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Solving User Equilibrium Problem: Deterministic and 

Stochastic Cases 
 

A. R. Fakharzadeh Jahromi*,1,S. Mahmoodi2 
  

Traffic assignment problem is an important problem for analyzing and optimizing a transportation 

network to find optimal flows. This study presents a new formulation based on a generalized Benders’ 

decomposition approach to solve the user equilibrium problems, in deterministic and stochastic cases. 

The new approach decomposes the problem into a master problem and a sub-problem. The former is 

a nonlinear and the latter is a linear programming problem. Iteratively, the master problem is solved 

and its outputs are used to solve the sub-problem by forming appropriate cuts and adding them to the 

master problem to be used in the next iteration. Based on the convergence of Benders’ decomposition, 

the iterative process is terminated in a finite number of steps. Some numerical examples are worked 

through and comparisons are made with other methods.  
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1. Introduction 

 

Network design problems are central to a large number of contexts including transportation, 

telecommunication, computer and power systems. The idea is to establish a network of links (roads, 

optimal fibers, electric lines, etc.) that enables the flow of commodities (people, data packets, 

electricity, etc.) in order to satisfy some demand characteristics. By paying attention to the importance 

of travel time in urban journeys of big cities, there is particularly a huge degree of interest in urban 

network design problems; thus, professional allocation has been of special importance in the past two 

decades. One of the most important problems on the analysis and optimization of transportation 

networks is the traffic assignment that finds an optimal flow in a network.  

 

Decomposition technique is a general approach for solving  large scale problems, in which the 

problem is broken to some smaller ones so that, by solving each separately (either in parallel or 

sequentially), the solution of the main problem is achieved. Indeed, decomposing a large scale 

problem to some smaller ones is an old idea and several methods of this kind have been proposed and 

their applications have been extended in different areas. Regarding the importance of the associated 

problems, several solution methodologies are available for network design. These include purely 

heuristic methods and optimal implicit enumerations. Among the successful solution approaches, 

Benders’ decomposition was found to be popular for application. The basic idea behind the method 
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is to decompose the problem into two simpler parts. In the first part, a master problem develops a 

relaxed version of the problem and obtains values for a subset of the variables. In the second part, a 

sub-problem is to obtain the values for the remaining variables while keeping the first ones fixed 

which are used to generate cuts for the master problem. The master problem and the sub-problem are 

solved iteratively until no more cuts can be generated ([5], [7], [10], [12], [15], [16], [18], [20], [25]). 

After reviewing the use of Benders’ decomposition in Section 2, in Section 3, different traffic 

assignment problems are explained. Section 4 is devoted to a new formulation of the deterministic 

user equilibrium (UE) model for application of Benders’ decomposition. The technique is presented 

by determining its related master and sub-problems and a case study is also given. In Section 5, first 

a new formulation of stochastic user equilibrium (SUE) is presented. Then, an application of Benders’ 

decomposition for finding the solution with a numerical example is explained. Finally, Section 6 gives 

our concluding remarks. 

 

2. Benders’ Decomposition 
 

Benders’ decomposition is a classical solution approach for combinatorial optimization problems 

based on partition and delayed constraint generation. This method was originally purposed by J. F. 

Benders in 1962 for solving large scale combinatorial optimization problems [2] and then several 

extensions were proposed. One of the most important ones was presented by Geoffrion [12] who 

proposed a “generalized Benders’ decomposition” approach. He used nonlinear duality theory and 

extended the Benders’ method to the case where the sub-problem was convex. This development 

enabled the application of the Benders’ decomposition to a whole new set of problems, particularly 

those in which a joint problem was generally nonconvex but could be made convex by fixing one set 

of variables. Examples of successful application of this methodology to mixed-integer problems are 

abundant. Also, there are a number of applications; for instance, the seminal paper by Geoffrion and 

Graves on multi commodity distribution network design [9] and the extension presented by Cordea 

([4], [8]) on the same problem can be mentioned. Other applications include the locomotive and car 

assignment problems [11], large scale water resource management problem [9], two stage stochastic 

linear problem and robust shortest path problem ([9], [17]). 

 

The method partitions the model to be solved into two simpler problems named master and sub-

problem. Indeed, summarizing Benders’ decomposition, first the relaxed master problem is solved to 

obtain a lower bound on the optimal values of the objective function of the initial problem, and then, 

the sub-problem uses inputs of the master problem to form an approximate cut and adds it to the 

master problem in the next iteration. Also, by solving the sub-problem, an upper bound is found for 

the initial problem. During the iterative process, by adding a new constraint to the master problem, 

the optimal value of its objective function can only increase or stay the same. On the other hand, in 

each iteration, by solving a sub-problem, the upper bound of objective function of the initial problem 

can only decrease or stay the same. As soon as the lower and upper bounds of the initial problem are 

sufficiently close, the iterative process can be terminated with a sufficiently small tolerance. Based 

on the convergence theorem of Benders’ decomposition method, the algorithm achieves the optimal 

solution after a finite number of iterations ([2], [4], [8], [21]). 

