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Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for 

nonlinear programming solvers. Here, nonsmooth approximate gradient projection and 

complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential 

optimality conditions are satisfied by local minimizers of optimization problems independently of 

the fulfillment of constraint qualifications. It is proved that nonsmooth complementary approximate 

Karush-Kuhn-Tucker conditions are stronger than nonsmooth approximate gradient projection 

conditions. Sufficiency for differentiable generalized convex programming is established. 
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1. Introduction 

 

Here, we study sequential optimality conditions for nonlinear programming with nonsmooth 

convex objective functions. 

 

Necessary optimality conditions must be satisfied by the minimizers of optimization problems. 

Usually, the theorems that support an optimality condition are of the form: “If the local minimizer x 

satisfies the constraint qualification, then it satisfies Karush-Kuhn-Tucker (KKT) conditions”. 

 

A constraint qualification is a property of the feasible points of a nonlinear programming problem 

that, if satisfied by a local minimizer, then the KKT conditions hold; e.g. see [3]. 

 

Practical methods for solving constrained optimization problems are iterative. At every iteration, 

one must decide, whether it is sensible to terminate the algorithm or not. Since testing optimality is 

very difficult, the obvious idea is to terminate when a necessary optimality condition is approximately 

satisfied. However, most popular numerical optimization solvers do not test constraint qualifications 

at all, although (approximate) KKT conditions are always tested. These facts lead one to study a 

different type of optimality conditions. 
 

In [2, 6], sequential optimality conditions were introduced for nonlinear programs, where the 

authors observed that the new conditions are satisfied by local minimizers of constrained optimization 

problems independently of constraint qualifications and using only first-order differentiability. 

                                                      
* Corresponding Author. 
1 Department of Mathematics, University of Isfahan, Isfahan, Iran. Email: s68.ahmady@gmail.com 
2 Department of Mathematics, University of Isfahan, Isfahan, Iran.  Email: n.movahedian@sci.ui.ac.ir 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                             1 / 14

http://iors.ir/journal/article-1-345-en.html


16 Ahmadi and Movahedian 

 

Therefore, those conditions are genuine necessary optimality conditions which do not use constraint 

qualifications at all. 

 

Here, we assume that the objective function is not smooth, but rather a convex function. Then, we 

will formulate new nonsmooth sequential optimality conditions for the problem. We will prove that, 

similar to the smooth case, the new conditions are necessary optimality conditions independently of 

the fulfillment of constraint qualifications. Our alternative for the classical derivative ∇f (𝑥) is the 

subdifferential defined for convex functions. From the optimization perspective, the subdifferential 

𝜕f (.) of a convex function f carries many of the useful properties of the derivative. 

 

The remainder of our work is as follows. 

In Section 2, we define n-AGP property and prove that it is satisfied by every local minimizer of a 

(convex) nonlinear programming problem and that it implies the Fritz-John conditions. In Section 3, 

we present n-CAKKT condition and show its satisfaction by local minimizers. In Section 4, we prove 

that n-CAKKT is a stronger condition than n-AGP. In Section 5, we show that CAKKT is a sufficient 

optimality condition for smooth convex-like problems. 

 

Notations: 

 For ℎ ∶ ℝ𝑛 → ℝ𝑚, we denote ∇h = (∇ℎ1 , . . ., ∇ℎ𝑚)𝑇. 

 ℝ+= {𝑥 ∈  𝐼𝑅|𝑥 ≥ 0}. 
 If ∈ ℝ𝑛, we denote 𝑣+ = (max{𝑣1; 0} , . . . , max{𝑣𝑛; 0}) 𝑇 . 

 The symbol ‖. ‖ denotes ‖. ‖2. 

 B(𝑥, 𝛿) = {𝑧 ∈  ℝ𝑛 | ‖𝑧 − 𝑥‖  ≤ 𝛿}. 
 𝑃 𝛺 (𝑥) is the Euclidean projection of 𝑥 on 𝛺. 

 

2. Nonsmooth Approximate Gradient Projection Conditions 

 

(Smooth) Approximate Gradient Projection (AGP) conditions were introduced in [6], where the 

authors observed that AGP is the optimality condition that fits the natural stopping criterion for 

inexact restoration methods. In [6], it was also proved that AGP implies the Fritz-John conditions. 

Here, we will define this condition for a nonsmooth convex problem. 

 

Consider the following nonlinear programming problem: 

Minimize 𝑓 (𝑥) s.t. 𝑥 ∈ Ω, (1) 

where 

𝛺 =  {𝑥 ∈ ℝ𝑛 |𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0}. (2) 

noi cnTf ehT 𝑓:ℝ 𝑛 → ℝ is convex (not necessarily smooth) and ℎ:ℝ𝑛 → ℝ𝑚 and 𝑔:ℝ𝑛 → ℝ𝑝 are 

convex and continuously differentiable. 

 

Let 𝛾 ∈  (−∞ , 0]. For all 𝑥 ∈ ℝ𝑛, we define 𝛺(𝑥, 𝛾) as the set of points 𝑧 ∈ ℝ𝑛 satisfying 

 

𝑔𝑖(𝑥) + ∇𝑔𝑖(𝑥)𝑇(𝑧 − 𝑥) ≤ 0, if 𝛾 < 𝑔𝑖(𝑥) < 0, (3) 
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∇𝑔𝑖(𝑥)𝑇(𝑧 − 𝑥) ≤ 0, if 𝑔𝑖(𝑥) ≥ 0, (4) 

and 

∇ℎ(𝑥)(𝑧 − 𝑥) = 0 . (5) 

The set 𝛺(𝑥, 𝛾) is a closed convex polyhedron and can be interpreted as a linear approximation of the 

set of points 𝑧 ∈ ℝ𝑛 satisfying 

 

ℎ(𝑧) = ℎ(𝑥)                                                                           
𝑔𝑖(𝑧) ≤ 𝑔𝑖(𝑥),                                    if             𝑔𝑖(𝑥) ≤ 0 

𝑔𝑖(𝑧) ≤ 0,                                            if     𝑔𝑖(𝑥) ∈ (𝛾, 0). 
 

