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An Integrated Model with Conservative Levels to
Evaluate the DMUs Efficiencies for Uncertain Data

A. H. Shokouhi'”, H. Shahriari?

In traditional data envelopment analysis (DEA) the uncertainty of inputs and outputs is not
considered when evaluating the performance of a unit. In other words, effects of uncertainty
on optimality and feasibility of models are ignored. This paper introduces a new model for
measuring the efficiency of decision making units (DMUs) having interval inputs and outputs.
The proposed model is based on interval DEA (IDEA) in which the inputs and outputs are
limited to be within uncertainty bounds. In this model, the inputs and outputs take fixed values
for each DMU such that the sum of efficiencies is maximized. The DMUs are evaluated by
the same production possibility set (PPS). The efficiency is measured based on the proposed
conservatism level for each input and output. Indeed, the inputs and outputs are defined by
the presented conservatism level. The proposed model is integrated measuring all the DMUs
efficiencies simultaneously. These efficiency scores lie between the optimistic and pessimistic
cases introduced by Despotis and Similar (2002) [11].
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1. Introduction

Data envelopment analysis (DEA) technique, first introduced by Charnes et al. [6], is now widely
exploited for the measurement of efficiency of many entities in public and private sectors. An
important methodological feature of DEA is its capability to determine the performance of a decision
making unit (DMU) in comparison with all other DMUs. Moreover, it is widely known that DEA is
developed to measure the relative efficiency of DMUs with multiple inputs and outputs using a linear
programming (LP) model (Banker et al. [2]; Charnes et al. [6]). The main purpose of DEA models is
to classify DMUs into two classes: efficient and inefficient. The original CCR® model is only
applicable to technologies characterized by global constant returns to scale (CRS). This model is
modified by Banker et al. [2], assuming variable returns to scale (VRS) technologies. Applying these
models, the efficiency score of each DMU is obtained by assuming data certainty, not to evaluate
DMUs with uncertain data such as imprecision, vagueness, inconsistency, etc..

Since uncertainty is present in real situations, it is observed in DEA. The data uncertainty is dealt
with in different ways, such as fuzzy, stochastic, and interval approaches. Knowing membership
functions and probability distributions are respectively necessary in fuzzy and stochastic approaches.
Interval analysis is developed to model uncertainty in DEA, in which only the bounds of the uncertain
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data are required, not the membership functions or the probability distributions. Sengupta [26]
initially introduced DEA models under uncertainty. Cooper et al. ([7], [8] and [9]) introduced an
interval approach to deal with interval data in DEA. Interval data, strong and weak ordinal data and
ratio interval data modeling were proposed by Kim et al. [20]. Despotis and Smirlis [11] proposed
two models with interval data in DEA to obtain the upper and lower bounds of efficiency scores for
DMUs as the optimistic and pessimistic models, respectively. The DMUs were classified into three
groups according to the intervals obtained for the DMUs. Zhu [34] simplified the Cooper et al.’s ([7],
[8], [9]) model. Wang et al. [32] proposed DEA models considering intervals to get a fixed production
frontier for measuring the efficiencies of DMUs. Their models obtained the lower and upper bounds
of the efficiencies for each DMU. Amirteimoori and Kordrostami [1] extended the Zhu’s [34] model
to multi-component efficiency. Jahanshahloo et al. [16] estimated a radius of stability for all DMUs
with interval data and showed that the original classifications remained unchanged under
perturbations. Jahanshahloo et al. [17] also introduced a method for measuring the efficiency of
DMUs in the free disposal Hull (FDH) model with interval data. Kao [19] formulated the problem as
a bi-level mathematical programming model to deal with uncertainty in data and converted the model
into a pair of ordinary one-level linear programing one to assess the interval efficiency of DMUs. The
use of Despotis and Smirlis’s [11] approach in interval DEA was presented by Smirlis et al. [29]. In
the proposed method, the upper and the lower bounds for the DMUs’ efficiencies were computed
while having missed observations. In fact, they proposed a new method based on interval DEA in
which the units were evaluated with missing values along with the other units having available crisp
data. They replaced missing values with approximations in the form of intervals such that the
unknown missing values were likely to belong to the intervals. The bounds could be achieved by
using statistical or experimential techniques. Consequently, they achieved upper and lower bounds
for the efficiency score of each DMU. Toloo et al. [31] proposed an imprecise DEA model to measure
the overall profit efficiency of DMU while the input and output values varied over certain ranges.
This model calculated the upper and lower bounds of the overall profit efficiency for each DMU.
Then, the DMUs were classified into three groups with respect to their efficiency bounds.
Jahanshahloo et al. [18] modified interval generalized DEA (IGDEA) model to treat the above-
mentioned basic DEA models with interval data. Park [21] applied duality theory to investigate the
relationship between the primal and dual models in IDEA. Emrouznejad et al. [14] proposed two
novel approaches based on the traditional profit Malmquist productivity index to measure the overall
profit Malmquist productivity index when the inputs, outputs, and price vectors were fuzzy or varied
in intervals. Emrouznejad et al. [15] also presented two IDEA models including general non-
parametric corporate performance model and multiplicative non-parametric corporate performance
with interval data.