 

 

 

3. Traffic Assignment Problem and the UE Principle 
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The traffic assignment problem is a fundamental transportation problem concerned with the 

distribution of travel demands to routes in a traffic network. As a mathematical model, the problem 

is commonly represented by a discrete graph in which each link is associated with a travel cost 

function and the demands are associated, more than the travel cost, with the number of trips which 

are given by an origin-destination (O-D) matrix. 

 

The number of travels that can be made on the streets or junctions in an urban environment is 

equivalent to the user’s personal decisions in a special time interval. The problems such as arriving 

from an origin to a destination at what time and what route in a crowded network depend on the user’s 

decisions. The prediction of flow in the network is an important problem with which urban 

transportation network designers are faced. So, traffic assignment is a problem to find the amounts of 

flows in networks. 

 

The classical assumption for the models regarding the distribution is the user equilibrium (UE) 

principle. This principle, due to Wardrop  [9] in 1952, is stated as follows:  

 

“The journey times on all the routes which are actually used are equal and less than those which are 

experienced by a single vehicle on any unused route.” 

 

Characteristic features of the situation described by the UE principle are that all travels have 

prefect information about travel costs and are uniform in the sense that they have the same travel cost 

perception. Based on each of these behavioral assumptions, models may present reasonable 

approximation of the actual traffic situation. However, if there is lack of information among the 

travelers about the shortest routs or if travelers have different preferences and perceive travel costs 

differently, it is then natural to assume that traffic flows do not satisfy the user equilibrium conditions 

[9]. 

 

4. Basic User Equilibrium Model 
 

Consider a transportation network 𝐺 = (𝑁, 𝐴) where 𝑁 denotes the set of nodes and each directed 

link 𝑎 ∈ 𝐴 is associated with a generalized travel cost 𝑡𝑎(𝑓𝑎), which represents the disutility of using 

link 𝑎 as a function of its flow 𝑓𝑎  ; This cost may include several additive components, the most 

important of which is perhaps the travel time on the link. It is assumed that  𝑡𝑎 is positive and is a 

strictly increasing function of the flow on link 𝑎. This function is represented as follows: 

𝑡𝑎 = 𝑡0
𝑎 [1 + 𝛽 (

𝑓𝑎

𝐶′
)

𝛼

], (1) 

where 𝑡0
𝑎 is travel time in zero link, 𝐶𝑎

′  is practical capacity and 𝛼 and 𝛽 are the model parameters 

that are usually set to be 𝛼 = 4 and 𝐵 = 0.15 [24]. 
 

For certain pairs of origins and destinations (𝑝, 𝑞) ∈ 𝐶 , where 

                                                               C N N    

, there is a given positive demand  𝑑𝑝𝑞  of flows. For each O-D pair (𝑝, 𝑞), the set of simple routes 

from 𝑝 to 𝑞 is denoted by 𝑟𝑝𝑞 (a set which, in general, is not known explicitly) and the flow on route 

from 𝑝 to 𝑞 is denoted by ℎ𝑝𝑞𝑟. By defining a link-route incidence matrix ( 𝛿𝑝𝑞𝑟𝑎), 𝛿𝑝𝑞𝑟𝑎 = 1 if 

route 𝑟 ∈ 𝑅𝑝𝑞  contains link 𝛼 and 0, otherwise. The user equilibrium traffic assignment problem can 

be formulated as the following convex program (here, f denotes the vector of link flows): 
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𝑀𝑖𝑛   𝑇(𝑓) = ∑ ∫ 𝑡𝑎(𝑠)𝑑𝑠
𝑓𝑎

0𝑎∈𝐴  

(2) 

s. t.    ∑ ℎ𝑝𝑞𝑟 =  𝑑𝑝𝑞    ,        ∀(𝑝, 𝑞) ∈ 𝐶𝑟∈𝑅𝑝𝑞
 

∑ ∑ 𝛿𝑝𝑞𝑎ℎ𝑝𝑞𝑟 =  𝑓𝑎 ,       ∀𝑎𝜖𝐴𝑟∈𝑅𝑝𝑞(𝑝,𝑞)∈𝐶   

ℎ𝑝𝑞𝑟  ≥ 0       ,      𝑟 ∈ 𝑅𝑝𝑞 ,     (𝑝, 𝑞)  ∈ 𝐶. 

It should be reminded that, in this model, the objective function is not known explicitly ([9], [13]). 

