ o, (36)
A
a; = 71 =12, (37)
U,
az=—,i=12, 38
3= (38)
a3 = a1 - az, (39)
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bs = by — by, (40)

the explicit form of the average number of customers in the system for the M/H2/2 queueing system
is obtained as to be

—uzb? ((b3A + 24 — 4pp b )Ry + 413 by Sy)
—af (2b; — 1)3((3b1 — DARy +81) + 2(uy Ry + .“251))
ARy + S51)
+(a; — 2a1b1)2((3b1 — 1A - 2#2b1) —2p2(4by — 1) (U1 Ry + 142S51) (41)
+24 ((2 = 9b,by)R; — b3S, )
L= :
2
((a1b3 - b1)(/11b3 — by (A - 2.“2)) )
where
(—(2% — 2azbsAu + p?))
—a2b3(a1b1 + azbz)lz
2
as +4a,a,b;
X 2b A
b <+(4a§ - 3)b12>
Ay1bsu ~4(2 — 2a,b; — by)byb1 by
! (+,ul(l — 2#2)) X azbz(by + a;b3) A3
N +a;b; |
+ az + 4(a; — 2)ay b, 5
—2b, 5 | Al
+(11 + 4(ay, — 4)a,)b;
R, = —4(2 — 2a,by — by)bybyb3p® (42)
1= —b,by (A2 — 2a3b3Au + p?) ’
(b; + ayb3)2?
X +2(b2 - a2a1 + 4a2a1b1 — (1 + 4a2a1)b12)1‘u
—4b3(—b3 + a;(1 — 2byby) )u?
1b322 2 2 2u+4
2b, b3 X aib322(A + 2p) + b3u (A + 2b1) (A — 2 + 4uy)
(2 —3by)A?
+(a; — 2a1b1)?A| —=2(b; — 2 + 2b*)Au
+B
| 60211
\ —a.b.b b33 + (=2 + by (8b; — 1)) A% /
15273\ 4+6b,bsAu? + 4b, (1 — 2b,by )3
and
_ a1 A%bg — by A(A = 2115) — pipby (A + 2u1)Ry (43)
! pab1 (A + 2u3) '
B = /22 — 2a3bsAu + p2. (44)
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To clarify the proposed approach, a number of numerical examples are presented. The arrival rates

for the two types of customers and the service rates for the two types of services are presented in
Table 1. Using (41)-(44), the average number of customers in each queue is calculated and reported
in Table 1.

Table 1. Results for the numerical examples

A Az H1 H2 L

20 30 30 30 5.4545
20 30 30 40 2.8707
20 30 40 40 2.0513
10 20 15 25 3.2784
10 20 20 30 1.7900
10 20 25 35 1.2783

4. Conclusion

Explicit forms of performance measures of the M/H2/2 queueing system were obtained. First, the

steady state equations of the system were derived. Then, based on a probabilistic argument and
partial-fraction decomposition method, the problem was reduced to solving a system of linear
equations. The advantages of the proposed partial fraction decomposition method are its simplicity
as well as its usefulness for solving complicated multi-server queues.
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Appendix
Proof of Lemma 3.1.

Since A = A4 + A,, we can write

24 (g — 1)* + 20 = A) (g — 1) = Ay — Ay + g — )% + 42412,

Since the right side of the above equation is always positive, we have
2+ (g = p2)? +2(A = 4) (41 — p2) > 0.

Hence, h, and h, are real numbers. According to (A.2), it can be easily seen that
22+ 4(A, = ) (g — p2) + 4y — p2)? > 0.

Therefore, h; and h, are also real numbers.

Proof of Lemma 3.2.

(A1)

(A2)

(A3)

It can be easily seen that h; < h, and h; < h,. Thus, we just need to prove that h; < h;. Two

cases may occur. If
(U — 12)? = 2wy + (A — A1) (g — 1) <0,
then

(1 — 12)* = 2u 5 + (A — A) (g — p2)
< (g + VA + 2 — Ay — p2) + (g — ).

After some simplifications, we have

224+ 4(Ay — 2) (g — up) + 4y — up)?
< (U +p)? + 224+ 2 — A1) (g — p2) + (g — u2)?
+2( + VA2 4+ 2 — 2) (g — 1) + (g — )

Since both sides of the above equation are positive, we can write

VA2 + 40 — 2 (ug — po) + 4Quy — pp)?
<y +u;+ \//12 +2(A; = ) (g — 12) + (ug — p2)2.

The above equation can be easily rewritten as follows

u—\/12+2(12—/11)(;11—;12)+(u1—;12)2 1
+_
21 2

21— 22+ 40 — 1)y — i) + 4(uy —p)? 1

< o1 + -

(A4)

(A.5)

(A.6)

(A7)

(A.8)


http://iors.ir/journal/article-1-334-en.html

[ Downloaded from iors.ir on 2026-01-29 ]

Partial-Fraction Decomposition Approach to the M/H2/2 Queue

Hence, h; < h3. Considering the case for which Eq. (A.4) does not hold, we have

(1 — 12)? = 2pa 2 + (A — A1) (g — 1) 2 0.
It is evident that the following equation also holds:
(g — 12)* + (A = 1) (g — p2) — itz = 0.
In addition, according to Eg. (A.2), we have
(A1 +22)% + (g — p2)? + 23 — A1) (g — 1) > 0.
With respect to Egs. (A.10) and (A.11), we obtain
bz (g + 22)% + (uy — 42)* + 22 = 1) (ug — 42))

+ gty (g — p2)? + (A — ) (g — 12) — Ha2)
+A14, (g — p2)? > 0.

The above equation can be simplified as follows:
2
((Hl — 12)% = 2papp + (A — A) (g — .Uz))

2
< ((ul + UV AZ +2(A — A) (g — p2) + (g — Mz)z) :

According to Eg. (A.9), we have

(1 — p2)? = 2up + (A — 29) (g — p12)
< (g + N2 + 2 — A) (g — ) + (1 — 1)

63

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

The above equation is the same as Eq. (A.5). Hence, similar to the previous case, we obtain h; < hs.
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