An alternative approach proposed to address the data uncertainty is robust optimization. In this
approach, the nature of data is assumed to be bounded, not necessarily stochastic. Indeed, robust
optimization constructs a model solution that is optimal for any realization of uncertainty in a given
set. Soyster [30] investigated explicit approaches to robust optimization and proposed a linear
optimization model to obtain a solution that was feasible for all data belonging to a convex set. To
generate robust optimization models, some alternative approaches were proposed by Ben-Tal and
Nemirovski ([3], [4], [5]), EI-Ghaoui et al. [13], and EI-Ghaoui and Lebret [12]. Sadjadi and Omrani
[22] proposed a robust DEA model assuming uncertainty for output parameters. Sadjadi and Omrani
[23] applied the bootstrap techniques to present a robust DEA model with an application in
telecommunication. On the basis of a robust optimization model, Shokouhi et al. [27] proposed a
robust data envelopment analysis (RDEA) model in which the input and output parameters varied
only in some ranges. Wang and Wei [33] developed four different DEA models for CRS technologies
based on robust optimization techniques including various discrete combinations of precise and
imprecise sub-datasets. Sadjadi et al. [24] proposed a super-efficiency DEA model by utilizing the
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robust optimization approach of Ben-Tal and Nemirovski [5]. Sadjadi et al. [25] proposed an
imprecise interactive DEA to identify the input and output targets. Shokouhi et al. [28] proposed a
modified RDEA (MRDEA) model to prevent the problem of incommensurability in the Despotis and
Smirlis [11] formulation. The model applied a robust optimization approach to produce an empirical
distribution for the interval efficiency where the parameters values were smooth at their extreme
values.

Here, a new model for measuring the efficiency of DMUs, when the inputs and outputs vary in an
interval, is proposed. The DMUSs efficiencies are evaluated using the same production possibility set
(PPS). In addition, conservative levels for the inputs and outputs are defined in advance and the inputs
and outputs are controlled by the assigned levels. The proposed model is integrated to evaluate all
DMUs simultaneously and maximize the sum of the DMUs efficiencies concurrently.

In Section 2, preliminary models for measuring the efficiency scores of DMUSs are represented. The
integrated model with data uncertainty is introduced in Section 3. The proposed non-linear model for
measuring the efficiency score of DMUs with uncertain data, is presented in Section 4. Section 5
consists of two numerical examples. Finally, the discussions and conclusions are provided in Section 6.

2. Preliminaries

Throughout our work, measuring efficiency scores of DMUs for the CCR and integrated models
without uncertainty are presented.

Suppose that there are n DMUSs to be evaluated, indexed by j € {1, ...,n}, and each DMU is
assumed to produce s outputs from m inputs. So, in DEA, each observed DMU is represented by

the pair of non-negative input and output vectors (X;, Y;) € R, j =1,...,n. The technology T
or production possibility set (PPS) is defined by:

T = {(x,y)|x can produce y}. (1)

Since a benchmark technology is constructed by the observed inputs and outputs of the DMUs,
the following general assumptions about production technology without specifying any functional
form are made. T satisfies the following standard axioms of production. Thus, the PPS of CRS model
due to Charnes et al. [6] is the minimal set that satisfies the following axioms:

(A,) Feasibility of observed data: (Xj, yj) eT,for j=1,..,n.
(A,) Free disposability: (X,y)eT,y>y>0,x<X=(X,y)eT.
(A3) Constant returns to scale: (X,y) e T = (Ux,1y) T, VAeR.

(A,) Convexity:
5Y),XY)eT, (X,9)=A4%yY)+AL-A)(X,y),0<A1<1= (X, §) T.