To avoid calculation of 𝑇(𝑓) (since it is too time consuming), the interval [0,𝑓𝑎] is divided into 𝑛 

equal subintervals, each having length  
𝑓𝑎

𝑛
 ,  and the scaling points 𝑡𝑖, 𝑖 = 1,2, … , 𝑛, to have 

∫ 𝑡𝑎(𝑠)𝑑𝑠
𝑓𝑎

0

≈ ∑ 𝑡𝑎 (𝑡𝑖)
𝑓𝑎

𝑛

𝑛

𝑖=1

 (3) 

 

4.1. Benders’ decomposition method for solving UE problem   

 

Considering (1) and (2), the initial problem (2) can be rewritten as follows [25]: 

 

𝑝(ℎ, 𝑓) : 
𝑀𝑖𝑛     ∑ 𝑡𝑎

0 [1 + 𝛽(
(3𝑖−2)𝑓𝑎

2𝑛𝐶𝑎
)𝛼 ]𝑛

𝑖=1
𝑓𝑎

𝑛
  

s. t  :    ∑ ℎ𝑝𝑞𝑟 =  𝑑𝑝𝑞   ,             ∀(𝑝, 𝑞) ∈ 𝐶𝑟∈𝑅𝑝𝑞
 

               ∑ ∑ 𝛿𝑝𝑞𝑟𝑎ℎ𝑝𝑞𝑟 = 𝑓𝑎  ,𝑟∈𝑅𝑝𝑞(𝑝,𝑞)∈𝐶             ∀𝑎𝜖𝐴 

 ℎ𝑝𝑞𝑟  ≥ 0    , ∀ 𝑟 ∈ 𝑅𝑝𝑞 , (𝑝, 𝑞) ∈ 𝐶.                                                             

(4) 

The problem  𝑝(ℎ, 𝑓) is consisted of two variables ℎ𝑝𝑞𝑟  and 𝑓𝑎.  

 

As explained in Section 2, to apply the Benders’ decomposition approach, first the 

 𝑝(ℎ, 𝑓) problem should be divided into two related master problem and sub-problem. The initial 

master model 𝑀(ℎ, 𝑓, 0) can be stated as follows: 

 

 𝑀(ℎ, 𝑓, 𝑚 = 0) ∶ 

𝑀𝑖𝑛    ∑ 𝑡𝑎
0 [1 + 𝛽(

(3𝑖−2)𝑓𝑎

2𝑛𝐶𝑎
)𝛼  ]𝑛

𝑖=1
𝑓𝑎

𝑛
  

s. t:    𝑓𝑎 ≥ 0 ,    ∀𝑎 ∈ 𝐴. 

(5) 

 

By solving [5], the variables af  are obtained somehow optimally. Then, by replacing these values 

in the linear part of  𝑝(ℎ, 𝑓), the problem contains only the variables ℎ𝑝𝑞𝑟.  

 

Now, by introducing two dual variables 𝑤𝑝𝑞 and 𝜋𝛼 corresponding to the first and second 

constraint sets in (4), respectively, the dual formulation of the linear part of 𝑝(ℎ, 𝑓) can be set up as: 

S(𝑤 , 𝜋|ℎ, 𝑓): 𝑀𝑎𝑥   ∑ 𝑤𝑝𝑞𝑑𝑝𝑞 +  ∑ 𝜋𝑎𝑓𝑎𝑎∈𝐴(𝑝,𝑞)∈𝐶   

s .t. (wA +  𝜋∆) ≤ 0  ,                

             𝑤𝑝𝑞 , 𝜋𝑎, 𝑓𝑟𝑒𝑒,      ∀(𝑝, 𝑞) ∈ 𝐶,    𝑎𝜖𝐴,       

(6) 
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where the coefficients of the variables ℎ𝑝𝑞𝑟 in the first and second sets of constraints 𝑝(ℎ, 𝑓) are 

represented by 𝐴 and ∆ matrices, respectively, and the vectors 𝑤 and 𝜋 respectively contain the 

variables  𝑤𝑝𝑞  and 𝜋𝑎. 

 

When the optimal values of the variables 𝑤 and 𝜋 are obtained by solving the sub-problem 

S(𝑤 , 𝜋 | ℎ, 𝑓)  , a  Benders’ cut can be built by replacing these variables in the objective function of 

the problem (6) as follows:  

∑ 𝑤𝑝𝑞 𝑑𝑝𝑞 +  ∑ 𝜋𝑎𝑓𝑎 ≤ 𝑚,

𝑎𝜖𝐴(𝑝,𝑞)∈𝐶

 (7) 

where 𝑤𝑝𝑞 
 
and  𝜋𝛼  are parameters and  𝑚  and 𝑓𝑎 are continuous variables. Then, by adding this 

Benders’ cut to the initial problem 𝑀(ℎ, 𝑓, 0), the following regular master problem 𝑀(ℎ, 𝑓, 𝑚) can 

be obtained. Note that the optimal dual variables 𝑤 and 𝜋 are given an extra index 𝑡 ∈ 𝐵 for each 

Benders’ cut related to the following iterations: 

𝑀𝑖𝑛    ∑ ∑ 𝑡𝑎
0 [1 + 𝛽 (

(3𝑖−2)𝑓𝑎

2𝑛.𝐶𝑎
′ )

𝛼
 ] .𝑛

𝑖=1
𝑓𝑎

𝑛
 +  𝑚𝑎𝜖𝐴  

 

s .t.   ∑ 𝑤𝑝𝑞𝑡𝑑𝑝𝑞 +  ∑ 𝜋𝑎𝜖𝐴 𝑎𝑡
𝑓𝑎 ≤ 𝑚,     ∀𝑡 ∈ 𝐵,    (𝑝, 𝑞) ∈ 𝐶(𝑝,𝑞)∈𝐶    

 

   𝑓𝑎 ≥ 0,   𝑚 ≥ 0 ,      ∀𝑎𝜖𝐴.   

