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Here, a two server queueing system with Poisson arrivals and two different types of customers 

(M/H2/2 queue) is analyzed. A novel straightforward method is presented to acquire the exact and 

explicit forms of the performance measures. First, the steady state equations along with their Z-

transforms are derived for the aforementioned queueing system. Using some limiting behaviors of 

the steady-state probabilities along with partial fraction decomposition as a simple algebraic 

procedure, the problem reduces to the solution of a system of linear equations. 
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1. Introduction 

 

Consider a queueing system with Poisson arrivals, two different types of customers and two 

parallel servers. A customer is of type 𝑖 with probability 𝑝𝑖 with 𝑝𝑖 > 0 and ∑ 𝑝𝑖𝑖 = 1 for 𝑖 = 1, 2. 

The inter-arrival and service times of a customer of type 𝑖 are independent and exponentially 

distributed random variables with parameters 𝜆𝑖 and 𝜇𝑖, respectively. Directly from the definition, it 

is easily deduced that 

 

𝑝𝑖 =
𝜆𝑖
𝜆  

(1) 

 

where 𝜆 is the overall arrival rate and hence is the sum of the arrival rates of the two types of customers 

(i.e., 𝜆 = ∑ 𝜆𝑖𝑖 ). With probability 𝑝𝑖, the service time has an exponential distribution with parameter 

𝜇𝑖 and therefore, its probability density function (pdf) is given by 

 

𝑓(𝑡) =∑𝑝𝑖(𝜇𝑖𝑒
−𝜇𝑖𝑡)

𝑖

. (2) 

 

The above pdf is the pdf of hyper-exponential distribution with parameters 𝜇𝑖 and 𝑝𝑖. Therefore, 

the model is the queue M/H2/2, where H2 denotes a hyper-exponential distribution with two phases. 

 

 One of the most challenging problems in queueing theory is to investigate multi-server queues. 

The queue M/H2/2 is a special case of GI/G/s for which Pollaczeck [7] gives a procedure to calculate 
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the mean waiting time when the service time distribution has a rational Laplace transform with 

distinct poles. However, considerable effort is needed to obtain numerical results. The queue M/H2/2 

can also be considered as a special case of M/G/2, which has been studied by some researchers. 

Hokstad [5] used the supplementary variable technique in order to analyze this queue. Although the 

approach is noteworthy from the methodological viewpoint, the analytical problem has not been 

solved. Cohen [2] investigated the queue M/G/2 when the service time distribution is a mixture of 

negative exponential distributions by analyzing the workloads at various servers. The author obtained 

an expression for the Laplace-Stieltjes transform of the stationary waiting time distribution. The 

presented analysis was relatively intricate but useful for developing approximations. Knessl et al. [6] 

also used the supplementary variable method and an integral equation approach to obtain the 

stationary distribution of the number of customers in the queue M/G/2. The GI/H2/s queueing system 

is also a general case for M/H2/2. De Smit [3, 4] presented an approach to identify the distribution of 

waiting times and queue lengths for the queue GI/H2/s. He reduced the problem to the solution of the 

Wiener-Hopf-type equations and then used a factorization method to solve the system. Although the 

approach is methodologically remarkable, but the method is rather complicated and the results are 

based on some conditions the validity of which validity have not been established. Due to time 

consuming and intricacy of the proposed approaches for obtaining exact solution, there has been much 

interest in developing approximation methods for the queues M/G/s and M/Hm/s [1, 8]. 

 

Here, a straightforward approach is presented to obtain explicit forms for the performance 

measures of M/H2/2 queueing system. First, the steady state equations of the system are derived and 

transformed using Z-transform. Then, based on a probabilistic argument and partial-fraction 

decomposition method, the problem is reduced to solving a system of linear equations. In addition to 

the simplicity and directness of the proposed partial-fraction decomposition method, it has the 

capability to be used in studying more complicated multi-server queues. 

 

The remainder of our work is organized as follows. The steady state equations of the system are 

derived in Section 2. The details of the Z-transform and partial-fraction decomposition method are 

presented in Section 3 and the concluding remarks are given in Section 4. 