Observe that 

 

𝛺(𝑥, 0) = {𝑧 ∈ ℝ𝑛|∇ℎ(𝑥)(𝑧 − 𝑥) = 0, ∇𝑔𝑖(𝑥)𝑇(𝑧 − 𝑥) ≤ 0,   if   𝑔𝑖(𝑥) ≥ 0, 
∇𝑔𝑖(𝑥)𝑇(𝑦 − 𝑥) + 𝑔𝑖(𝑥) ≤ 0,   if  𝑔𝑖(𝑥) < 0, 𝑖 = 1, . . . , 𝑝}. 

 

The attractiveness of (smooth) AGP is that it does not involve Lagrange multipliers 

estimates. Instead, an approximate projected gradient of the objective function is used. Here, we will 

extend this concept to nonsmooth convex problem (1). For all 𝑥 ∈ ℝ𝑛 and 𝜉 ∈ 𝜕𝑓(𝑥), we define 

𝑑(𝑥, 𝛾, 𝜉) ∈ ℝ𝑛 as  

𝑑(𝑥, 𝛾, 𝜉) = 𝑃𝛺(𝑥.𝛾)(𝑥 − 𝜉) − 𝑥, (6) 

where 𝑃𝐶(𝑦) denotes the orthogonal projection of 𝑦 onto 𝐶 for all 𝑦 ∈ ℝ𝑛, 𝐶 ⊂ ℝ𝑛 closed 

dTa convex. The vector 𝑑(𝑥, 𝛾, 𝜉) will be called approximate gradient projection  (PGA) . Now, we are 

ready to define the nonsmooth version of AGP. 

 

Definition 2.1. Let γ ∈ (−∞, 0]. We say that a feasible point 𝑥∗ of (2) satisfies the nonsmooth-AGP 

(𝛾)(𝑛 − 𝐴𝐺𝑃(𝛾)) condition when there are sequences 𝑥𝑘 → 𝑥∗ and 𝜉𝑘 ∈ 𝜕𝑓(𝑥𝑘) satisfying 

𝑙𝑖𝑚
𝑘→∞

‖𝑑(𝑥𝑘 , 𝛾, 𝜉𝑘)‖ = 0 . (7) 

It is worth mentioning that, similar to the smooth case, n-AGP(𝛾) is equivalent to n-AGP(𝛾  ′) for 

all 𝛾, 𝛾 ′ ∈ (−∞, 0). For this reason, we will always write n-AGP instead of AGP(𝛾). This fact can be 

proved similar to the one of [6, Property 1]. 

 

The main result of this section is proved below. It says that if 𝑥∗ is a local minimizer of (1) and 

𝑓 is convex,  oiT we can find points with sufficiently small approximate gradient projections that are 

arbitrarily close to 𝑥∗. 

 

Theorem 2.2. Assume that 𝑥∗ is a local minimizer of (1),  𝑓 is convex and h, g are continuously 

differentiable and convex. Let 𝛾 ∈ (−∞, 0] and 𝜀 , 𝛿 ∈ (0,∞) be given. Then, there exist 𝑥 ∈ ℝ𝑛 and 

 𝜉 ∈ 𝜕𝑓(𝑥) such that ‖𝑥 − 𝑥∗‖  ≤ 𝛿 and ‖𝑑(𝑥, 𝛾, 𝜉)‖ ≤ 𝜀. 
Proof. Let 𝜌 ∈  ( 0 , 𝛿 ) be such that 𝑥∗ is a global minimizer of 𝑓 ( 𝑥 ) on 𝛺 ∩ 𝐵( 𝑥∗, 𝜌). Define, for 

all 𝑥 ∈ ℝ𝑛, 

 

𝜑 (𝑥) = 𝑓(𝑥) + 
𝜀

2𝜌
‖𝑥 − 𝑥∗‖2. 
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Clearly, 𝑥∗ is the unique global solution of 

 

Minimize   𝜑 (𝑥)    s.t.   𝑥 ∈ 𝛺 ∩ 𝐵(𝑥∗, 𝜌). 

 
Define, for all 𝑥 ∈  ℝ𝑛 , 𝜇 > 0, 

 

𝜙𝜇(𝑥) = 𝜑(𝑥) + 
𝜇

2
[‖ℎ (𝑥)‖2 + ‖𝑔(𝑥)+‖2]. 

 
The external penalty theory (see Theorem 9.2.2 in [3] ) guarantees that, for 𝜇 sufficiently large, there 

exists a solution of 

Minimize  𝜑𝜇(𝑥)      s.t.   𝑥 ∈  𝛺 ∩ 𝐵(𝑥∗, 𝜌) (8) 

that is as close as desired to the global minimizer of 𝜑 (𝑥) on 𝛺 ∩ 𝐵(𝑥∗, 𝜌). 
So, for 𝜇 large enough, there exists a solution 𝑥𝜇 of (8) in the interior of 𝐵(𝑥∗, 𝜌). Therefore, 

 

0 ∈ 𝜕𝜙𝜇(𝑥𝜇 ). 

 
Thus (writing, for simplicity 𝑥 =  𝑥𝜇), we obtain: 

 

0 ∈  𝜕𝜙𝜇(𝑥)  ⊆  𝜕𝜑(𝑥) +  𝜇 [∇ℎ(𝑥)𝑇ℎ(𝑥) + ∑ ∇𝑔𝑖(𝑥)𝑔𝑖(𝑥)

𝑔𝑖(𝑥)>0

]. 

 
Since 𝑓 is convex,  𝜕𝑓(𝑥) ≠ ∅ and there exists 𝜉 ∈ 𝜕𝑓(𝑥) such that 

 

𝜉 +  𝜇 [∇ℎ(𝑥)𝑇ℎ(𝑥) + ∑ 𝑔𝑖(𝑥)∇𝑔𝑖(𝑥)

𝑔𝑖(𝑥)>0

] + 
𝜀

𝜌
(𝑥 − 𝑥∗) = 0 (9) 

 

Since 𝑥 =  𝑥𝜇 lies in the interior of the ball, we have that ‖𝑥 − 𝑥∗‖  <  𝜌 <  𝛿 and by (9), 

 

‖𝜉 +  𝜇 [∇ℎ(𝑥)𝑇ℎ(𝑥) + ∑ ∇𝑔𝑖(𝑥)𝑔𝑖(𝑥)

𝑔𝑖(𝑥)>0

]‖ ≤ 𝜀. 

 
So, 

 

‖[𝑥 − 𝜉] − [𝑥 +  𝜇 [∇ℎ(𝑥)𝑇ℎ(𝑥) + ∑ ∇𝑔𝑖(𝑥)𝑔𝑖(𝑥)

𝑔𝑖(𝑥)>0

]] ‖  ≤ 𝜀. 