(8) 

 

Indeed, here 𝑚 is the least amount of the objective function of the sub-problem. Continuing this 

procedure iteratively and adding a new cut to each iteration cause the solution to get closer to the 

optimal solution. This procedure is stopped when the obtained upper and lower bounds for the initial 

objective function are close enough. 

 

4.2. Case study and model implementation 

 

A famous urban transportation network model is the Alsop and Charlsworth model ([1], [3]). The 

model contains 5 origins, say A, C, D, E and G, 5 destinations, say A, B, D, E and F, and 2B links 

with 6G nodes. In this model, as shown in Figure 1, origins and destinations are respectively shown 

by rectangles and circles and the connecting streets between junctions are shown by arrows [1]. 

 

 

 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-1
0-

24
 ]

 

                             5 / 15

http://iors.ir/journal/article-1-342-en.html


84 Fakharzadeh Jahromi and Mahmoodi. 

 

 

 
Figure1. The Alsop and Charlesworth network model 

 

The corresponding values of the network travel requests are presented in Table 1 for 𝛼 = 4 and 

𝛽 = 0.15. 

Table 1. Travel requests for the Alsop and Charlesworth model 

 

Origin 

Destination  

Total A B D E F 

A - 250 700 30 200 1180 

C 40 20 200 130 900 1290 

D 400 250 - 50 100 800 

E 300 130 30 - 20 480 

G 550 450 170 60 20 1250 

 

Also, the travel times in zero link and the practical capacities of the links are presented in Table 2, 

in which the times are in minutes. 

 

The model was solved by Benders’ decomposition method as mentioned above using the 

MATLAB 7.8 solver. The algorithm stopped with 45 steps in 166 seconds. The obtained optimal 

values of the network link flows are shown in Table 3. 
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Table 2. Travel free time and practical capacities of the links 

Link Travel free time Practical capacity Link Travel free time Practical capacity 

1 0 400 13 0 440 

2 0 320 14 20 640 

3 10 640 15 15 520 

4 15 640 16 10 580 

5 20 360 17 10 340 

6 20 370 18 15 340 

7 10 360 19 10 300 

8 15 370 20 0 560 

9 15 340 21 15 640 

10 10 440 22 0 720 

11 0 400 23 15 640 

12 0 360    

 

Table 3. Optimal value of network link flows by Benders’ decomposition method 

Link Flow Link Flow Link Flow 

1 990.7697 9 220 17 537.86 

2 537.14 10 577.14 20 375.82 

3 970.77 11 412.09 19 608.71 

4 432.86 12 407.91 20 129 

5 522.86 13 520.04 21 927.96 

6 242.04 14 734.18 22 125 

7 569.23 15 764.18 23 859.20 

8 507.14 16 1081.30   

 

Also, the optimal route flows and their travel times are presented in Table 4. However, these values 

that are obtained with approximation could supply the network demand. 

 

Table 4. Optimal values of network link flows for UE 

(Origin- Destination) Route Flow 

(A,B) 1-3 

2-7-23 

245.3060 

    1.4899 

(A,D) 1-3-4-5 

2-7-8-10 

2-7-23-4-5 

345.192 

345.4179 

    2.0943 

(A,E) 1-3-4-6 

2-7-8-10-12 

2-7-23-4-6 

23.2393 

  0.0105 

  0.1449 

(A,F) 2-7-9 

2-7-23-4-6-13-17 

1-3-4-5-12-17 

185.1943 

    0.0009 

    9.6284 

(C,A) 20-15-16 

20-21-18-19 

20-6-13-17-18-19 

41.1204 

  0.0002 

  0.0002 

(C,B) 20-15-16-7-23 

20-21-18-19-1-3 

  0.3103 

18.2270 
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20-21-18-19-2-7-23   0.0001 

