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Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for
nonlinear programming solvers. Here, nonsmooth approximate gradient projection and
complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential
optimality conditions are satisfied by local minimizers of optimization problems independently of
the fulfillment of constraint qualifications. It is proved that nonsmooth complementary approximate
Karush-Kuhn-Tucker conditions are stronger than nonsmooth approximate gradient projection
conditions. Sufficiency for differentiable generalized convex programming is established.
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1. Introduction

Here, we study sequential optimality conditions for nonlinear programming with nonsmooth
convex objective functions.

Necessary optimality conditions must be satisfied by the minimizers of optimization problems.
Usually, the theorems that support an optimality condition are of the form: “If the local minimizer x
satisfies the constraint qualification, then it satisfies Karush-Kuhn-Tucker (KKT) conditions”.

A constraint qualification is a property of the feasible points of a nonlinear programming problem
that, if satisfied by a local minimizer, then the KKT conditions hold; e.g. see [3].

Practical methods for solving constrained optimization problems are iterative. At every iteration,
one must decide, whether it is sensible to terminate the algorithm or not. Since testing optimality is
very difficult, the obvious idea is to terminate when a necessary optimality condition is approximately
satisfied. However, most popular numerical optimization solvers do not test constraint qualifications
at all, although (approximate) KKT conditions are always tested. These facts lead one to study a
different type of optimality conditions.

In [2, 6], sequential optimality conditions were introduced for nonlinear programs, where the
authors observed that the new conditions are satisfied by local minimizers of constrained optimization
problems independently of constraint qualifications and using only first-order differentiability.
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Therefore, those conditions are genuine necessary optimality conditions which do not use constraint
qualifications at all.

Here, we assume that the objective function is not smooth, but rather a convex function. Then, we
will formulate new nonsmooth sequential optimality conditions for the problem. We will prove that,
similar to the smooth case, the new conditions are necessary optimality conditions independently of
the fulfillment of constraint qualifications. Our alternative for the classical derivative Vf (x) is the
subdifferential defined for convex functions. From the optimization perspective, the subdifferential
of (.) of a convex function f carries many of the useful properties of the derivative.

The remainder of our work is as follows.
In Section 2, we define n-AGP property and prove that it is satisfied by every local minimizer of a
(convex) nonlinear programming problem and that it implies the Fritz-John conditions. In Section 3,
we present n-CAKKT condition and show its satisfaction by local minimizers. In Section 4, we prove
that n-CAKKT is a stronger condition than n-AGP. In Section 5, we show that CAKKT is a sufficient
optimality condition for smooth convex-like problems.

Notations:

e Forh:R™ - R™, we denote Vh = (Vh,,..., Vh,,)T.
R,={x € IR|x = 0}.

If € R™, we denote v, = (max{v;;0},...,max{v,;0}) 7.
The symbol ||. || denotes ||. ||.

B(x,6)={z € R"|||z—x|| <6}

P, (x) is the Euclidean projection of x on 0.

2. Nonsmooth Approximate Gradient Projection Conditions

(Smooth) Approximate Gradient Projection (AGP) conditions were introduced in [6], where the
authors observed that AGP is the optimality condition that fits the natural stopping criterion for
inexact restoration methods. In [6], it was also proved that AGP implies the Fritz-John conditions.
Here, we will define this condition for a nonsmooth convex problem.

Consider the following nonlinear programming problem:

Minimize f (x) s.t. x € Q, (1)
where

N={xeR"|gx)<0,h(x) =0} 2

The functionf: R™ — R is convex (not necessarily smooth) and h: R™ - R™ and g: R" — RP are
convex and continuously differentiable.

Lety € (—o0,0]. Forall x € R™, we define 2(x, y) as the set of points z € R" satisfying

gi() + Vg;(0)"(z—x) < 0,ify < g;(x) <0, ®3)
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Vgi(x)T(z—x) <0,if g;(x) >0, (4)
and
Vh(x)(z—x) = 0. )

The set 2(x, y) is a closed convex polyhedron and can be interpreted as a linear approximation of the
set of points z € R™ satisfying

h(z) = h(x)
9i(z) < gi(x), if gi(x) <0
9i(z) <0, if g;:(x) € (y,0).