 
This implies, taking projections onto 𝛺(𝑥, γ) , that 

 

‖𝑃𝛺(𝑥,𝛾)(𝑥 − 𝜉) − 𝑃𝛺(𝑥,𝛾) (𝑥 +  𝜇 [∇ℎ(𝑥)𝑇ℎ(𝑥) + ∑ ∇𝑔𝑖(𝑥)𝑔𝑖(𝑥)

𝑔𝑖(𝑥)>0

])‖ ≤ 𝜀. (10) 
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It remains to prove that 

 

𝑃𝛺(𝑥,𝛾) (𝑥 +  𝜇 [∇ℎ(𝑥)𝑇ℎ(𝑥) + ∑ ∇𝑔𝑖(𝑥)𝑔𝑖(𝑥)

𝑔𝑖(𝑥)>0

]) = 𝑥. 

 
To see this, consider the convex quadratic subproblem 

 

Minimize𝑦      ‖𝑦 − [𝑥 +  𝜇 [∇ℎ(𝑥)𝑇ℎ(𝑥) + ∑ ∇𝑔𝑖(𝑥)𝑔𝑖(𝑥)

𝑔𝑖(𝑥)>0

]]‖

2

 

 

subject to 𝑦 ∈ 𝛺(𝑥, 𝛾) and observe that 𝑦 = 𝑥 satisfies the sufficient KKT optimality conditions with 

the multipliers 𝜆 = 2𝜇ℎ(𝑥) and 𝑣𝑖 = 2𝜇𝑔𝑖(𝑥), for 𝑔𝑖(𝑥) ≥ 0, and 𝑣𝑖 = 0 otherwise. 

So, by (10), ‖𝑃𝛺(𝑥,𝛾)(𝑥 −  𝜉) − 𝑥‖ ≤ 𝜀 as desired. 

 

The following corollary states the n-AGP property suited for use in an algorithmic 

framework: given a local minimizer, a sequence exists that satisfies 𝑥𝑘  →  𝑥∗ and 𝑑(𝑥𝑘 , 𝛾, 𝜉)  → 0.  

 

Corollary 2.3. If 𝑥∗ is a local minimizer of (1), 𝑓 is convex, ℎ , 𝑔 are continuously differentiable and 

convex and 𝛾 ∈ (−∞, 0],  oiT there exist sequences {𝑥𝑘}  ⊂  ℝ𝑛 and 𝜉𝑘  ∈  𝜕𝑓(𝑥𝑘) such that 

lim
𝑘 → ∞

𝑥𝑘 = 𝑥∗ and lim
𝑘 → ∞

𝑑(𝑥𝑘 , 𝛾, 𝜉𝑘) = 0. 

 

Finally, we will prove that the n-AGP condition implies the Fritz-John optimality conditions. First, 

let us recall the equivalent formulation of the Mangasarian-Fromovitz Constraint qualification (see 

[7]). We say that the feasible point 𝑥∗ of (1) satisfies the Mangasarian-Fromovitz Constraint 

Qualification (MFCQ) if for any vectors 𝜆 ∈ ℝ𝑛 and 𝜇 ∈ ℝ𝑝, with 𝜇 ≥ 0, the following implication 

holds true: 

 

[∇ℎ(𝑥∗)𝑇𝜆 + ∇𝑔(𝑥∗)𝑇 𝜇 =  0  and  𝜇𝑇𝑔(𝑥∗) =  0]  ⟹ [𝜆 = 0 and μ = 0]. 
 

To continue, let us define the Fritz-John and Karush-Kuhn-Tucker conditions for problem (1). 

 

Definition 2.4. Consider the nonlinear programming problem (1), where 𝑓 is convex and  𝑔 , ℎ are 

continuously differentiable and convex. 

 We say that 𝑥∗  ∈  ℝ𝑛 fulfills the nonsmooth-Fritz-John (n-FJ) conditions if 

ℎ(𝑥∗) = 0, 𝑔(𝑥∗) ≤ 0, 
and there exist 𝜇0 ∈ ℝ+ , 𝜇 ∈  ℝ𝑝

+ and 𝜆 ∈  ℝ𝑚 such that 

0 ∈  𝜇0𝜕𝑓(𝑥∗) + ∇ℎ(𝑥∗)𝑇𝜆 + ∇𝑔(𝑥∗)𝑇𝜇, 

𝜇𝑖𝑔𝑖(𝑥
∗) = 0      , 𝑖 = 1 , … , 𝑝, 

(𝜇0 , 𝜇 ⃗⃗⃗  , 𝜆 )  ∉  (0 , 0⃗  , 0⃗ ). 
 

 We say that 𝑥∗  ∈  ℝ𝑛 fulfills the nonsmooth-Karush-Kuhn (n-KKT) conditions if 

ℎ(𝑥∗) = 0 , 𝑔(𝑥∗) ≤ 0, 
and there exist 𝜇 ∈  ℝ𝑝

+ and 𝜆 ∈  ℝ𝑚 such that 

0 ∈  𝜕𝑓(𝑥∗) + ∇ℎ(𝑥∗)𝑇𝜆 + ∇𝑔(𝑥∗)𝑇𝜇, 

𝜇𝑖𝑔𝑖(𝑥
∗) = 0      , 𝑖 = 1 , … , 𝑝. 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

29
 ]

 

                             5 / 14

http://iors.ir/journal/article-1-345-en.html


20 Ahmadi and Movahedian 

 

Now, we are ready to state the final result of this section which shows that n-FJ conditions hold at 

any feasible point with n-AGP property. 

 

Theorem 2.5. Assume that 𝑥∗ is a feasible point,  𝑓 is convex and ℎ , 𝑔 are continuously differentiable 

and convex. Let 𝛾 ∈ (−∞, 0]. Suppose that there are sequences 𝑥𝑘  →  𝑥∗ and 𝜉𝑘  ∈  𝜕𝑓(𝑥𝑘) such 

that 𝑑(𝑥𝑘 , 𝛾 , 𝜉𝑘)  → 0 . Then, 𝑥∗ is a nonsmooth-Fritz-John point of (1). 