(C,D) 20-5 

20-21-10 

20-15-16-7-8-10 

    0.0001 

165.2806 

  34.5883 

(C,E) 20-6 

20-21-10-12 

20-5-12 

    0.0003 

130.6696 

    0.0118 

(C,F) 20-21 

20-6-13-17 

20-15-16-7-9 

866.4691 

 32.8049 

   0.0001 

(D,A) 12-17-18-19 

11-14-15-16 

11-14-21-18-19 

    4.2589 

398.6697 

    0.0025 

(D,B) 11-14-15-16-7-23 

12-17-18-19-1-3 

12-17-18-19-2-7-23 

  12.2987 

235.9942 

    1.4320 

(D,E) 12 50.081 

(D,F) 12-17 

11-14-21 

11-14-15-16-7-9 

102.1407 

    0.0002 

    0.0007 

(E,A) 13-17-18-19 

13-14-15-16 

13-14-21-18-19 

    7.9939 

291.3877 

    0.0007 

(E,B) 13-14-15-16-7-23 

13-17-18-19-2-7-23 

13-17-18-19-1-3 

    2.4920 

122.9348 

    0.0007 

(E,D) 13-14-21-10 

13-14-15-16-7-8-10 

13-17-18-19-1-3-4-5 

  0.7512 

27.8201 

  0.0001 

(E,F) 13-17 

13-14-21 

13-14-15-16-7-9 

18.5937 

  0.0001 

  2.3578 

(G,A) 22-19 

22-23-16 

22-8-10-15-16 

  31.6173 

450.4278 

    0.0001 

(G,B) 22-23 

22-19-1-3 

22-19-2-7-23 

 60.0299 

   0.0004 

365.9059 

(G,D) 22-8-10 

22-23-4-5 

22-19-1-3-4-5 

100.7519 

    0.0007 

  27.8730 

(G,E) 22-8-10-12 

22-23-4-6 

22-23-4-5-12 

54.9218 

  0.0020 

  0.0009 

(G,F) 22-9 

22-19-1-3-4-5-12-7 

22-23-4-6-13-7 

19.0575 

  0.0001 

  0.0001 
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5. Stochastic User Equilibrium SUE Model  
 

A consequence of the difference in travel cost perception is that the routes with higher costs than 

the least-cost routes are also utilized (it is still natural to assume that a more costly route has less 

probability to be chosen by a traveler than a less costly one). In order to allow for variations in the 

traveler’s perception of travel cost, one could extend the basic UE model to include randomness in 

the travel cost function. The probability of choosing a specific route to give an actual cost then 

depends on this randomness [14]. 

 

Damberg and Sheffi ([9], [24]) extended the user equilibrium principle to the principle of 

Stochastic User Equilibrium (SUE) stated as follows: 

 

"In a stochastic user equilibrium network, no user believes s/he can improve his/her travel time by 

unilaterally changing routes." 

 

In a stochastic user equilibrium model, the deterministic traffic model is 

extended by including random components in the travel cost functions to 

account for the variations in the traveler’s perception of travel cost.  So, the 

logit-based stochastic user equilibrium model by Fisk in 1980, is as follows: 

𝑝(ℎ, 𝑓): 

𝑀𝑖𝑛         𝑇(𝑓) = 
1 

𝜃  
 ∑ ∑ ℎ𝑝𝑞𝑟 ln ℎ𝑝𝑞𝑟 + ∑ ∫ 𝑡𝑎(𝑠)𝑑𝑠

𝑓𝑎

0𝑎𝜖𝐴𝑟∈𝑅𝑝𝑞(𝑝,𝑞)∈𝐶  

 

s .t.        ∑ ℎ𝑝𝑞𝑟 =  𝑑𝑝𝑞    ,               ∀(𝑝, 𝑞) ∈ 𝐶𝑟∈𝑅𝑝𝑞
 

 

∑ ∑ 𝛿𝑝𝑞𝑟𝑎ℎ𝑝𝑞𝑟 =  𝑓𝑎  ,                           ∀𝑎𝜖𝐴𝑟∈𝑅𝑝𝑞(𝑝,𝑞)∈𝐶   

 

ℎ𝑝𝑞𝑟 ≥ 0 ,        ∀ 𝑟 ∈ 𝑅𝑝𝑞 ,   (𝑝, 𝑞) ∈ 𝐶,    

(9) 

where, ℎ denotes the vector of route flows, the ℎ𝑝𝑞𝑟, and the parameter 𝜃 is assumed to be 

nonnegative, with 𝜃  being the value of user’s available information [9].  

 

In (9), Fisk defined 𝑥 ln 𝑥  to be zero at 𝑥 = 0; also, it is known that log 𝑥 is undefined at 𝑥 = 0 

and is not differentiable at this point. This fact could pose some difficulties in the solution procedure 

as the condition is not considered in modeling or in the proposed solution methods ([6], [9], [13]). 

 

Taylor’s expansion of 𝑥𝑙𝑎𝑥 was considered in close neighborhoods of zero. Therefore, the real 

point (re) called "realmin", the smallest positive floating point number in MATLAB 7.8, was the 

center point of the Taylor’s expansion. Using these initiatives, not only a constraint that was ignored 

before was considered, but also the problem was posed by extending the differentiability. 