Observe that

2(x,0) = {z € R*|Vh(x)(z—x) = 0,Vg;(x)T(z—x) <0, if g;(x) =0,
Vgi()T(y—x)+g;(x) <0, if g;(x)<0,i=1,...,p}.

The attractiveness of (smooth) AGP is that it does not involve Lagrange multipliers
estimates. Instead, an approximate projected gradient of the objective function is used. Here, we will
extend this concept to nonsmooth convex problem (1). For all x € R™ and ¢ € df(x), we define
d(x,y,&) e R"as

d(x' Y, E) = P.Q(x.y)(x - f) - X, (6)

where P.(y) denotes the orthogonal projection of y onto C for all y € R"*,C c R" closed
and conveXx. The vector d(x, y, &) will be called approximate gradient projection(AGP) . Now, we are
ready to define the nonsmooth version of AGP.

Definition 2.1. Let y € (—, 0]. We say that a feasible point x* of (2) satisfies the nonsmooth-AGP
(¥)(n — AGP(y)) condition when there are sequences x* — x* and £* € af (x*) satisfying

lim|ld(x*,y,¢*)|| = 0. )

It is worth mentioning that, similar to the smooth case, n-AGP(y) is equivalent to n-AGP(y ") for
ally,y ' € (—,0). For this reason, we will always write n-AGP instead of AGP(y). This fact can be
proved similar to the one of [6, Property 1].

The main result of this section is proved below. It says that if x* is a local minimizer of (1) and
f is convex, thenwe can find points with sufficiently small approximate gradient projections that are
arbitrarily close to x*.

Theorem 2.2. Assume that x* is a local minimizer of (1), f is convex and h, g are continuously
differentiable and convex. Lety € (—0,0] and €, 8 € (0, ) be given. Then, there exist x € R™ and
e df(x)suchthat |[x —x*|| <¢dand|ld(x,y,E)| <e.

Proof. Letp € (0,8 ) besuchthatx™isaglobal minimizerof f (x)on2 n B(x*, p).Define, for
all x € R™,

0 () =f0)+ Slx— Xl
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Clearly, x* is the unique global solution of
Minimize ¢ (x) st x €2 nB(x*, p).

Define, forall x € R™,u > 0,
du(x) = @(x) + %[Ilh EII* + g+ 1171

The external penalty theory (see Theorem 9.2.2 in [3] ) guarantees that, for u sufficiently large, there
exists a solution of

Minimize ¢,(x) st x€ QnB(x", p) (8)

that is as close as desired to the global minimizer of ¢ (x) on 2 N B(x", p).
So, for u large enough, there exists a solution x,, of (8) in the interior of B(x™, p). Therefore,

0€ 6¢u(xu )

Thus (writing, for simplicity x = x,,), we obtain:

0 € 06,00 € dp(x) + 1 |VRTh@ + ) Vgi()gi()|
9i(x)>0

Since f is convex, df(x) # @ and there exists ¢ € df (x) such that
T € .
£+ u|VAQTR@ ) GGTEE)| + S —x) =0 ©
gi(x)>0

Since x = x, lies in the interior of the ball, we have that ||x — x*|| < p < & and by (9),

£+ 1[VROTRD + Y Vgi0gi)||| <
9i(x)>0

So,

=&l = x4+ w|R@TRE + ) Vg0g@| ||| <&
gi(x)>0

This implies, taking projections onto 2(x,y) , that

Pogeyy (@ =) = Pagep | x+ 1 |[VACOTR + Y Va@gi@| | <e o)
gi(x)>0
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It remains to prove that

Pogey) | 2+ #[TR@TR@ + Y Vama| | =x.
9i(x)>0

To see this, consider the convex quadratic subproblem

2
Minimize,, y— |x+ u|Vh(x)Th(x) + Z Vgi(x)gi(x)
gi(x)>0

subjectto y € 2(x,y) and observe that y = x satisfies the sufficient KKT optimality conditions with
the multipliers A = 2uh(x) and v; = 2ug;(x), for g;(x) = 0, and v; = 0 otherwise.
So, by (10), ||Pagey)(x — &) — x|| < & as desired.

The following corollary states the n-AGP property suited for use in an algorithmic
framework: given a local minimizer, a sequence exists that satisfies x;, — x*and d(x,y,¢) — 0.