Under the axioms (A;) to (4,), the minimal PPS for T can be stated as:
Tc Z{(X, y) | X2 Z/ljxj ) y < leyja/lj 2 01 J :1,..., n}. (2)
=l j=1

Based on the relation in (2), the envelopment form for the input-oriented model measuring the
efficiency of a DMU is defined to be
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6" =min 0,
s.t. DA% <O,
3)
DAY Y,
j=1
24,20, Vj.
The dual of (3) is expressed as follows:
max  6,=> UV,
r=1
st DUy - vix <0, Vj,  (4a)
r=1 i=1 (4)
D vix, =1, (4b)
i=1
u, 20,v, >0, vr,i, (4c)

where the V; and the U, are the multipliers (weights) respectively assigned to the ith input and the rth
output. Model (4) maximizes the efficiency score of DMU . With respect to constraints, the optimal

value of the objective function in (4) will never exceed 1. Note that, the constraints (4a) guarantee
the existence of DMUs in PPS, constraint (4b) is known as a normalization constraint, and constraints
(4c) impose non-negativity on the weights.

To present the efficient and inefficient DMUs for the model (4), the following definition are
needed.

S
Definition 2.1. DMU , is efficient if and only if Zu:yrp =1 and there exists at least one optimal
r=1
point (U*,V") for (4) with u* > 0 and v* > 0.
The constraints (4c) may be convertedto U, 2 ¢,V, 2 ¢, for r=1,...,s and i =1,...,m, where

£ is the non-Archimedean infinitesimal value; see Cooper et al. [10] for a foundational development
of this transformation and an interpretation of .

In order to evaluate the n DMUs’ effiencies and also to compute the projection of them, the model
(4) must be solved n times. We now propose the following integrated model which independently
evaluates all DMUs and gives the projection of DMUs simultaneously by solving only one LP model:
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max 3.0, =3 > Uy,
j=1 j=1 r=1
s.t. iurk Y —ivikxij <0, vij, K,
r=1 i=1 (5)
ivij X =1, Vi,
i=1
u; 20, v; >0, vr,i, J.

Note that both models (4) and (5) produce the same results.

3. Integrated Model with Interval Data

Assume that there are n DMUs with interval inputs and outputs as X; e[XijL,XiljJ] and

)7”. € [yrﬁ, y:j ], for j=1,...,n. In actual applications, we have some reasonable estimates for the

mean of the inputs and outputs, say X; and Yij and their deviations, dijX and dg , respectively. Indeed,
the inputs X;; and the outputs 3, ; are independent, symmetric, and bounded random variables having

.. . . . . X X y y
unknown distributions with values in the intervals [; —dj,%; +dj] and [y, —dg,y, +d;],
respectively. Note that when dijX and d% are allowed to be zero, then the x;; and y,; are called the

nominal values of %;; and ¥,.;, respectively.

The following integrated model measures the efficiency of DMUs with the interval inputs and
outputs:

j=1 j=1 r=1
st D Uy — D VX <0, Vi, k,
r=1 i=1 (6)
Zvijxij =1 vj,
u; >0, v; >0, Vi, j,

where p; is the efficiency of the jth DMU.

Since the inputs and outputs of (6) vary within intervals, the efficiency scores of the DMUs are
not easily computed. Despotis and Smirlis [11] proposed two models to overcome this difficulty with
interval data in DEA. Their models find the upper and lower bounds of the efficiency scores for
DMUs as the optimistic and the pessimistic cases, respectively. The same idea may be applied to
modify the model (6) into models (7) and (8) as follows:
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n

n S
moc 3100 =3 Suy:

j=1r=1
st Zun er ZVIJX <0, Vi,
Zlurkyl!}_gvlkxlj SO Vj,k,ki j1 (7)
ZV"' X5 =1, vj,
u; 20, v; >0, Vi, |,

n n S
max D pj =22 UsYs
-1

=
s.t. Zs:urj Vi —Zm:vijx;’ <0, Vi,
®
éurkyt} —;vikx;so, Vi, k,k = j,
iZ::vijx}j’ =1, Vi,
u; 20,v; >0, vr,i, .

One may realize that (7) and (8) are the optimistic and the pessimistic models and p? and ij are

the maximum and minimum efficiencies of the jth DMU, respectively. Despotis and Smirlis [11]
proved the following theorem to show that the efficiency scores lie within the upper and lower
bounds.

Theorem 3.1. Let the optimal solutions of (6), (7), and (8) be (urj,v”) (g, vy ), and (ug",v;"),
respectively. Then, the solutions p; of (6) lie between the solutions of pj and pj of the models (7)

and (8). Thus, i < p, <p), for j=1,...,n.

Proof: See Despotis and Smirlis [11].