 

2. Steady State Equations  

 

In order to derive the steady state equations, the state of the system is defined by (𝑛𝑖𝑗), where 𝑛 

is the number of customers in the system, 𝑖 is the number of customers of type 1 being served and 𝑗 
is the number of customers of type 2 being served. For simplicity, let 𝑟𝑛, 𝑠𝑛 and 𝑞𝑛 be the limiting 

probabilities of the states (𝑛20), (𝑛02) and (𝑛11), respectively, for 𝑛 ≥ 2 and similarly, 𝜋0, 𝑟1 and 

𝑠1 be the limiting probabilities of the states (000), (110) and (101), respectively. The steady state 

equations are 

 

𝜆𝜋0 = 𝜇1𝑟1 + 𝜇2𝑠1 (3) 

(𝜆 + 𝜇1)𝑟1 = 𝜆1𝜋0 + 2𝜇1𝑟2 + 𝜇2𝑞2 (4) 

(𝜆 + 𝜇2)𝑠1 = 𝜆2𝜋0 + 2𝜇2𝑠2 + 𝜇1𝑞2 (5) 

(𝜆 + 2𝜇1)𝑟2 = 𝜆1𝑟1 + 2𝑝1𝜇1𝑟3 + 𝑝1𝜇2𝑞3 (6) 

(𝜆 + 2𝜇2)𝑠2 = 𝜆2𝑠1 + 2𝑝2𝜇2𝑠3 + 𝑝2𝜇1𝑞3 (7) 

(𝜆 + 𝜇1 + 𝜇2)𝑞2 = 𝜆2𝑟1 + 𝜆1𝑠1 + 2𝑝2𝜇1𝑟3 + 2𝑝1𝜇2𝑠3 + (𝑝1𝜇1 + 𝑝2𝜇2)𝑞3 (8) 
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(𝜆 + 2𝜇1)𝑟𝑛 = 𝜆𝑟𝑛−1 + 2𝑝1𝜇1𝑟𝑛+1 + 𝑝1𝜇2𝑞𝑛+1, 𝑛 ≥ 3 (9) 

(𝜆 + 2𝜇2)𝑠𝑛 = 𝜆𝑠𝑛−1 + 2𝑝2𝜇2𝑠𝑛+1 + 𝑝2𝜇1𝑞𝑛+1, 𝑛 ≥ 3 (10) 

(𝜆 + 𝜇1 + 𝜇2)𝑞𝑛 = 𝜆𝑞𝑛−1 + 2𝑝2𝜇1𝑟𝑛+1 + 2𝑝1𝜇2𝑠𝑛+1 + (𝑝1𝜇1 + 𝑝2𝜇2)𝑞𝑛+1, 𝑛 ≥ 3. (11) 

 

Since the sum of limiting probabilities is equal to one, we have 

 

𝜋0 + 𝑟1 + 𝑠1 +∑(𝑟𝑛 + 𝑠𝑛 + 𝑞𝑛)

∞

𝑛=2

= 1. (12) 

3. Z-Transform and Partial-Fraction Decomposition 

 

Four Z-transform functions are defined as follows: 
 

𝑅(𝑧) = ∑ 𝑟𝑛𝑧
𝑛

∞

𝑛=1

 (13) 

𝑆(𝑧) = ∑ 𝑠𝑛𝑧
𝑛

∞

𝑛=1

 (14) 

𝑄(𝑧) = ∑ 𝑟𝑛𝑧
𝑛

∞

𝑞=1

 (15) 

𝛱(𝑧) = ∑𝜋𝑛𝑧
𝑛

∞

𝑛=1

= 𝑅(𝑧) + 𝑆(𝑧) + 𝑄(𝑧) + 𝜋0. (16) 

 

Multiplying Eq. (4) by 𝑧, Eq. (6) by 𝑧2 and Eq. (9) by 𝑧𝑛, and then summing the products, we get 
 

(2𝜇1 (1 −
𝑝1
𝑧
) + 𝜆(1 − 𝑧))𝑅(𝑧)

=
𝜇2𝑝1
𝑧
𝑄(𝑧) − 2𝜇1𝑝1𝑟1 + (𝜆1𝑝1𝜋0 + (𝜇1(1 + 𝑝2) + 𝜆2)𝑟1)𝑧 − 𝜆2𝑟1𝑧

2. 

    (17) 

 

Similarly, using Eqs. (5), (7) and (10), we obtain: 
 

(2𝜇2 (1 −
𝑝2
𝑧
) + 𝜆(1 − 𝑧)) 𝑆(𝑧)

=
𝜇1𝑝2
𝑧
𝑄(𝑧) − 2𝜇2𝑝2𝑠1 + (𝜆2𝑝2𝜋0 + (𝜇2(1 + 𝑝1) + 𝜆1)𝑠1)𝑧 − 𝜆1𝑠1𝑧

2. 