Corollary 2.3. If x* is a local minimizer of (1), f is convex, h, g are continuously differentiable and
convex and y € (—o,0], thenthere exist sequences {x*} c R™ and &¥ € af(x*) such that
; k — ,* : k kY —
kll_)moox = x*and lemmd(x Y, € )— 0.
Finally, we will prove that the n-AGP condition implies the Fritz-John optimality conditions. First,
let us recall the equivalent formulation of the Mangasarian-Fromovitz Constraint qualification (see
[7]). We say that the feasible point x* of (1) satisfies the Mangasarian-Fromovitz Constraint

Qualification (MFCQ) if for any vectors 1 € R™ and u € RP, with 4 > 0, the following implication
holds true:

[VA(x*)TA+Vg(x*)Tu= 0 and u"g(x*) = 0] = [A=0andp=0].
To continue, let us define the Fritz-John and Karush-Kuhn-Tucker conditions for problem (1).

Definition 2.4. Consider the nonlinear programming problem (1), where f is convex and g, h are
continuously differentiable and convex.
e Wesaythatx* € R™ fulfills the nonsmooth-Fritz-John (n-FJ) conditions if
h(x*)=0,9(x*) <0,
and there exist up € R, ,u € R, and A € R™ such that
0 € podf (x) + VR(x") 2+ Vg(x)'p,
wgi(x) =0 ,i=1,..p,
(ko 2) € (0,0,0).

o Wesaythat x* € R™ fulfills the nonsmooth-Karush-Kuhn (n-KKT) conditions if
h(x*) =0,g(x") <0,
and there exist u € RP,_ and A € R™ such that
0 € If(x*) + VA(x*)TA+ Vg(x)Tu,
uigix)=0 ,i=1,..,p.
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Now, we are ready to state the final result of this section which shows that n-FJ conditions hold at
any feasible point with n-AGP property.

Theorem 2.5. Assume that x* is a feasible point, f isconvexand h, g are continuously differentiable
and convex. Let y € (—oo,0]. Suppose that there are sequences x* — x* and €¥ € af(x*) such
that d(x*, y,&*) — 0. Then, x* is a nonsmooth-Fritz-John point of (1).

Proof. Define, for each k, y* = Po(xky) (xk — &%). Obviously, y* solves the following problem:
Minimize 2[ly — x*|" + (&%) (v - x*)
Subject to y € Q(x*,y).

The above gives us A* € R™ and u* € RP such that u* > 0 and

g4 (yk — x%) + Vh(xK) 2% + vg(xk) ik = 0 (11)
w[gi(x*) + Vgl («*)(v* - x¥)] =0, if ¥ < gi(x*) <o,
u [Vl (x*)(y* = x*)] = 0, it g,(x*) > 0.
u* =0, otherwise

Moreover, if g;(x*) <0, thenwe have that g;(x*) <0, for k large enough, and since
|[y* = x*|| - 0, we also have that Vg;(x*)" (y* — x*) < 0. Therefore, we can assume

w® =0, whenever g;(x*) <O0. (12)

To establish nonsmooth-Fritz-John conditions is equivalent to establish that MFCQ implies n-
KKT conditions. So, from now on we are going to assume that x* satisfies the MFCQ.

Suppose, by contradiction, that (1%, u*) is unbounded. Defining for each k,

My = [|(2, 1), = max {[|A%lloo, 1| _},

we have lim sup M, = oo. Refining the sequence (/1" ,,u") and reindexing it, we may suppose that
M, > 0and lim, M; = +4oo. Now, define

A= 1/ Mk, ik = (1/M)uk.

Observing that [|(4*,4%)|| =1, the sequence (4*,a*) is bounded and has a cluster point
(1, Q) satisfying

a=o0 (4.0, =1 (13)

On the other hand, the convexity of f implies that it is locally Lipschitz on R™ (see [4, Theorem
4.1.1]). Thus, we can assume without generality that for each k, ||&,|| < L, where L > 0is the
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Lipschitz constant of £ near x*. Therefore, with a similar argument, we may suppose that &, - £ €
df (x*). Dividing (11) into M., we obtain:

A/MO[E + (y* — x¥)] + VR(x*) Ak + vg(xk) ik = 0.
Taking the limit along the appropriate subsequence, we conclude that
VA(x)TA+ Vg(x)Tha = 0.
Together with (13), this contradicts the MFCQ.