4. Conservative Levels in Integrated Efficiency with Interval Inputs and
Outputs

Here, a new model to measure the efficiencies of DMUs with interval inputs and outputs is
formulated. Let us introduce the quantities 7/; and }/Jy ,for j =1,...,n, with values respectively in the
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intervals [0,J] ]and [0,J]], where J} and J} are the number of uncertain inputs and outputs for

DMU; . Let us also name the quantities 7/J-X and ]/J-y as the conservative levels for inputs and outputs.

So, a model being controlled by the levels of conservatism of the inputs and outputs is proposed to
evaluate the efficiencies of the DMUs. Apparently, the proposed model is non-linear and assumes the
same PPS for all DMUs. The advantage of the model is its capability in evaluating DMUs’
efficiencies simultaneously. One must note that although the efficiencies of DMUs are not estimated
independently, the projection is obtained concurrently. The proposed model is

n n s
max D 7= Uy
=1

j=1r=1
m
s.t. Zvij Xij =1, Vi, (9a)
i=1
S m
DU ¥rk = Vi <0, bk )
:l -=1
yH _yrj —Zryj}/}/—prj 20, Vr,j, (9C)
Yii - Vrj <0, vr.j, (9d)
xi'j- —Xij +Zij7 | +Gj <O, vi.j, () 9)
s
ZJy ZZZ%, VJ! (9g)
=1
m
z]-‘ zzzfj(, Vi, (9h)
i=1
2§ +dij =X X, v e
.96.24,28 2.2 i 20 i ()
Vij Urj > &, vir.J, (Ow)

where 77; is the effeciency and Uy; and V;; are the weights assigned to the rth output and the ith input
of the jth DMU, respectively.

The model (9), being called an integrated model, maximizes the sum of the efficiency scores of
all DMUs. Since the efficiency score for each DMU lies in the intervals [0,1], then the optimal value
of the objective function of (9) varies between 0 and n. In (9), the constraints (9a) are normalization
constraints and the constraints (9b) guarantee that the DMUs are all in PPS. According to the
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constraints (9¢) and (9d), it is obvious that yh <y < yH —(z% yjy +Prj) . Under the optimistic
conditions, if )/J?’ =0then yh <Yrj < yH — Prj- For p; = 0, we have y}] <Y< yH . Investigation
of constraints (9i) and (9d) reveals that for pessimistic conditions, when yj = ij, the value of
z%y}’ + Prj increases so that the yrJ (zrjyJ + prj) equals yh. For 0< 7/J-y < ij, (9) determines
the y'ﬁ' as the maximum value of Yrj» considering the constraints (9g) and (9i). If there exists a t
such that ztJ pj = 0and also the constraints (9i) are satisfied, then z}/ # 0. Thus, in order to satisfy
the constraints (9g), there exists the Ith output of DMU ; such that z;; # 0. Therefore, z)y?" + p; #

0, and by constraints (9c), yij < yhj . Note that by this the non-zero value of the parameter yjy is

imposed to the Ith output of DMU;;..

Constraints (9¢), (9f), (9h), and (91) have interpretations respectively similar to constraints (9c),
(9d), (99), and (9i). Constraints (9t) impose non-negativity on the variables. Also, constraints (9w)
show the lower bounds for the weights. Feasibility of model (9) is shown in Appendix A.

For more clarity, Figure 1 shows four DMUs with one certain input and one interval output. It also
displays the PPSs of the proposed model and the Despotis and Smirlis’s [11] models for DMU; in
optimistic and pessimistic cases. Note that the model has the same PPS for all DMUs.

Theorem 4.1. Let us (0,,%), (Uy.9) and (ug,V;,z} 2,225, G5 Py, X, Yy) be optimal

solutions of the models (7), (8), and (9), respectively. Then, 7, the efficiency score of the jth DMU,
satisfies ij <n; < p}J :

Proof: Since (urj, i Z] ,ZJy ,Z” , ” qIJ prj,x y) is an optimal solution for (9), we can define
the followings

ZVX >0,

r =_a r1J|
] ﬁj
C Vi
Vi =—, VI, ]
B,

By investigation of (9), we get
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IA

m
* L
B =D VX

i=1

m * *
D V% =1,
i=1

*

m _ m V
Z inin_ =Zﬁ ZV =1
i=1 i<l Pj J'-l
lerYrIL _Z ij Xik Z_(Zunyrk ZVU ik
r=1 i=1 j
<YL~ 2iK) <0 ik
i =1

In addition, we have:
S
~ U
2055 <1 —Zunyn <1
r=1 , r=1

Referring to iiv;x; =1, the following inequalities hold for all DMUs:

j i=l
l S * o *
F(leurj Y:jJ _;VijxijL) <0,
j r= 1=

us
Urj :JZiZO, Vr,j,
B P
9, =2>% >0, vij.
B; B
It is obvious that (u”,V”,ZJ ,Z}’ ,Z“ s ,q“, prJ,X y') is a feasible solution for (7). Thus, we have

n; < p; foralld} and J7.
Similarly, we can show that ,0]-L <p; for Jand J! . Then, ij <7 S,OEJ :
Corollary 4.2. If DMU; evaluated by (9) is efficient, then it is efficient for (7).