(18) 

 

Multiplying Eqs. (4) and (5) by 𝑧, Eqs. (6) and (7) by 𝑧2 and Eq. (11) by 𝑧𝑛, and then summing 

the products, we get 

 

(𝜇1 + 𝜇2 −
𝜇1𝑝1 + 𝜇2𝑝2

𝑧
+ 𝜆(1 − 𝑧))𝑄(𝑧)

=
2𝜇1𝑝2
𝑧

𝑅(𝑧) +
2𝜇2𝑝1
𝑧

𝑆(𝑧) + (𝜆2𝑟1 + 𝜆1𝑠1)𝑧
2

− ((𝜆 + 𝜇1)𝑝2𝑟1 + (𝜆 + 𝜇2)𝑝1𝑠1 − 2𝜆1𝑝2𝜋0)𝑧 − 2𝜇1𝑝2𝑟1 − 2𝜇2𝑝1𝑠1. 

  (19) 
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Considering Eq. (16), the following equation is obtained: 

 

𝛱(1) = 𝑅(1) + 𝑆(1) + 𝑄(1) + 𝜋0 = 1.
 

(20) 

 

By solving the system of equations (3) and (17)-(20), we can calculate 𝜋0, 𝑠1, 𝑅(𝑧), 𝑆(𝑧) and 

𝑄(𝑧) in terms of 𝑟1. Then, by using Eq. (16), 𝛱(𝑧) can be determined as a function of 𝑟1. Hence, we 

need another equation, in terms of 𝑟1, in order to obtain 𝛱(𝑧). The limiting property of the functions 

𝑅(𝑧), 𝑆(𝑧) and 𝑄(𝑧) can be used to obtain the necessary equation. Considering the function 𝑅(𝑧), 
the limiting probability 𝑟𝑛 can be obtained using Eq. (13) as follows: 

 

𝑟𝑛 =
𝜕𝑛

𝜕𝑧𝑛
𝑅(𝑧)|

𝑧=0
.
 

(21) 

 

The above equation holds for 𝑛 ≥ 1. It is evident that when 𝑛 tends to infinity, the limiting probability 

𝑟𝑛 converges to zero. Hence, we can write 

lim
𝑛→∞

𝑟𝑛 = lim
𝑛→∞

(
𝜕𝑛

𝜕𝑧𝑛
𝑅(𝑧)|

𝑧=0
) = 0.

 
(22) 

 

As mentioned before, 𝑅(𝑧) can be obtained by solving the system of equations (3) and (17)-(20) as a 

function of 𝑟1. Because of the lengthiness of the 𝑅(𝑧) function, it is not presented here and thus, 

instead of the explicit form, the following simple form is presented: 

 

𝑅(𝑧) =
∑ 𝑎𝑖𝑧

𝑖5
𝑖=0 + 𝑟1∑ 𝑏𝑖𝑧

𝑖4
𝑖=0

∑ 𝑐𝑖𝑧
𝑖4

𝑖=0

,
 

(23) 

 

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are functions of the parameters 𝜆1, 𝜆2, 𝜇1 and 𝜇2. In (23), the numerator is a 

polynomial of degree five and the denominator has four distinct roots as follows: 

 

ℎ1 =
𝜇 − √𝜆2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)

2 + 𝜆

2𝜆
,
 

(24) 

ℎ2 =
𝜇 + √𝜆2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)

2 + 𝜆

2𝜆
, (25) 

ℎ3 =
2𝜇 − √𝜆2 + 4(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + 4(𝜇1 − 𝜇2)

2 + 𝜆

2𝜆
, (26) 

ℎ4 =
2𝜇 + √𝜆2 + 4(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + 4(𝜇1 − 𝜇2)

2 + 𝜆

2𝜆
. (27) 

 

Lemma 3.1. The roots of the denominator of fraction (23) are real numbers. 