Now, since in (11), 2*¥ and u* are bounded, extracting convergent subsequences, we have that
A% = 1rand p* - p* > 0.By(12), g(x*)Tu* = 0 and, taking limits in (11), we get

0= &+ VA(x)TA+ Vvg(x)Tha
€ af(x*) + Vh(x")TA+ Vg(x)Ta,

to complete the proof.

Corollary 2.6. If the hypotheses of Theorem 2.5 hold and x* satisfies MFCQ, then the x* is an n-
KKT point.

3. Nonsmooth Complementary Approximate Karush-Kuhn-Tucker
Conditions

Here, we will formulate new nonsmooth sequential optimality conditions called nonsmooth
Complementary Approximate Karush-Kuhn-Tucker (n-CAKKT) conditions. This concept was
introduced by Andreani, Martinez and Svaiter [2] for the smooth case of problem (1). In fact, we will
generalize their notion to nonsmooth problems. We will also prove that, similar to the smooth case, n-
CAKKT conditions are necessary optimality conditions independently of the fulfillment of constraint
gualifications.

Definition 3.1. We say that x* € R" satisfies the nonsmooth Complementary Approximate Karush-
Kuhn-Tucker (n-CAKKT) conditions for problem (1) if

h(x*)=0,g(x*) <0
and there exists a sequence x; — x™* such that
o forall k € N, there exist A¥ € R™, u* € RP, &K € af(x*) such that

Jlim {|¢% + VR(x*)" 2% + vg(x¥) | = 0, (14)

m p
Jim D PR + Y o) = o 0s)

i=1 i=1
The points satisfying n-CAKKT conditions will be called n-CAKKT points. Clearly, n-KKT
conditions imply n-CAKKT conditions. A useful property of n-CAKKT is that they are also satisfied
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at local minimizers when, due to the lack of fulfillment of constraint qualifications, the n-KKT
conditions do not hold. The following result shows that n-CAKKT conditions are necessary
optimality conditions without any constraint qualification.

Theorem 3.2. Let x* be a local minimizer of (1). Then, x* satisfies n-CAKKT conditions.

Proof. Let § > 0 be such that f(x*) < f(x) for all feasible x with |[x — x*|| < 6. Consider the
problem

Minimize f(x) + ||x — x*||22 st.h(x) =0,g(x) <0,x € B(x",6). (16)

Clearly, x* is the unique solution of (16). Now, take the sequence p, > 0 such that p, — oo and
suppose that x* is a solution of the following problem:

Minimize £(x) + llx = x°ll* + Z[[[n(x*)|,” + 20, 9:(x), "] an
17
s.t.x € B(x",9).

By the compactness of B(x* &),x* is well defined for all k. Moreover, since x* €
B(x*;8) ,h(x*) =0and g(x*), = 0, we have

GRS i

p
22 + pz_k ||h(xk)||22 + Zgi(xk)+2 < f(x"). (18)
i=1

Now, let us prove that klim x* = x*.Since {x¥} c B(x*,§), the compactness of B(x*, §) gives

us some ¥ € B(x*, &) such that x¥ — &. If we assume that % is a feasible point for (1) , then we
easily get

&) SfE+ 11X - xll," < f(x"),

which implies that ¥ = x*.
Now, suppose that X is not a feasible point. Hence, we have

p
a= k@I + ) g:®.°| > 0.
i=1

From (18), we obtain:

14
%[uh(xk)n; + ) ai@®),"| e F).
i=1

Since £ is continuous, ( again using [4, Theorem 4.1.1]), f(x*) - f(x*) and {f (x*) — f(x*)} is
bounded. On the other hand, since [||h(x")||22 + Zf=1gi(x")+2] = 0, the sequence {p;} is

bounded, which contradicts p;, — .
Thus, we have klim x* = x* . Therefore, by (18) and the continuity of £, we have
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k — oo

14

. 2. P 2 2

lim [lx* = % + ZE (A, + D ai(6),?| = 0.
i=1

Thus,
m D
. 2 2
klllnm Zpkhi(xk) + Zpkgi(xk)+ = 0.
i=1 i=1
Defining the vectors

¥ = prh(x¥), w = prgi(x*),, (19)

we obtain:
m 14
RLCY lZlAi"hi(ka + Zui""gi(x"")i = 0. (20)
i=1 i=1

Furthermore, by (19), we conclude that if g;(x*¥) <0, then gi(xk)_l_:O and p;* =
0. Therefore, using (20), we obtain:

m 14
lim [Z|Aikhi(xk)| + ) kg | = o. (21)
i=1 i=1

Thus, (15) follows from (19) and (21). For k large enough, we have ||x*¥ — x*|| < &. Consequently,
x¥ is a local optimal solution of the following unconstrained problem:

Minimize f(x) + Gy (x) st |lx— x*|| < 6, (22)

,where

p
P
Ge@ = ZE| G, + > i), |
i=1

Thus, we get
0 € (f + G)(x*) c af(xk) + VG (x¥).