Next, the following lemma may be concluded from the foregoing theorems.

Lemma 4.3. If (U,J,V”,ZJ ,Z}’ ,Z“ a ,q”, prJ XIJ er)IS the optimal solution of (9), then (u”, )

is an optimal solution of (6) provided that Xij = Xij and yrj = yrj .

Proof: We need to show that ,0; = 77;.
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IOptimistic (DM)
IPessimistic (DM)
IOptimistic (PM)

Output

[[] outputs in Pessimistic (PM) case

AOutputs in Optimistic (PM) case

Input
Figure 1. Comparison of the PPS of the model (9) and Despotis and Smirlis’s approach for
DMU; in the optimistic and pessimistic cases

(i) Since )N(ij = Xi]f and yrJ er , it is easy to show that (u ) is a feasible solution for (6). Thus,
Py =175
(ii) Assume that (U.,V.

r?

iy is an optimal solution for (6), %; = X;; and ¥, = y:j, where
yrj < yrj < yIrj _(er7j + prj) and xi'j' +zi’j(y}( + Gj SX;Jf < xiljJ . So, there exist at least one Y,; and
one X; such that the constraints (9a) and (9b) are satisfied. Hence, p]-k > 77;.

From (i) and (ii), we conclude that ,0J 77J Therefore, (U, ) is an optimal solution of (6).

r?
Theorem 4.4. Let an optimal solution for Model (9) be (u SV ,qa, p:j,x;,y:j).

rJ"J’J’J"J’VJ

Then, we have: V j €{L,...,n}, 3l e{L,...,n} such that Zu”yrI Z X =

Proof: It is evident that, in Model (6), Vje{l..,n}, Ilefl..,n} such that

Z:u”yrI Zv” . =0. So, by Lemma 4.3 the result follows.

Theorem 4.5. DMU; is efficient if and only if 77; =1.

Proof: Assume that (urj,v”,zj ,Z}’ ,Z“ a ,q”, prJ XIJ er)IS the optimal solution for (9). (Only if

part): By Theorem 4.5 and setting | = j, we have ZU’: Vi —Zv:xij =0. Since ZV:XU =1,
r=1 i=1l i=1

Zuz y; =1and »; =1.
r=1
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S S m S m
(If part): n, =1 = rZ:l:urj y; =1= ;u” Vi :izﬂ:vu X; = rzﬂlu”_ Vi —;vij X; =0. In

other words, DMUj is efficient.

Remark 4.6. Let us define ()_2;2; ) as the projection of DMU, on the frontier. Then, ()_2;2;)
which is an improved activity for any inefficient DMU , would be efficient when evaluated by

Model (9). Applying ()_2; A ) in constraint (9b), we get
Z_;urp y:p - Z_llvip)zi:) :Z_l:urp (y:p) - Z_llvip (npxi;
= Zlurpyrp _np;\/ipxip’

m *
D vix =1,
i=1

S
The above relations imply ZUH. y:p -n,=0.
r=1

(10)

Considering the efficiency score of any DMU which depends on the conservative level for the
input and output parameters, the mean value of all efficiency scores for fixed ij =y"and yjy =7"is

given by &,(I'), where I'=»"+y”. Consequently, all DMUs may be divided into one of the
following three classes.

Class 1: The DMUs which are efficient, for all | and ], thatis, E™ ={j| VI, 6,(I') =1}.

Class 2: The DMUs, which are efficient for some y; and ], that is, E* = {j|al; vl €
Class 3: The DMUSs, which are inefficient for 7/}( :]/jy =0, thatis, E~ = {j|vI = 0,6,(T") < 1}.

It is clear that the DMUs with the highest performances belong to the class E™ and those with
least performances belong to the class E™ . Besides, the DMUs in class E™ have DMU performances
in between the ones corresponding to classes E™ and E~.

5. Numerical Examples

Here, two numerical examples are provided to show the appropriateness of the proposed model.