 

Proof. Define, for each 𝑘, 𝑦𝑘 = 𝑃𝛺(𝑥𝑘,𝛾)(𝑥
𝑘 − 𝜉𝑘). Obviously, 𝑦𝑘 solves the following problem: 

 

Minimize     
1

2
‖𝑦 − 𝑥𝑘‖

2
+ (𝜉𝑘)

𝑇
(𝑦 − 𝑥𝑘) 

                                            Subject to             𝑦 ∈  Ω(𝑥𝑘 , 𝛾). 
 

The above gives us 𝜆𝑘  ∈  ℝ𝑚 and 𝜇𝑘  ∈  ℝ𝑝 such that 𝜇𝑘  ≥ 0 and 

𝜉𝑘 + (𝑦𝑘 − 𝑥𝑘) + ∇ℎ(𝑥𝑘)
𝑇
𝜆𝑘 + ∇𝑔(𝑥𝑘)

𝑇
𝜇𝑘 = 0 (11) 

𝜇𝑖
𝑘[𝑔𝑖(𝑥

𝑘) + ∇𝑔𝑖
𝑇(𝑥𝑘)(𝑦𝑘 − 𝑥𝑘)] = 0,            if    𝛾 <  𝑔𝑖(𝑥

𝑘)  < 0, 

𝜇𝑖
𝑘[∇𝑔𝑖

𝑇(𝑥𝑘)(𝑦𝑘 − 𝑥𝑘)] = 0,                      if      𝑔𝑖(𝑥
𝑘)  ≥ 0. 

      𝜇𝑖
𝑘 = 0,                                      otherwise 

 

Moreover, if 𝑔𝑖(𝑥
∗) < 0,  oiT we have that 𝑔𝑖(𝑥

𝑘) < 0, for 𝑘 large enough, and since 

‖𝑦𝑘 − 𝑥𝑘‖ → 0 , we also have that ∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘)  < 0. Therefore, we can assume 

𝜇𝑖
𝑘 = 0,      whenever     𝑔𝑖(𝑥

∗)  < 0. (12) 

To establish nonsmooth-Fritz-John conditions is equivalent to establish that MFCQ implies n-

KKT conditions. So,  from now on we are going to assume that 𝑥∗ satisfies the MFCQ. 

 

Suppose, by contradiction, that (𝜆𝑘 ,  𝜇𝑘) is unbounded. Defining for each 𝑘, 

 

𝑀𝑘 = ‖(𝜆𝑘 , 𝜇𝑘)‖
∞

= 𝑚𝑎𝑥 {‖𝜆𝑘‖∞, ‖𝜇𝑘‖
∞
}, 

 

we have lim sup 𝑀𝑘 =  ∞. Refining the sequence (𝜆𝑘 , 𝜇𝑘) and reindexing it, we may suppose that 

𝑀𝑘  > 0 and 𝑙𝑖𝑚𝑘  𝑀𝑘 = +∞. Now, define 

 

𝜆̂𝑘 = (1 𝑀𝑘⁄ )𝜆𝑘 ,             𝜇̂𝑘 = (1 𝑀𝑘⁄ )𝜇𝑘. 
 

Observing that ‖(𝜆̂𝑘 , 𝜇̂𝑘)‖
∞

= 1, the sequence (𝜆̂𝑘 , 𝜇̂𝑘) is bounded and has a cluster point 

(𝜆̂ , 𝜇̂) satisfying 

𝜇̂  ≥ 0,        ‖(𝜆̂ , 𝜇̂)‖
∞

= 1. (13) 

On the other hand, the convexity of 𝑓 implies that it is locally Lipschitz on ℝ𝑛 (see [4, Theorem 

4.1.1]). Thus, we can assume without generality that for each 𝑘 , ‖𝜉𝑘‖  ≤ 𝐿, where 𝐿 > 0 is the 
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Lipschitz constant of 𝑓 near 𝑥∗. Therefore, with a similar argument, we may suppose that 𝜉𝑘 → 𝜉 ∈
 𝜕𝑓(𝑥∗). Dividing (11) into 𝑀𝑘, we obtain: 

(1 𝑀𝑘⁄ )[𝜉𝑘 + (𝑦𝑘 − 𝑥𝑘)] + ∇ℎ(𝑥𝑘)
𝑇
𝜆̂𝑘 +  ∇𝑔(𝑥𝑘)

𝑇
𝜇̂𝑘 = 0. 

 

Taking the limit along the appropriate subsequence, we conclude that 

 

∇ℎ(𝑥∗)𝑇𝜆̂ +  ∇𝑔(𝑥∗)𝑇𝜇̂ = 0. 
 

Together with (13), this contradicts the MFCQ. 

 

Now, since in (11), 𝜆𝑘 and 𝜇𝑘 are bounded, extracting convergent subsequences, we have that 

𝜆𝑘  →  𝜆∗ and 𝜇𝑘  →  𝜇∗ ≥ 0. By (12), 𝑔(𝑥∗)𝑇𝜇∗ = 0 and, taking limits in (11), we get 

 

0 =  𝜉 + ∇ℎ(𝑥∗)𝑇𝜆̂ +  ∇𝑔(𝑥∗)𝑇𝜇̂ 

              ∈  𝜕𝑓(𝑥∗) + ∇ℎ(𝑥∗)𝑇𝜆̂ +  ∇𝑔(𝑥∗)𝑇𝜇̂, 

 

to complete the proof. 

 

Corollary 2.6. If the hypotheses of Theorem 2.5 hold and x∗ satisfies MFCQ, then the 𝑥∗ is an n-

KKT point. 

 

3. Nonsmooth Complementary Approximate Karush-Kuhn-Tucker 

Conditions 

 

Here, we will formulate new nonsmooth sequential optimality conditions called nonsmooth 

Complementary Approximate Karush-Kuhn-Tucker (n-CAKKT) conditions. This concept was 

introduced by Andreani, Martinez and Svaiter [2] for the smooth case of problem (1). In fact, we will 

generalize their notion to nonsmooth problems. We will also prove that, similar to the smooth case, n-

CAKKT conditions are necessary optimality conditions independently of the fulfillment of constraint 

qualifications. 