The above gives us the sequence £¥ € af(x*) such that for all k,

m 14
§5 4 pi| ) hi()TR(F) + Y gi(x*), Vai(x¥) | = 0. 23
i=1 i=1

Using (19) and taking limit as k — oo, we arrive at
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m p
kli_{nm fk + Zﬂithi(Xk) + ZMingi(xk) =0,
i=1 i=1

to complete the proof.
4. Strength of n-CAKKT Conditions

Necessary optimality conditions should be as strong as possible. In this section we will see that n-
CAKKT conditions are indeed strong. We will prove that the fulfillment of n-CAKKT conditions
imply the fulfillment of n-AGP conditions. In Section 3, we proved that n-AGP conditions are strong
optimality conditions in the sense that they imply n-KKT conditions or the absence of a weak
constraint qualification. These results suggest that the points satisfying n-CAKKT conditions are
more likely to be local minimizers than points merely verifying n-AGP conditions, or the points not
satisfying weak (nonsmooth) constraint qualifications. Therefore, the points that approximate an n-
CAKKT point have more chances to be close to local minimizers than the points that approximate an
n-AGP point.

The next theorem shows that n-CAKKT conditions imply n-AGP conditions.

Theorem 4.1. Assume that x* is a feasible n-CAKKT point of (1). Then, x* satisfies the n-AGP
conditions.

Proof. Assume that {x,} < R™ converges to x* and satisfies (14) and (15). Since f is
convex, df (x*) # @. Therefore, there exists §¥ € af(x*). Let y* be the solution of

Minimize ||[x* — &¥] — }’”;
s.t.y € 2(x%,0), 24

where 2(x*,0) is the set of points y € R™ satisfying

Vhi(xk)T(y — xk) =0, for i=1,.....m
Vgi(xk)T(y - x¥) <o, if gi(x¥) =0
Vgi(xk)T(y — xk) + gi(xk) <0, if gi(xk) < 0.

The objective function in (24) is a strictly convex quadratic function and Q(x", 0) is defined by linear
constraints. Since x* € 2(x*,0), 2(x*, 0) is nonempty, y* exists and is the unique solution of the
problem. We wish to show that lim ||y — x¥|| = 0. Since the constraints of (24) are linear, the

KKT conditions are fulfilled at y*. Therefore, there exist {1¥} ¢ R™, {3*} c RP, and & €
af (x*) such that

[y — xk]+ &k + VR(x*) 2% + vg(xk) pk = o, (25)
Vhi(xk)T(yk - x¥) =0, i=1,...,m, (26)
Vgi(x¥) (% - %) <0, if gi(x¥) =0, 27)
gi(x¥) + Vg, () (v = xK) <0, if gi(x¥) <o0. 28)
05Vg () (k- x¥) =0, if g(x¥) =0, (29)
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and

ﬁikgi(xk) + ﬁingi(xk)T(yk - x)=0, ifg(x¥) <o0. (30)

Pre-multiplaying (25) by (y* — x")T and using (26 - 29), we obtain:
Ik = x4, + 60k - 2+ D A () (k- ) =0, 1)
gi(xk) <o
If g;(x*) < 0, then by (30) we have
ﬁikVQi(xk)T(yk — xk) = —;%gi(x*).
Therefore, applying (31), we arrive at
Ik =, + €0k - )= Y g

gi(xk) <0
Since ji* > 0, we have

Iy = x¥.° < ()" (% - x*). (32)