Example 5.1. Consider 5 DMUs each with only one interval input and one interval output. The inputs
and outputs for all DMUs are the same as shown in Table 1 and Figure 2.
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Table 1: Inputs and outputs of 5 DMUs

DMU i X Y

1 [0.75,1.05] [9.00,10.00]

2 [1.25,1.50] [1.00,11.30]

3 [1.20,1.75] [6.00,7.50]

4 [1.10,1.60] [2.00,9.00]

5 [ 0.80, 1.40] [3.00,8.00]
12

AMUZ
/
10 DMU1
DMU4
DMUS5

/ DMU3

Output

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2
Input

Figure 2. Inputs and outputs of 5 DMUs

Model (9) is run for different combinations of ;/}‘ =" and j/jy =y’ for j=12,...,5,and a
fixed " = »* + Y. The GAMS software package with £ =10"° was used. In each case, the efficiency
scores of the 5 DMUs were obtained as displayed in Figure 3 for all possible »* and »? such that

C=y"+y’ . For y¥"=y"=0and C (y* = ¥ =0), the global optimistic and pessimistic cases of
the sum of efficiency scores for all DMUs are also shown in Figure 3.

In Figure 4, the point A shows the pessimistic case for DMU,, when »* =y* =1. Fory* = 1 and
yY =0, B is generated. For y* =1 and y¥ = 0.5, the point falls on the line segment AB. For
y* =yY =0, the point C showing the optimistic case is obtained. Finally, for y* = 0.5 and y¥ = 0,
the point falls on the line segment BC.

Note that E™" ={DMU,}, E*={DMU,,DMU.}, and E ={DMU,,DMU,}.Hence,
DMU ;and DMU, are inefficient DMUs, for all I's, DMU,, is efficient, if I' <0.025 and DMU;
is efficient, if I' <0.1.
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14 =« & & &8 8 8 &8 & & @ 14 : . 1
- -]
0.8 - 0.8 - HER s . 0.8 .
L ] L[]
0.6 05 - $ s o 3 0.6 L'
P ' L]
04 | 04 - HEHIE s . 0.4 L
L : .
0.2 - 0.2 * s s s o 0.2
* & & & & @
0 T T o T T 0+ T T
0 1 2 0 1 2 0 1 2
*DMU1 *DMU2 * DMU3
14 14 @
oz | § ! .
0.8 (]
0.6 , ! 06 - ' l
0.4 : 3 ! ! 0.4 - ' ' ’
-
02 c . 2 f. o2l '.
0 T . o . .
0 1 2 o N 2
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Figure 3. The efficiency scores of 5 DMUs
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Figure 4. Changing y”*and y” of DMUs from pessimistic case to optimistic case

Example 5.2. The data set correspond to 24 branches of Bank Mellat in Iran. Each branch uses two
interval inputs, the number of the staff and departments, to produce five interval outputs including
long-term saving, short-term saving, saving account, Gharzol Hasaaneh savings account and Facility.
The inputs and outputs are given in tables 2 and 3, respectively.
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Table 2. The input data for 24 bank branches of Bank Mellat

INPUTS

=2
E Input 1 Input 2

L U L U
1 5.31 17.71 15858 92482
2 11.45 15.48 7438 31538.52
3 12.05 18.41 10386.79 722246
4 13.57 22.02 8464.5 137725.5
5 10.13 15.76 18029.33 35331.83
6 9.82 14.92 5276.28 22054 .14
7 9.79 14.98 4982.16 19385.33
8 21.26 34.9 82756 194775
9 11.37 17.03 2127 5143
10 15.18 20.3 1850 6852
11 15.74 20.02 7302 166435.5
12 13.43 17.47 21724 25584
13 11.53 15.6 8749.71 31709
14 9.32 13.7 16421 24383
15 14.53 21.38 12168 35371
16 13.23 18.07 3912 20405
17 14.84 20.22 9308.33 39126.33
18 15.99 22.62 6332 8105
19 9.86 16.07 167 14433
20 5.68 9.27 2705 19713
21 14.31 234 1366 7676
22 16.72 23.13 40907 64700.66
23 17.72 24.96 6837 42869
24 16.36 23.47 2 513

Model (9) is run for different combinations of ij and 7}’ ,and a fixed I" with £ =10"°. In each

case, the efficiency scores are obtained for the 24 DMUs. The efficiency scores of the 24 DMUs are
displayed in Figure 5 for all possible 7/J)-(and 7}’. In addition, all DMUs are classified into the

following three classes:

E-

E™ ={DMU,,DMU,,DMU,,DMU,,DMU,,, DMU,,, DMU,,, DMU,,, }

E* ={DMU,, DMU,, DMU,, DMU,, DMU,, DMU,,, DMU,,, DMU,,,

DMU,,, DMU,,, DMU,,, DMU,;, DMU,,,, DMU,,, DMU,,,, DMU,.}.