 

5.1. SUE model in new formulation   

 

To overcome the mentioned difficulties and also to be able to solve large problems, Benders’ 

decomposition method was applied due to its advantages. Paying attention to the first constraint of 

problems (4) and (5), it is obvious that the values of the variables lie between 0 and 𝑑𝑝𝑞; and thus to 

increase the approximation accuracy, it is better to decrease the interval. Accordingly, 𝑥𝑝,𝑞,𝑟 =
ℎ𝑝 𝑞 𝑟

𝑑𝑝 𝑞
 

is defined. Then, substituting ℎ𝑝𝑞𝑟 by 𝑥𝑝𝑞𝑟 changes the interval [0, 𝑑𝑝𝑞]  to [0,1]. Here, the function 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-1
0-

24
 ]

 

                             9 / 15

http://iors.ir/journal/article-1-342-en.html


88 Fakharzadeh Jahromi and Mahmoodi. 

 

 

𝑓(ℎ) = ℎ ln ℎ could be reformulated with respect to the variable 𝑥 as 𝑓(𝑥) = 𝑥𝑑 ln(𝑥𝑑) =

𝑑𝑥 ln 𝑥 + (𝑑 ln 𝑑) 𝑥.  
 

Now, considering the first two terms of the Taylor’s expansion of 𝑥 ln 𝑥 , a linear approximation 

of this function can be obtained and thus 𝑓(𝑥)
 
may be reformulated as 

 

𝑓(𝑥) = 𝑑(1 + ln(𝑟𝑒) + ln 𝑑)𝑥 − 𝑑(𝑟𝑒). 
 

Applying the above reformulations, the initial problem (9) is turned into  

 

𝑃(𝑥, 𝑓): 

Min Z = 
1

𝜃
 ∑ ∑ 𝑑𝑝𝑞(1 + ln ( 𝑟𝑒) + ln(𝑑𝑝𝑞)) +  ∑ 𝑡𝑎

0(1 +𝑛
𝑖=1𝑟∈𝑅𝑝𝑞(𝑝,𝑞)∈𝐶

𝛽(
(3𝑖−2)𝑓𝑎

2𝑛𝐶𝑎
)𝛼)𝑓𝑎 

s .t.   ∑ 𝑥𝑝𝑞𝑟 = 1 ;                    ∀(𝑝, 𝑞) ∈ 𝐶𝑟∈𝑅𝑝𝑞
 

               ∑ ∑ 𝛿𝑝𝑞𝑟𝑎𝑥𝑝𝑞𝑟𝑑𝑝𝑞 =  𝑓𝑎                            ∀𝑎𝜖𝐴𝑟∈𝑅𝑝𝑞(𝑝,𝑞)∈𝐶  

              0≤ 𝑥𝑝𝑞𝑟 ≤ 1      ,            ∀𝑟 ∈ 𝑅𝑝𝑞  ,     (𝑝, 𝑞) ∈ 𝐶.  

(10) 

 

These initiatives lead to a decrease in computations as shown by our numerical examples.  

 

5.2. Benders’ decomposition for SUE problem 

 

The problem 𝑝(𝑥, 𝑓)  contains two variables 𝑥𝑝𝑞𝑟 and 𝑓𝑎 . To apply the Benders’ decomposition, 

first it is necessary to divide the variables and constraints into two groups. So the nonlinear part of 

the objective function containing the variable fa represents the nonlinear part of the initial problem 

and the variable 𝑥𝑝𝑞𝑟 with linear part of the objective function and the two constraints represent the 

linear part which should be dualized.  

 

The initial master model M(x, f, 0) can be stated as 

 

M(x, f, 0)      

 Min    ∑ ∑ 𝑡𝑎
0 [1 + 𝛽 (

(3𝑖−2)𝑓𝑎

2𝑛𝐶𝑎
′ )

𝛼
 ] .𝑛

𝑖=1
𝑓𝑎

𝑛
 𝑎𝜖𝐴  

 

s.t.    𝑓𝑎 ≥ 0   , ∀𝑎𝜖𝐴. 

(11) 

 

Note that the initial master model does not yet contain any Benders’ cuts. By solving this problem, 

the variable 𝑓𝑎 can be obtained for all 𝑎 ∈ 𝐴. Then, by replacing these values in the linear part of  

𝑝(𝑥, 𝑓),   this part will only contain the variable 𝑥𝑝𝑞𝑟.  