 

Definition 3.1. We say that 𝑥∗  ∈  ℝ𝑛 satisfies the nonsmooth Complementary Approximate Karush-

Kuhn-Tucker (n-CAKKT) conditions for problem (1) if 

 

ℎ(𝑥∗) = 0, 𝑔(𝑥∗) ≤ 0 
 

and there exists a sequence 𝑥𝑘 → 𝑥∗ such that 

 

 for all 𝑘 ∈ ℕ, there exist 𝜆𝑘 ∈  ℝ𝑚, 𝜇𝑘 ∈ ℝ𝑝
+, 𝜉𝑘 ∈ 𝜕𝑓(𝑥𝑘) such that 

lim
𝑘 → ∞

‖𝜉𝑘 + ∇ℎ(𝑥𝑘)
𝑇
𝜆𝑘 + ∇𝑔(𝑥𝑘)

𝑇
𝜇𝑘‖ = 0, (14) 

lim
𝑘 → ∞

∑|𝜆𝑖
𝑘ℎ𝑖(𝑥

𝑘)| + ∑|𝜇𝑖
𝑘𝑔𝑖(𝑥

𝑘)| = 0

𝑝

𝑖=1

𝑚

𝑖=1

. (15) 

The points satisfying n-CAKKT conditions will be called n-CAKKT points. Clearly, n-KKT 

conditions imply n-CAKKT conditions. P useful property of n-CAKKT is that they are also satisfied 
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at local minimizers when, due to the lack of fulfillment of constraint qualifications, the n-KKT 

conditions do not hold. The following result shows that n-CAKKT conditions are necessary 

optimality conditions without any constraint qualification. 

 

Theorem 3.2. Let 𝑥∗ be a local minimizer of (1). Then, 𝑥∗ satisfies n-CAKKT conditions. 

 

Proof. Let 𝛿 > 0 be such that 𝑓(𝑥∗)  ≤ 𝑓(𝑥) for all feasible 𝑥 with ‖𝑥 − 𝑥∗‖ ≤ 𝛿. Consider the 

problem 

Minimize 𝑓(𝑥) + ‖𝑥 − 𝑥∗‖2
2
 s.t. ℎ(𝑥) = 0, 𝑔(𝑥)  ≤ 0, 𝑥 ∈ 𝐵(𝑥∗, 𝛿).  

 
(16) 

Clearly, 𝑥∗ is the unique solution of (16). Now, take the sequence 𝜌𝑘  > 0 such that 𝜌𝑘  →  ∞ and 

suppose that 𝑥𝑘 is a solution of the following problem: 

 

Minimize 𝑓(𝑥) + ‖𝑥 − 𝑥∗‖2
2
+ 

𝜌𝑘

2
[‖ℎ(𝑥𝑘)‖

2

2
+ ∑ 𝑔𝑖(𝑥

𝑘)
+

2𝑝
𝑖=1 ] 

 

s.t. 𝑥 ∈ 𝐵(𝑥∗, 𝛿). 

(17) 

 

By the compactness of 𝐵(𝑥∗, 𝛿) , 𝑥𝑘 is well defined for all 𝑘. Moreover, since 𝑥∗  ∈
𝐵(𝑥∗; 𝛿) , ℎ(𝑥∗) = 0 and 𝑔(𝑥∗)+ =  0, we have 

 

𝑓(𝑥𝑘) + ‖𝑥𝑘 − 𝑥∗‖
2

2
+ 

𝜌𝑘

2
[‖ℎ(𝑥𝑘)‖

2

2
+ ∑𝑔𝑖(𝑥

𝑘)
+

2

𝑝

𝑖=1

]  ≤ 𝑓(𝑥∗).  (18) 

 

Now, let us prove that lim
𝑘 → ∞

𝑥𝑘 = 𝑥∗ . Since {𝑥𝑘}  ⊂ 𝐵(𝑥∗, 𝛿), the compactness of 𝐵(𝑥∗, 𝛿) gives 

us some 𝑥̃  ∈ 𝐵(𝑥∗, 𝛿) such that 𝑥𝑘  →  𝑥̃. If we assume that 𝑥̃ is a feasible point for (1) , then we 

easily get   

 

𝑓(𝑥∗)  ≤ 𝑓(𝑥̃) + ‖𝑥̃ − 𝑥∗‖2
2  ≤  𝑓(𝑥∗), 

 

which implies that 𝑥̃ =  𝑥∗. 

Now, suppose that 𝑥̃ is not a feasible point. Hence, we have 

 

𝑎 =  [‖ℎ(𝑥̃)‖2
2
+ ∑𝑔𝑖(𝑥̃)+

2

𝑝

𝑖=1

]  > 0. 

From (18), we obtain: 

𝜌𝑘

2
[‖ℎ(𝑥𝑘)‖

2

2
+ ∑𝑔𝑖(𝑥

𝑘)
+

2

𝑝

𝑖=1

]   ≤ 𝑓(𝑥∗) − 𝑓(𝑥𝑘). 

Since 𝑓 is continuous, ( again using [4, Theorem 4.1.1]), 𝑓(𝑥𝑘)  → 𝑓(𝑥∗) and {𝑓(𝑥∗) − 𝑓(𝑥𝑘)} is 

bounded. On the other hand, since [‖ℎ(𝑥𝑘)‖
2

2
+ ∑ 𝑔𝑖(𝑥

𝑘)
+

2𝑝
𝑖=1 ] =  0, the sequence {𝜌𝑘} is 

bounded, which contradicts 𝜌𝑘  →  ∞ . 

Thus, we have lim
𝑘 → ∞

𝑥𝑘 = 𝑥∗ . Therefore, by (18) and the continuity of 𝑓, we have 
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lim
𝑘 → ∞

‖𝑥𝑘 − 𝑥∗‖
2

2
+ 

𝜌𝑘

2
[‖ℎ(𝑥𝑘)‖

2

2
+ ∑𝑔𝑖(𝑥

𝑘)
+

2

𝑝

𝑖=1

] = 0. 

Thus, 

lim
𝑘 → ∞

[∑𝜌𝑘ℎ𝑖(𝑥
𝑘)

2
+ ∑𝜌𝑘𝑔𝑖(𝑥

𝑘)
+

2

𝑝

𝑖=1

𝑚

𝑖=1

] = 0. 