.
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The DMUs belonging to the class E™" are efficient, for all I's, and those in the class E"are
efficient, only for some I's.

Table 3. The output data for 24 bank branches

OUTPUTS
% Output 1 Output 2 Output 3 Output 4 Output 5
L u L u L U L U L u

1 47439 72223 41786 186285 7056 67976 93428 325545 125042 463205
2 63955 80954 72961 152987 1817 3941 27982 48446 134204 252779
3 46796 73575 72033 138149 1084 2877 20262 41541 202161 308616
4 32408 69519 95560 384179 2862 13186 16132 96651 651237 1024448
5 129268 203921 71866 116872 3643 7485 24399 82857 570838 1196066
6 51881 87640 68286 89866 3356 7184 38329 59831 68824 107925
7 19195 51083 81111 180587 1326 3162 11324 55757 63335 114851
8 11899 86263 82933 206712 1783 13161 11528 42622 301321 713080
9 22206 38956 18192 29999 5208 8166 26076 39227 10475 17347
10 73291 135821 55705 103384 4598 42317 32215 74637 93208 229520
11 22687 39402 18887 39018 2076 5794 16817 24061 71279 277331
12 14436 29255 36250 56242 5916 7859 18054 36830 23953 29366
13 37300 59139 38230 71756 1540 3963 23124 38194 78984 121222
14 32074 44262 35889 55188 1689 3873 10497 21586 73194 123711
15 2°3867 164039 171853 323883 4244 16796 9146 69360 112884 226481
16 18885 37599 34335 69025 2304 3493 14114 35739 93197 119955
17 24038 33714 57322 86462 2841 10909 14544 26299 99800 228069
18 6151 13400 32055 67708 1966 4089 9380 23230 30231 47726
19 20310 48037 32549 49351 1803 5855 11425 39469 71825 155367
20 0 1290 42001 230820 415 677 447 1456 15088 42180
21 22418 29912 26226 108310 2364 5997 15621 22784 48989 96910
22 27844 49510 45112 74292 2724 4708 21905 39620 68866 159784
23 23207 55912 106982 157711 4487 27609 19638 64623 638265 1594075
24 17499 32972 35203 56413 3757 6870 12296 39317 99312 150623

6. Conclusion

In conventional DEA, the data are assumed to be specific numerical values. However, in reality
the observed values of the inputs and outputs are mostly imprecise. The impreciseness of the data in
the DEA modeling is dealt with in various ways in the literature. Here, a deterministic methodology
was proposed to address the problem of measuring the DMU efficiencies when the inputs and outputs
were supposed to lie in intervals. The concept of conservative level for inputs and outputs was used
to propose a DEA model. The efficiency scores obtained by solving the suggested model were
somewhere between the optimistic and the pessimistic cases introduced by Despotis and Smirlis [11].
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Figure 5. The efficiency scores of 24 DMUs

When the conservative level is chosen at some certain values, the optimistic and the pessimistic results
are also accessible. In our proposed approach, the inputs and outputs for each DMU were taken to
have fixed values and the sum of efficiencies was maximized. Therefore, the DMUs were evaluated
by the same production possibility set (PPS). While Despotis and Smirlis [11] considered the
optimistic and pessimistic PPS for each DMU, the proposed model evaluates all DMUs by the same
PPS; moreover, all DMUs are evaluated by solving only one model; these are the advantages of the
proposed model. Ranking the units with respect to efficiency scores and computing the Malmquist
index, when the data is uncertain, may be considered for future research.


http://iors.ir/journal/article-1-350-en.html

[ Downloaded from iors.ir on 2026-01-29 ]

An Integrated Model with Conservative Levels 45

References

[1]  Amirteimoori, A., and Kordrostami, S. (2005), Multi-component efficiency measurement with
imprecise data, Applied Mathematics and Computation, 162(3), 1265-1277.

[2] Banker, R.D., Charnes, A. and Cooper, W.W. (1984), Some models for estimating technical
and scale inefficiencies in data envelopment analysis, Management Science, 30(9), 1078-1092.

[3] Ben-Tal, A. and Nemirovski, A. (1998), Robust convex optimization, Mathematics of
Operations Research, 23(4), 769-805.

[4] Ben-Tal, A. and Nemirovski, A. (1999), Robust solutions of uncertain linear
programs, Operations Research Letters, 25(1), 1-13.