 

 By introducing three dual variables 𝑤𝑝𝑞 , 𝜋𝑎 𝑎𝑛𝑑  𝑧𝑝𝑞𝑟 corresponding to the three constraints, the 

dual formulation of the linear part of 𝑝(𝑥, 𝑓)  can be written as:  
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𝑆(𝑤 , 𝜋 , 𝑧 |𝑥, 𝑓):  𝑀𝑎𝑥 ∑ 𝑤𝑝𝑞 +  ∑ 𝜋𝑎 𝑓𝑎

𝑎∈𝐴

+ ∑ ∑ 𝑧𝑝𝑞𝑟 − 𝑑(𝑟𝑒)

𝑟𝜖𝑅𝑝𝑞(𝑝,𝑞)∈𝐶

 

(𝑝,𝑞)∈𝐶

 

                                          𝑠. 𝑡.  (𝑤𝑎 + 𝜋 ∆ + 𝑍𝐼)′  ≤
1

𝜃
𝐶′ ,         ∀(𝑝, 𝑞) ∈ 𝐶, 𝑟 ∈ 𝑅𝑝𝑞 , 𝑎𝜖𝐴 

                          𝑤𝑝𝑞 , 𝜋𝑎 , 𝑓𝑟𝑒𝑒 ,                 ∀(𝑝, 𝑞) ∈ 𝐶, 𝑎𝜖𝐴 

  
  𝑧𝑝𝑞𝑟 ≤ 0      ,           ∀(𝑝, 𝑞) ∈ 𝐶  ,   𝑟 ∈ 𝑅𝑝𝑞 . 

     

(12) 

In this problem, the coefficients of the variables 𝑥𝑝𝑞𝑟  in the first, second and third constraints of 

the linear part of problem p(x, f) are represented by 𝐴, ∆ and 𝐼 matrices, respectively; also, the matrix  
𝐶 demonstrates the coefficients of the variables in the objective function of the problem and the 

vectors 𝑤,  𝜋 and  z respectively contain the variables 𝑤𝑝𝑞, 𝜋𝛼 and 𝑍𝑝𝑞𝑟. 

 

 In each iteration of Benders’ decomposition, a constraint (Benders’ cut) is built and added to 

problem (12). This cut is directly derived from the objective function of the above sub-problem 

S(w,𝛑,z|x,f) which is evaluated at the solution (𝑤, 𝜋, 𝑍). This new constraint is 

 

∑ 𝑤𝑝𝑞 +  ∑ 𝜋𝑎𝑓𝑎 + ∑ ∑ 𝑍𝑝𝑞𝑟 − 𝑑(𝑟𝑒) ≤ 𝑚,

𝑟∈𝑅𝑝𝑞(𝑝,𝑞)∈𝐶𝑎𝜖𝐴(𝑝,𝑞)∈𝐶

 (13) 

 

where (𝑤𝑝𝑞 , 𝜋𝛼, 𝑍𝑝𝑞𝑟) are parameters and 𝑤 and 𝑓𝛼 are the variables. 

After introducing the set B of generated Benders’ cut, by adding the Benders’ cut to the initial 

problem 𝑀(𝑥, 𝑓, 0), the following regular master problem 𝑀(𝑥, 𝑓, 𝑚) is obtained (note that the 

optimal dual variables  𝑤, 𝜋 and 𝑍 are given an extra index 𝑏 ∈ 𝐵 for each bender cut): 

 

 Min    ∑ ∑ 𝑡𝑎
0 [1 + 𝛽 (

(3𝑖−2)𝑓𝑎

2𝑛𝐶𝑎
)

𝛼
 ] .𝑛

𝑖=1
𝑓𝑎

𝑛
+  

𝑚

𝑛𝑎𝜖𝐴  

 s .t.     ∑ 𝑤𝑝𝑞𝑏 + ∑ 𝜋𝑎𝑏𝑓𝑎 + ∑ ∑ 𝑍𝑝𝑞𝑟 − 𝑑(𝑟𝑒) ≤ 𝑚𝑟∈𝑅𝑝𝑞(𝑝,𝑞)∈𝐶𝑎𝜖𝐴(𝑝,𝑞)∈𝐶 , 

∀𝑏 ∈ 𝐵  ,    (𝑝, 𝑞) ∈ 𝐶  ,    𝑎𝜖𝐴,      
𝑓𝑎 ≥ 0     ,        ∀𝑎𝜖𝐴. 

(14) 

 

5.3. Numerical results of a case study for SUE 

 

The Alsop and Charleworth model presented in Section 4 was solved by applying the new 

mentioned formulation, and  the Benders’ decomposition discussed above using MATLAB 7.8 solver. 

The algorithm stopped after 35 iterations. To obtain the optimal path flows, problem was encountered 

to be unbounded. Since using the extreme rays in such situations is not always effective (specially, 

when the problem is large scale), to speed up the computation, the obtained optimal edge values were 

applied to the problem  𝑃(ℎ, 𝑓). Therefore, the problem was tested only with the ℎ𝑞𝑟  variables. By 

selecting 𝜃 = 1, 𝛼 = 4 and  𝛽 = 0.15  (as recommended  in [9]) and then minimizing this problem, 

the optimal network link flow was determined in 270 second with the total optimal value of 28598.46. 