 

Defining the vectors 

𝜆𝑘 = 𝜌𝑘ℎ(𝑥𝑘),            𝜇𝑘 = 𝜌𝑘𝑔𝑖(𝑥
𝑘)

+
, (19) 

we obtain: 

lim
𝑘 → ∞

[∑|𝜆𝑖
𝑘ℎ𝑖(𝑥

𝑘)| + ∑𝜇𝑖
𝑘𝑔𝑖(𝑥

𝑘)
+

𝑝

𝑖=1

𝑚

𝑖=1

] = 0. (20) 

 

Furthermore, by (19), we conclude that if 𝑔𝑖(𝑥
𝑘)  < 0, then 𝑔𝑖(𝑥

𝑘)
+

= 0 and 𝜇𝑖
𝑘 =

0. Therefore, using (20), we obtain: 

 

lim
𝑘 → ∞

[∑|𝜆𝑖
𝑘ℎ𝑖(𝑥

𝑘)| + ∑|𝜇𝑖
𝑘𝑔𝑖(𝑥

𝑘)|

𝑝

𝑖=1

𝑚

𝑖=1

] = 0. (21) 

 

Thus, (15) follows from (19) and (21). For 𝑘 large enough, we have ‖𝑥𝑘 − 𝑥∗‖  < 𝛿. Consequently, 

𝑥𝑘  is a local optimal solution of the following unconstrained problem: 

Minimize 𝑓(𝑥) + 𝐺𝑘(𝑥)      s.t.   ‖𝑥 − 𝑥∗‖  <  𝛿, (22) 

eoihi,  

𝐺𝑘(𝑥) =  
𝜌𝑘

2
[‖ℎ(𝑥𝑘)‖

2

2
+ ∑𝑔𝑖(𝑥

𝑘)
+

2

𝑝

𝑖=1

]. 

 

Thus, we get 

0 ∈  𝜕(𝑓 + 𝐺𝑘)(𝑥
𝑘)  ⊆  𝜕𝑓(𝑥𝑘) + ∇𝐺𝑘(𝑥

𝑘). 
 

The above gives us the sequence 𝜉𝑘  ∈  𝜕𝑓(𝑥𝑘) such that for all 𝑘, 

 

𝜉𝑘 + 𝜌𝑘 [∑ℎ𝑖(𝑥
𝑘)∇ℎ𝑖(𝑥

𝑘) + ∑𝑔𝑖(𝑥
𝑘)

+
∇𝑔𝑖(𝑥

𝑘)

𝑝

𝑖=1

𝑚

𝑖=1

] = 0. 

 

(23) 

Using (19) and taking limit as 𝑘 → ∞, we arrive at 
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lim
𝑘 → ∞

𝜉𝑘 + [∑𝜆𝑖
𝑘∇ℎ𝑖(𝑥

𝑘) + ∑𝜇𝑖
𝑘∇𝑔𝑖(𝑥

𝑘)

𝑝

𝑖=1

𝑚

𝑖=1

] = 0, 

 

to complete the proof. 

4. Strength of n-CAKKT Conditions 

 

Necessary optimality conditions should be as strong as possible. In this section we will see that n-

CAKKT conditions are indeed strong. We will prove that the fulfillment of n-CAKKT conditions 

imply the fulfillment of n-AGP conditions. In Section 3, we proved that n-AGP conditions are strong 

optimality conditions in the sense that they imply n-KKT conditions or the absence of a weak 

constraint qualification. These results suggest that the points satisfying n-CAKKT conditions are 

more likely to be local minimizers than points merely verifying n-AGP conditions, or the points not 

satisfying weak (nonsmooth) constraint qualifications. Therefore, the points that approximate an n-

CAKKT point have more chances to be close to local minimizers than the points that approximate an 

n-AGP point. 

The next theorem shows that n-CAKKT conditions imply n-AGP conditions. 

 

Theorem 4.1. Assume that 𝑥∗ is a feasible n-CAKKT point of (1). Then, 𝑥∗ satisfies the n-AGP 

conditions. 

 

Proof. Assume that {𝑥𝑘}  ⊂  ℝ𝑛 converges to 𝑥∗ and satisfies (14) and (15). Since 𝑓 is 

convex, 𝜕𝑓(𝑥𝑘) ≠ ∅. Therefore, there exists 𝜉𝑘  ∈  𝜕𝑓(𝑥𝑘). Let 𝑦𝑘 be the solution of 

 

Minimize ‖[𝑥𝑘 − 𝜉𝑘] − 𝑦‖
2

2
 

s.t. 𝑦 ∈ 𝛺(𝑥𝑘 , 0), 
 

(24) 

where 𝛺(𝑥𝑘 , 0) is the set of points 𝑦 ∈  ℝ𝑛 satisfying 

 

∇ℎ𝑖(𝑥
𝑘)

𝑇
(𝑦 − 𝑥𝑘) = 0 ,                          for   𝑖 = 1, . . . . , 𝑚 

∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑦 − 𝑥𝑘) ≤ 0 ,                            if     𝑔𝑖(𝑥

𝑘)  ≥ 0 

∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑦 − 𝑥𝑘) + 𝑔𝑖(𝑥

𝑘)  ≤ 0 ,          if     𝑔𝑖(𝑥
𝑘) < 0. 

 

The objective function in (24) is a strictly convex quadratic function and 𝛺(𝑥𝑘 , 0) is defined by linear 

constraints. Since 𝑥𝑘 ∈ 𝛺(𝑥𝑘 , 0), 𝛺(𝑥𝑘 , 0) is nonempty,  𝑦𝑘 exists and is the unique solution of the 

problem. We wish to show that lim
𝑘 → ∞

‖𝑦𝑘 − 𝑥𝑘‖ = 0. Since the constraints of (24) are linear, the 

KKT conditions are fulfilled at 𝑦𝑘. Therefore, there exist {𝜆̂𝑘}  ⊂  ℝ𝑚, {𝜇̂𝑘}  ⊂  ℝ𝑝
+ and 𝜉𝑘  ∈

 𝜕𝑓(𝑥𝑘) such that 

[𝑦𝑘 − 𝑥𝑘] + 𝜉𝑘 + ∇ℎ(𝑥𝑘)
𝑇
𝜆̂𝑘 + ∇𝑔(𝑥𝑘)

𝑇
𝜇̂𝑘 = 0, (25) 

∇ℎ𝑖(𝑥
𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘) = 0 ,           𝑖 = 1 , . . . , 𝑚, (26) 

∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘)  ≤ 0 ,          if   𝑔𝑖(𝑥

𝑘) ≥ 0, (27) 

𝑔𝑖(𝑥
𝑘) + ∇𝑔𝑖(𝑥

𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘)  ≤ 0 ,            if    𝑔𝑖(𝑥

𝑘)  < 0 . (28) 