 

The proof of the above lemma is given in the Appendix. Considering this characteristic, it is possible 

to decompose (23) to the sum of a polynomial of degree one and four simple fractions as follows: 

 

𝑅(𝑧) = (𝑑0 + 𝑒0𝑟1 + 𝑑1𝑧) +∑
𝑓𝑖 + 𝑔𝑖𝑟1
𝑧 − ℎ𝑖

4

𝑖=1

,
 

(28) 

where 𝑑0, 𝑒0, 𝑑1, 𝑓𝑖 and 𝑔𝑖 are functions of the parameters 𝜆1, 𝜆2, 𝜇1 and 𝜇2. Taking (28) into 

consideration as the last form of 𝑅(𝑧), it is straightforward to obtain the nth derivative: 
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𝑑𝑛

𝑑𝑧𝑛
𝑅(𝑧) = 𝑛! (−1)𝑛∑

𝑓𝑖 + 𝑔𝑖𝑟1
(𝑧 − ℎ𝑖)

𝑛

4

𝑖=1

 for 𝑛 ≥ 2
 

(29) 

According to (22), we have 

lim
𝑛→∞

(𝑛! (−1)𝑛∑
𝑓𝑖 + 𝑔𝑖𝑟1
ℎ𝑖
𝑛

4

𝑖=1

) = 0.
 

(30) 

 

By solving the above equation in terms of 𝑟1, we get 

 

𝑟1 = −

lim
𝑛→∞

(∑
𝑓𝑖
ℎ𝑖
𝑛

4
𝑖=1 )

lim
𝑛→∞

(∑
𝑔𝑖
ℎ𝑖
𝑛

4
𝑖=1 )

.
 

(31) 

 

The following lemma is useful for simplifying the above equation. 

 

Lemma 3.2. ℎ1 is minimum among the roots of the denominator of (23). 

 

See the Appendix for a proof. By dividing the numerator and the denominator of (31) into ℎ1, we can 

write 

𝑟1 = −
lim
𝑛→∞

(𝑓1 + ∑
𝑓𝑖

(ℎ𝑖 ℎ1⁄ )𝑛
4
𝑖=2 )

lim
𝑛→∞

(𝑔1 + ∑
𝑔𝑖

(ℎ𝑖 ℎ1⁄ )𝑛
4
𝑖=2 )

.
 

(32) 

 

When 𝑛 tends to infinity, (ℎ𝑖 ℎ1⁄ )𝑛, for 𝑖 = 2, 3, 4, also tend to infinity and hence we have 

 

𝑟1 =
−𝑓1
𝑔1
.
 

(33) 

 

As mentioned before, 𝑓1 and 𝑔1 are functions of the parameters 𝜆1, 𝜆2, 𝜇1 and 𝜇2 and thus 𝑟1 is 

obtained as a function of these parameters as well. By determining 𝑟1, it is straightforward to obtain 

𝛱(𝑧), and therefore the performance measures of the queueing system. For example, the mean length 

of the queue is given by  

𝐿 =
𝑑

𝑑𝑧
Π(𝑧)|

𝑧=1
.
 

(34) 

 

Defining 𝜆, 𝜇, 𝑎𝑖 and 𝑏𝑖 as 

 

 𝜆 = 𝜆1 + 𝜆2, (35) 

𝜇 = 𝜇1 + 𝜇2, (36) 

𝑎𝑖 =
𝜆1
𝜆
 , 𝑖 = 1,2, (37) 

𝑎3 =
𝜇1
𝜇
 , 𝑖 = 1,2, (38) 

𝑎3 = 𝑎1 − 𝑎2, (39) 
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𝑏3 = 𝑏1 − 𝑏2, (40) 

 

the explicit form of the average number of customers in the system for the M/H2/2 queueing system 

is obtained as to be 

 

𝐿 =
(

 
 
 
 

−𝜇2𝑏1
2((𝑏3𝜆 + 2𝜇 − 4𝜇2𝑏1)𝑅1 + 4𝜇2𝑏1𝑆1) 

−𝑎1
3(2𝑏1 − 1)

3((3𝑏1 − 1)𝜆(𝑅1 + 𝑆1) + 2(𝜇1𝑅1 + 𝜇2𝑆1)) 

+(𝑎1 − 2𝑎1𝑏1)
2((3𝑏1 − 1)𝜆 − 2𝜇2𝑏1)(

𝜆(𝑅1 + 𝑆1) 

−2𝜇2(4𝑏1 − 1)(𝜇1𝑅1 + 𝜇2𝑆1)

+𝜆𝜇 ((2 − 9𝑏2𝑏1)𝑅1 − 𝑏2
2𝑆1)

)

)

 
 
 
 

((𝑎1𝑏3 − 𝑏1)(𝜆1𝑏3 − 𝑏1(𝜆 − 2𝜇2))
2
)