The obtained optimal values of the network link flows are given in Table 5. 
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Table 5. Optimal value of network link flows for SUE 

Link Flow Link Flow Link Flow 

1 1015.04 9  220 17 533.17 

2 564.96 10  571.02 18 400 

3 995.04 11  400 19 607.71 

4 425.04 12  400 20 1290 

5 528.98 13  513.17 21 922.89 

6 253.16 14  730 22 1250 

7 564.96 15  739.99 23 852.29 

8 534.96 16 1082.23   

 

Also, the optimal route flows and their travel times are given in Table 6 where the times are in 

minutes. 

 

Table 6. Optimal value of network link flows for SUE 

(Origin- Destination) Route Flow Survey time (minutes) 

(A,B) 1-3 

2-7-23 

247.699 

    0.277 

0.279 

0.686 

(A,D) 1-3-4-5 

2-7-8-10 

2-7-23-4-5 

344.143 

346.538 

    0.374 

1.235 

0.960 

1.647 

(A,E) 1-3-4-6 

2-7-8-10-12 

2-7-23-4-6 

29.095 

  0.010 

  0.033 

1.235 

0.960 

1.647 

(A,F) 2-7-9 

2-7-23-4-6-13-17 

1-3-4-5-12-17 

199.203 

    0.010 

    0.01 

0.686 

1.509 

1.506 

(C,A) 20-15-16 

20-21-18-19 

20-6-13-17-18-19 

40.478 

  0.010 

  0.010 

0.686 

1.098 

1.509 

(C,B) 20-15-16-7-23 

20-21-18-19-1-3 

20-21-18-19-2-7-23 

  0.0425 

  0.936 

17.973 

0.961 

1.372 

1.784 

(C,D) 20-5 

20-21-10 

20-15-16-7-8-10 

  0.021 

193.669 

  6.410 

0.549 

0.681 

1.647 

(C,E) 20-6 

20-21-10-12 

20-5-12 

  0.010 

130.075 

  0.010 

0.549 

0.687 

0.549 

(C,F) 20-21 

20-6-13-17 

20-15-16-7-9 

866.425 

33.511 

0.106 

0.412 

0.823 

1.377 

(D,A) 12-17-18-19 

11-14-15-16 

11-14-21-18-19 

1.822 

398.933 

0.012 

0.961 

1.235 

1.647 

(D,B) 11-14-15-16-7-23 

12-17-18-19-1-3 

12-17-18-19-2-7-23 

0.073 

248.441 

 0.278 

1.921 

1.235 

1.647 

(D,E) 12 49.996 0.051 
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(D,F) 12-17 

11-14-21 

11-14-15-16-7-9 

99.4876 

0.563 

0.010 

0.274 

0.961 

1.921 

(E,A) 13-17-18-19 

13-14-15-16 

13-14-21-18-19 

1.465 

299.30 

0.010 

0.921 

1.235 

1.647 

(E,B) 13-14-15-16-7-23 

13-17-18-19-2-7-23 

13-17-18-19-1-3 

0.035 

127.960 

0.676 

1.921 

1.647 

1.235 

(E,D) 13-14-21-10 

13-14-15-16-7-8-10 

13-17-18-19-1-3-4-5 

0.143 

29.997 

0.010 

1.235 

2.195 

2.195 

(E,F) 13-17 

13-14-21 

13-14-15-16-7-9 

19.948 

 0.106 

 0.209 

0.274 

0.961 

1.921 

(G,A) 22-19 

22-23-16 

22-8-10-15-16 

341.406 

449.070 

    0.01 

0.274 

0.686 

1.372 

(G,B) 22-23 

22-19-1-3 

22-19-2-7-23 

100.001 

100.007 

170.073 

0.412 

0.549 

0.960 

(G,D) 22-8-10 

22-23-4-5 

22-19-1-3-4-5 

170.458 

    0.001 

170.458 

0.686 

1.372 

1.509 

(G,E) 22-8-10-12 

22-23-4-6 

22-23-4-5-12 

60.249 

  0.01 

  0.01 

0.686 

1.372 

1.372 

(G,F) 22-9 

22-19-1-3-4-5-12-7 

22-23-4-6-13-7 

20.341 

  0.01 

  0.01 

0.412 

1.784 

1.649 

 

6. Conclusions 

 

To obtain a least cost network for supplying origin-destination demands, first Benders’ 

decomposition method was described, and then its application was investigated for solving the 

problem. After introducing the traffic assignment problem as a basic transportation problem, user 

equilibrium and stochastic user equilibrium models (as efficient cases for description of users’ 

selection trajectory in urban transportation) were explained. Then, Benders’ decomposition method 

was employed to solve these problems. Using the Taylor expansion, two steps of approximation in 

the master problem, namely Benders’ cut and posing a suitable sub-problem, a new solution method 

was presented for the UE and USE problems. The new model had the capability to handle all the 

conditions of the UE problem directly. Additionally, the presented solution approach for the model 

required less computing time in comparison with other methods, specially for large scale networks. 

Also, as shown by numerical tests, the proposed method possessed the inherent convergence 

properties of Benders’ decomposition.  
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