𝜇̂𝑖
𝑘∇𝑔𝑖(𝑥

𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘) = 0 ,          if    𝑔𝑖(𝑥

𝑘)  ≥ 0 , (29) 
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and 

𝜇̂𝑖
𝑘𝑔𝑖(𝑥

𝑘) + 𝜇̂𝑖
𝑘∇𝑔𝑖(𝑥

𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘) = 0 ,        if 𝑔𝑖(𝑥

𝑘)  < 0 . (30) 

 

Pre-multiplaying (25) by (𝑦𝑘 − 𝑥𝑘)
𝑇
 and using (26 - 29), we obtain: 

‖𝑦𝑘 − 𝑥𝑘‖
2

2
+ (𝜉𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘) + ∑ 𝜇̂𝑖

𝑘∇𝑔𝑖(𝑥
𝑘)

𝑇

𝑔𝑖(𝑥
𝑘) <0

(𝑦𝑘 − 𝑥𝑘) = 0 . 
(31) 

If 𝑔𝑖(𝑥
𝑘)  < 0 , then by (30) we have 

 

𝜇̂𝑖
𝑘∇𝑔𝑖(𝑥

𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘) =  −𝜇̂𝑖

𝑘𝑔𝑖(𝑥
𝑘). 

 

Therefore, applying (31), we arrive at 

 

‖𝑦𝑘 − 𝑥𝑘‖
2

2
+ (𝜉𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘) =  ∑ 𝜇̂𝑖

𝑘𝑔𝑖(𝑥
𝑘)

𝑇

𝑔𝑖(𝑥
𝑘) <0

 . 

Since 𝜇̂𝑘  ≥ 0 , we have 

‖𝑦𝑘 − 𝑥𝑘‖
2

2
 ≤  −(𝜉𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘). (32) 

On the other hand, using (14), we can find sequences {𝜆𝑘} ⊂ ℝ𝑚, {𝜇𝑘} ⊂ ℝ𝑝
+, 𝜉𝑘 ∈ 𝜕𝑓(𝑥𝑘) 

and {𝑣𝑘} ⊂ ℝ𝑛 such that 

𝜉𝑘 + ∑𝜆𝑖
𝑘∇ℎ𝑖(𝑥

𝑘) + ∑𝜇𝑖
𝑘∇𝑔𝑖(𝑥

𝑘) =  𝑣𝑘  → 0 .

𝑝

𝑖=1

𝑚

𝑖=1

 

Therefore, 

−(𝜉𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘)

=  ∑𝜆𝑖
𝑘∇ℎ𝑖(𝑥

𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘)                                      

𝑚

𝑖=1

+ ∑𝜇𝑖
𝑘∇𝑔𝑖(𝑥

𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘) − (𝑦𝑘 − 𝑥𝑘)

𝑇
𝑣𝑘 .

𝑝

𝑖=1

 

Thus, by (26), 

 

−(𝜉𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘) =  ∑𝜇𝑖

𝑘∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘) − (𝑦𝑘 − 𝑥𝑘)

𝑇
𝑣𝑘 .

𝑝

𝑖=1

 

= ∑ 𝜇𝑖
𝑘∇𝑔𝑖(𝑥

𝑘)
𝑇

𝑔𝑖(𝑥
𝑘) <0

(𝑦𝑘 − 𝑥𝑘) + ∑ 𝜇𝑖
𝑘∇𝑔𝑖(𝑥

𝑘)
𝑇

𝑔𝑖(𝑥
𝑘) ≥ 0

(𝑦𝑘 − 𝑥𝑘) − (𝑦𝑘 − 𝑥𝑘)
𝑇
𝑣𝑘. 

 

fc 𝑔𝑖(𝑥
𝑘)  ≥  0, then (27) together with the fact that 𝜇𝑘  ≥ 0 dida to 𝜇𝑖

𝑘∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘)  ≤ 0, 

and hence 
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−(𝜉𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘)  ≤  − ∑ 𝜇𝑖

𝑘∇𝑔𝑖(𝑥
𝑘)

𝑇

𝑔𝑖(𝑥
𝑘) ≥ 0

(𝑦𝑘 − 𝑥𝑘) − (𝑦𝑘 − 𝑥𝑘)
𝑇
𝑣𝑘 

= ∑ 𝜇𝑖
𝑘 [𝑔𝑖(𝑥

𝑘) + ∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑦𝑘 − 𝑥𝑘) ] − ∑ 𝜇𝑖

𝑘𝑔𝑖(𝑥
𝑘) − (𝑦𝑘 − 𝑥𝑘)

𝑇
𝑣𝑘

𝑔𝑖(𝑥
𝑘) ≥ 0𝑔𝑖(𝑥

𝑘) <0

. 

 

Thus, by (28) we have 

 

−(𝜉𝑘)
𝑇
(𝑦𝑘 − 𝑥𝑘)  ≤  − ∑ 𝜇𝑖

𝑘𝑔𝑖(𝑥
𝑘) − (𝑦𝑘 − 𝑥𝑘)

𝑇
𝑣𝑘

𝑔𝑖(𝑥
𝑘) <0

 

≤  − ∑ 𝜇𝑖
𝑘𝑔𝑖(𝑥

𝑘) + ‖𝑣𝑘‖
2
‖𝑦𝑘 − 𝑥𝑘‖

2
 

𝑔𝑖(𝑥
𝑘) ≥ 0

≤ ∑ |𝜇𝑖
𝑘𝑔𝑖(𝑥

𝑘)|

𝑔𝑖(𝑥
𝑘) <0

+ ‖𝑣𝑘‖
2
‖𝑦𝑘 − 𝑥𝑘‖

2
 . 

 

Finally, the above inequality and the one in (32) give us 

 

‖𝑦𝑘 − 𝑥𝑘‖
2
(‖𝑦𝑘 − 𝑥𝑘‖

2
− ‖𝑣𝑘‖

2
)  ≤  ∑ |𝜇𝑖

𝑘𝑔𝑖(𝑥
𝑘)| .