, 

(41) 

 

where 

𝑅1 =

−𝜆1 (
𝜆1𝑏3𝜇

+𝜇1(𝜆 − 2𝜇2)
) ×

(

 
 
 
 
 
 
 
 
 
 
 

(−(𝜆2 − 2𝑎3𝑏3𝜆𝜇 + 𝜇
2)) 

×

(

 
 

−𝑎2𝑏3(𝑎1𝑏1 + 𝑎2𝑏2)𝜆
2 

+2𝑏2 (
𝑎2
2 + 4𝑎2𝑎1𝑏1
+(4𝑎1

2 − 3)𝑏1
2)𝜆𝜇 

−4(2 − 2𝑎1𝑏2 − 𝑏1)𝑏2𝑏1𝑏3𝜇
2
)

 
 
 

+𝐵

(

 
 
 
 

𝑎2𝑏3(𝑏2 + 𝑎1𝑏3)𝜆
3

−𝑎2𝑏3 (
1 + (3 − 4𝑏1)𝑏1

+𝑎1𝑏3
) 𝜆2𝜇

−2𝑏2 (
𝑎2
2 + 4(𝑎1 − 2)𝑎2𝑏1

+(11 + 4(𝑎1 − 4)𝑎1)𝑏1
2)𝜆𝜇

2

−4(2 − 2𝑎1𝑏2 − 𝑏1)𝑏2𝑏1𝑏3𝜇
3 )

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

2𝑏2𝑏1𝜇
3 ×

(

 
 
 
 
 
 
 
 
 

−𝑏2𝑏1(𝜆
2 − 2𝑎3𝑏3𝜆𝜇 + 𝜇

2)

× (

(𝑏2 + 𝑎1𝑏3)𝜆
2 

+2(𝑏2 − 𝑎2𝑎1 + 4𝑎2𝑎1𝑏1 − (1 + 4𝑎2𝑎1)𝑏1
2)𝜆𝜇

−4𝑏3(−𝑏2
2 + 𝑎1(1 − 2𝑏2𝑏1))𝜇

2 

)

+𝐵

(

 
 
 
 

𝑎1
3𝑏3
3𝜆2(𝜆 + 2𝜇) + 𝑏2

2𝜇1(𝜆 + 2𝑏2𝜇)(𝜆 − 2𝜇 + 4𝜇1) 

+(𝑎1 − 2𝑎1𝑏1)
2𝜆(

(2 − 3𝑏1)𝜆
2

−2(𝑏1 − 2 + 2𝑏1
2)𝜆𝜇

+6𝜇2𝜇1

)

−𝑎1𝑏2𝑏3 (
𝑏3𝜆

3 + (−2 + 𝑏1(8𝑏1 − 1))𝜆
2𝜇

+6𝑏1𝑏3𝜆𝜇
2 + 4𝑏1(1 − 2𝑏2𝑏1)𝜇

3
) 

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 

, 
(42) 

 

and 

 

𝑆1 =
𝑎1𝜆

2𝑏3 − 𝑏1𝜆(𝜆 − 2𝜇2) − 𝜇2𝑏1(𝜆 + 2𝜇1)𝑅1
𝜇2𝑏1(𝜆 + 2𝜇2)

, (43) 

𝐵 = √𝜆2 − 2𝑎3𝑏3𝜆𝜇 + 𝜇
2. (44) 
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To clarify the proposed approach, a number of numerical examples are presented. The arrival rates 

for the two types of customers and the service rates for the two types of services are presented in 

Table 1. Using (41)-(44), the average number of customers in each queue is calculated and reported 

in Table 1. 

 

Table 1. Results for the numerical examples 

𝜆1 𝜆2 𝜇1 𝜇2 𝐿 

20 30 30 30 5.4545 

20 30 30 40 2.8707 

20 30 40 40 2.0513 

10 20 15 25 3.2784 

10 20 20 30 1.7900 

10 20 25 35 1.2783 

 

4. Conclusion 

 

Explicit forms of performance measures of the M/H2/2 queueing system were obtained. First, the 

steady state equations of the system were derived. Then, based on a probabilistic argument and 

partial-fraction decomposition method, the problem was reduced to solving a system of linear 

equations. The advantages of the proposed partial fraction decomposition method are its simplicity 

as well as its usefulness for solving complicated multi-server queues. 
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Appendix 
 

Proof of Lemma 3.1. 