On the other hand, using (14), we can find sequences {A*} ¢ R™, {u*} c RP,,&* € af(xk)
and {v*} c R" such that

m 14
&k + Zlithi(xk) + Zuingi(xk) = vk 0.
i=1 i=1
Therefore,

~(£9) ("~ x¥)

m
= z/lithi(xk)T(yk - xk)
i=1

p
+ Zui"Vgi(x")T(y" — k)= (yk = x¥) vk,
i=1

Thus, by (26),

_(fk)T(yk - xM) = ZHikVQi(Xk)T(yk - x*)— (y* - x")Tv".
= Z w*Vgi(xK) (vF - x%) + Z uFvg(xF) (% = x) = (v* = x%) vk,

gi(x¥) <o gi(xk) =0

If g;(x*¥) = 0, then (27) together with the fact that u* > 0 lead to yi"Vgl-(x")T(y" - x¥) <o,
and hence
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_(fk)T(yk_ ) < — z #ikvgi(xk)T (K — x¥) = (y* - xk)Tvk
gi(x*)=z0

= D wFal) +Va ) OF - )] - D aFat) - (k- 69wk

gi(xk) <o gi(x¥) =0

Thus, by (28) we have

_(fk)T(yk - xf) < - z ui*gi(x*) — (y* - xk)Tvk

gi(x¥) <o
<= > kel + Ry -
gi(x*)=0
< D |uFg )+ okl vk - ],
gi(xk) <0

Finally, the above inequality and the one in (32) give us

I = 0, (= =40, = 141, < D bl 3

gi(x*) <o

Now, if forall ke, [|y* — x*||, < |[v¥||, {0, then there remains nothing to prove. Now, suppose

that for all k, [|y* — x*||, > [[v¥||, . Then, by (15) we get

0 < [y = &, (Iv* = < l,= Io¥ll,) < ). |ukaix)] Lo,

gi(x¥) <o
which means that lim |[y* — x*[| = 0, as desired. Therefore, x* satisfies the n-AGP conditions.

5. Sufficient Optimality Condition

In this section, we will show that under some generalized convexity assumptions, CAKKT
conditions are sufficient optimality conditions for global minimizers.

Theorem 5.1. Assume that, for the problem (1) all the functions are continuously differentiable, the
objective function f is pseudoconvex, the inequality constraints g;(x), for i =1,...,p, are
quasiconvex and the equality constraints h;,i = 1,...,m, are affine. Let x* be a feasible point that
satisfies the CAKKT conditions. Then, x* is a global minimizer of (1).

Proof. Assume that x* , A%, u* are given by (14) and (15). Let z be a feasible point and define

I={i €1,...,plgi(x*) =0},
I, = {i € 1,...,p|gi(xk) = O}.
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Thus, for all i € I, we have g;(x*) = 0 and by the feasiblity of z, we have g;(z) < g;(x*). The
quasiconvexity of g; implies that Vgi(xk)T(Z — x¥) < 0. Also, since the h; are affine, we have

h;(z) = hi(xk) + Vhi(xk)T(Z - xk) =0, i=1,...,m.

Thus, we get

v/ () (z ~ x¥)
m
T T
+ Z)lik [hi(xk) + Vhi(xk) (z - xk)] + Z wk [Vgl-(xk) (Z - xk)] (34)
i=1 i€l
< Vf(xk)T(z— xk)
Observe that for all i € I, we have gi(xk) = 0, and by (15), u;* > 0. In addition, for all i & I, we
have g;(x*) < 0, and by (15), &;* = 0. Hence, we have

p
Z T [Vgi(xk)T(z - x")] = Zuik [Vgi(xk)T(z - x")] (35)
iEly i=1

Also, since g;(x*) = 0 and p;* > 0, we obtain:

p
zyi"gi(x") <0. (36)
i=1

Therefore, by (34), (35) and (36) we have

[Vf(x") + Zlithi(xk) +zuingi(xk)‘ (z— x¥)

m p
+;Aikhi(xk) + ;uikgi(xk) < Vf(xk)T (z — xF).

Thus,

lim

k — oo

VF(xF) + Z/lithi(xk) + Zuingi(xk)] (z— x¥)

m b
+ lim lz A% hy(x%) + Z uikgi(xk)] < lim [vF(x¥)" (z = x¥)].
i=1 i=1

Taking the limit, as k — oo, continuous differentiability of the functions and assumptions (14) and
(15), we get

Vf(xk)T(z - x*) =0.
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Ahmadi and Movahedian

Since f is pseudoconvex, we get

f(2) = f(x),

and this complete the proof.
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