𝑔𝑖(𝑥
𝑘) <0

 
(33) 

 

Now, if for all 𝑘 , ‖𝑦𝑘 − 𝑥𝑘‖
2
 ≤  ‖𝑣𝑘‖

2
 ↓ 0 , then there remains nothing to prove. Now, suppose 

that for all 𝑘, ‖𝑦𝑘 − 𝑥𝑘‖
2
 >  ‖𝑣𝑘‖

2
 . Then, by (15) we get 

 

0 ≤  ‖𝑦𝑘 − 𝑥𝑘‖
2
 (‖𝑦𝑘 − 𝑥𝑘‖

2
− ‖𝑣𝑘‖

2
)  ≤  ∑ |𝜇𝑖

𝑘𝑔𝑖(𝑥
𝑘)|  ↓ 0 ,

𝑔𝑖(𝑥
𝑘) <0

 

which means that lim
𝑘 → ∞

‖𝑦𝑘 − 𝑥𝑘‖ = 0, as desired. Therefore, 𝑥∗ satisfies the n-AGP conditions. 

 

5. Sufficient Optimality Condition 

 

In this section, we will show that under some generalized convexity assumptions, CAKKT 

conditions are sufficient optimality conditions for global minimizers. 

 

Theorem 5.1. Assume that, for the problem (1) all the functions are continuously differentiable, the 

objective function 𝑓 is pseudoconvex, the inequality constraints 𝑔𝑖(𝑥), for 𝑖 = 1, . . . , 𝑝, are 

quasiconvex and the equality constraints ℎ𝑖, 𝑖 = 1, . . . , 𝑚, are affine. Let 𝑥∗ be a feasible point that 

satisfies the CAKKT conditions. Then, 𝑥∗ is a global minimizer of (1). 

 

Proof. Assume that 𝑥𝑘  , 𝜆𝑘 , 𝜇𝑘 are given by (14) and (15). Let 𝑧 be a feasible point and define 

 

𝐼 =  {𝑖 ∈ 1 , . . . , 𝑝|𝑔𝑖(𝑥
∗) = 0}, 

𝐼𝑘 = {𝑖 ∈ 1 , . . . , 𝑝|𝑔𝑖(𝑥
𝑘) = 0}. 
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Thus, for all 𝑖 ∈  𝐼𝑘, we have 𝑔𝑖(𝑥
𝑘) = 0 and by the feasiblity of 𝑧, we have 𝑔𝑖(𝑧)  ≤  𝑔𝑖(𝑥

𝑘). nhe 

quasiconvexity of 𝑔𝑖 implies that ∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑧 − 𝑥𝑘) ≤ 0. Also, since the ℎ𝑖 are affine, we have 

 

ℎ𝑖(𝑧) =  ℎ𝑖(𝑥
𝑘) + ∇ℎ𝑖(𝑥

𝑘)
𝑇
(𝑧 − 𝑥𝑘) = 0 ,               𝑖 = 1 , . . . , 𝑚 . 

 
Thus, we get 

 

∇𝑓(𝑥𝑘)
𝑇
(𝑧 − 𝑥𝑘)  

+ ∑𝜆𝑖
𝑘 [ℎ𝑖(𝑥

𝑘) + ∇ℎ𝑖(𝑥
𝑘)

𝑇
(𝑧 − 𝑥𝑘)] + ∑ 𝜇𝑖

𝑘 [∇𝑔𝑖(𝑥
𝑘)

𝑇
(𝑧 − 𝑥𝑘)]

𝑖 ∈𝐼𝑘

𝑚

𝑖=1

 

≤  ∇𝑓(𝑥𝑘)
𝑇
(𝑧 − 𝑥𝑘) 

 

(34) 

Observe that for all 𝑖 ∈ 𝐼𝑘, we have 𝑔𝑖(𝑥
𝑘) = 0, and by (15), 𝜇𝑖

𝑘 > 0. In addition, for all 𝑖 ∉ 𝐼𝑘, we 

have 𝑔𝑖(𝑥
𝑘) < 0, and by (15), 𝜇𝑖

𝑘 = 0. Hence, we have 

 

∑ 𝜇𝑖
𝑘 [∇𝑔𝑖(𝑥

𝑘)
𝑇
(𝑧 − 𝑥𝑘)]

𝑖 ∈𝐼𝑘

= ∑𝜇𝑖
𝑘 [∇𝑔𝑖(𝑥

𝑘)
𝑇
(𝑧 − 𝑥𝑘)]

𝑝

𝑖=1

 (35) 

 

Also, since 𝑔𝑖(𝑥
𝑘) = 0 and 𝜇𝑖

𝑘 ≥ 0, we obtain: 

 

∑𝜇𝑖
𝑘𝑔𝑖(𝑥

𝑘)  ≤ 0 .

𝑝

𝑖=1

 (36) 

 
Therefore, by (34), (35) and (36) we have 

 

[∇𝑓(𝑥𝑘) + ∑𝜆𝑖
𝑘∇ℎ𝑖(𝑥

𝑘) + ∑𝜇𝑖
𝑘∇𝑔𝑖(𝑥

𝑘)

𝑝

𝑖=1

 

𝑚

𝑖=1

]

𝑇

(𝑧 − 𝑥𝑘)

+ ∑𝜆𝑖
𝑘ℎ𝑖(𝑥

𝑘) + ∑𝜇𝑖
𝑘𝑔𝑖(𝑥

𝑘)  ≤ ∇𝑓(𝑥𝑘)
𝑇

𝑝

𝑖=1

𝑚

𝑖=1

(𝑧 − 𝑥𝑘). 

Thus, 

lim
𝑘 → ∞

[∇𝑓(𝑥𝑘) + ∑𝜆𝑖
𝑘

𝑚

𝑖=1

∇ℎ𝑖(𝑥
𝑘) + ∑𝜇𝑖

𝑘∇𝑔𝑖(𝑥
𝑘)

𝑝

𝑖=1

]

𝑇

(𝑧 − 𝑥𝑘)

+ lim
𝑘 → ∞

[∑𝜆𝑖
𝑘

𝑚

𝑖=1

ℎ𝑖(𝑥
𝑘) + ∑𝜇𝑖

𝑘𝑔𝑖(𝑥
𝑘)

𝑝

𝑖=1

]  ≤  lim
𝑘 → ∞

[∇𝑓(𝑥𝑘)
𝑇
(𝑧 − 𝑥𝑘)]. 

 
Taking the limit, as 𝑘 → ∞, continuous differentiability of the functions and assumptions (14) and 

(15), ei  i  

∇𝑓(𝑥𝑘)
𝑇
(𝑧 − 𝑥∗)  ≥ 0. 
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 Since 𝑓 is pseudoconvex, we get 
 

𝑓(𝑧)  ≥ 𝑓(𝑥∗), 
and this complete the proof. 
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