 

Since 𝜆 = 𝜆1 + 𝜆2, we can write 

 

𝜆2 + (𝜇1 − 𝜇2)
2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) = (𝜆2 − 𝜆1 + 𝜇1 − 𝜇2)

2 + 4𝜆1𝜆2. (A.1) 

 

Since the right side of the above equation is always positive, we have 

 

𝜆2 + (𝜇1 − 𝜇2)
2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) > 0. (A.2) 

 

Hence, ℎ1 and ℎ2 are real numbers. According to (A.2), it can be easily seen that 

 

𝜆2 + 4(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + 4(𝜇1 − 𝜇2)
2 > 0. (A.3) 

 

Therefore, ℎ3 and ℎ4 are also real numbers. 

 

Proof of Lemma 3.2.  
 

It can be easily seen that ℎ1 < ℎ2 and ℎ3 < ℎ4. Thus, we just need to prove that ℎ1 < ℎ3. Two 

cases may occur. If  

 

(𝜇1 − 𝜇2)
2 − 2𝜇1𝜇2 + (𝜆2 − 𝜆1)(𝜇1 − 𝜇2) < 0, (A.4) 

 

then 

 

(𝜇1 − 𝜇2)
2 − 2𝜇1𝜇2 + (𝜆2 − 𝜆1)(𝜇1 − 𝜇2)

< (𝜇1 + 𝜇2)√𝜆
2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)

2. 
(A.5) 

 

After some simplifications, we have 

 

𝜆2 + 4(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + 4(𝜇1 − 𝜇2)
2

< (𝜇1 + 𝜇2)
2 + 𝜆2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)

2

+ 2(𝜇1 + 𝜇2)√𝜆
2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)

2. 

(A.6) 

 

Since both sides of the above equation are positive, we can write 

 

√𝜆2 + 4(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + 4(𝜇1 − 𝜇2)
2

< 𝜇1 + 𝜇2 +√𝜆
2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)

2. 
(A.7) 

 

The above equation can be easily rewritten as follows 

 

𝜇 − √𝜆2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)
2

2𝜆
+
1

2

<
2𝜇 −√𝜆2 + 4(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + 4(𝜇1 − 𝜇2)

2

2𝜆
+
1

2
. 

(A.8) 
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Hence, ℎ1 < ℎ3. Considering the case for which Eq. (A.4) does not hold, we have 

 

(𝜇1 − 𝜇2)
2 − 2𝜇1𝜇2 + (𝜆2 − 𝜆1)(𝜇1 − 𝜇2) ≥ 0. (A.9) 

 

It is evident that the following equation also holds: 

 

(𝜇1 − 𝜇2)
2 + (𝜆2 − 𝜆1)(𝜇1 − 𝜇2) − 𝜇1𝜇2 ≥ 0. (A.10) 

 

In addition, according to Eq. (A.2), we have 

 

(𝜆1 + 𝜆2)
2 + (𝜇1 − 𝜇2)

2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) > 0. (A.11) 

 

With respect to Eqs. (A.10) and (A.11), we obtain 

 

𝜇1𝜇2((𝜆1 + 𝜆2)
2 + (𝜇1 − 𝜇2)

2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2))

+ 𝜇1𝜇2((𝜇1 − 𝜇2)
2 + (𝜆2 − 𝜆1)(𝜇1 − 𝜇2) − 𝜇1𝜇2) 

+𝜆1𝜆2(𝜇1 − 𝜇2)
2 > 0. 

(A.12) 

 

The above equation can be simplified as follows: 

((𝜇1 − 𝜇2)
2 − 2𝜇1𝜇2 + (𝜆2 − 𝜆1)(𝜇1 − 𝜇2))

2

< ((𝜇1 + 𝜇2)√𝜆
2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)

2)
2

. 
(A.13) 

 

According to Eq. (A.9), we have 

 

(𝜇1 − 𝜇2)
2 − 2𝜇1𝜇2 + (𝜆2 − 𝜆1)(𝜇1 − 𝜇2)

< (𝜇1 + 𝜇2)√𝜆
2 + 2(𝜆2 − 𝜆1)(𝜇1 − 𝜇2) + (𝜇1 − 𝜇2)

2. 
(A.14) 

 

The above equation is the same as Eq. (A.5). Hence, similar to the previous case, we obtain ℎ1 < ℎ3. 
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