[5] Ben-Tal, A. and Nemirovski, A. (2000), Robust solutions of linear programming problems
contaminated with uncertain data, Mathematical Programming, 88(3), 411-424.

[6] Charnes, A., Cooper, W.W. and Rhodes, E. (1978), Measuring the efficiency of decision
making units, European Journal of Operational Research, 2(6), 429-444.

[71 Cooper, W.W., Park, K.S. and Yu, G. (1999), IDEA and AR-IDEA: models for dealing with
imprecise data in DEA, Management Science, 45(4), 597-607.

[8] Cooper, W.W., Park, K.S. and Yu, G. (2001a), An illustrative application of IDEA (imprecise
data envelopment analysis) to a Korean mobile telecommunication company. Operations
Research, 49(6), 807-820.

[91 Cooper, W.W., Park, K.S. and Yu, G. (2001b), IDEA (imprecise data envelopment analysis)
with CMDs (column maximum decision making units), Journal of the Operational Research
Society, 52(2), 176-181.

[10] Cooper, W.W., Seiford, L.M. and Tone, K. (2007), Data Envelopment Analysis a
Comprehensive Text with Models, Applications, References and DEA-Solver Software,
Second Edition, Springer.

[11] Despotis, D.K. and Smirlis, Y.G. (2002), Data envelopment analysis with imprecise
data, European Journal of Operational Research, 140(1), 24-36.

[12] EI Ghaoui, L. and Lebret, H. (1997), Robust solutions to least-squares problems with uncertain
data, SIAM Journal on Matrix Analysis and Applications, 18(4), 1035-1064.

[13] EIl Ghaoui, L., Oustry, F. and Lebret, H. (1998), Robust solutions to uncertain semidefinite
programs, SIAM Journal on Optimization, 9(1), 33-52.

[14] Emrouznejad, A., Rostamy-Malkhalifeh, M., Hatami-Marbini, A., Tavana, M. and Aghayi, N.
(2011), An overall profit Malmquist productivity index with fuzzy and interval
data, Mathematical and Computer Modelling, 54(11), 2827-2838.

[15] Emrouznejad, A., Rostamy-Malkhalifeh, M., Hatami-Marbini, A. and Tavana, M. (2012),
General and multiplicative non-parametric corporate performance models with interval ratio
data, Applied Mathematical Modelling, 36(11), 5506-5514.

[16] Jahanshahloo, G.R., Hosseinzadeh Lofti, F. and Moradi, M. (2004a). Sensitivity and stability
analysis in DEA with interval data, Applied Mathematics and Computation, 156(2), 463-477.

[17] Jahanshahloo, G.R., Matin, R.K. and Vencheh, A.H. (2004b), On FDH efficiency analysis with
interval data, Applied Mathematics and Computation, 159(1), 47-55.

[18] Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Rostamy Malkhalifeh, M. and Ahadzadeh Namin,
M. (2009), A generalized model for data envelopment analysis with interval data, Applied
Mathematical Modelling, 33(7), 3237-3244.

[19] Kao, C. (2006), Interval efficiency measures in data envelopment analysis with imprecise
data, European Journal of Operational Research, 174(2), 1087-1099.

[20] Kim, S.H., Park, C.G. and Park, K.S. (1999), An application of data envelopment analysis in

telephone offices evaluation with partial data, Computers and Operations Research, 26(1), 59-
72.


http://iors.ir/journal/article-1-350-en.html

[ Downloaded from iors.ir on 2026-01-29 ]

46

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]

Shokouhi and Shahriari

Park, K.S. (2010), Duality, efficiency computations and interpretations in imprecise
DEA, European Journal of Operational Research, 200(1), 289-296.

Sadjadi, S.J. and Omrani, H. (2008), Data envelopment analysis with uncertain data: an
application for Iranian electricity distribution companies, Energy Policy, 36(11), 4247-4254.
Sadjadi, S.J. and Omrani, H. (2010), A bootstrapped robust data envelopment analysis model
for efficiency estimating of telecommunication companies in Iran, Telecommunications
Policy, 34(4), 221-232.

Sadjadi, S.J., Omrani, H., Abdollahzadeh, S., Alinaghian, M. and Mohammadi, H. (2011a), A
robust super-efficiency data envelopment analysis model for ranking of provincial gas
companies in Iran, Expert Systems with Applications, 38(9), 10875-10881.

Sadjadi, S.J., Omrani, H., Makui, A. and Shahanaghi, K. (2011b), An interactive robust data
envelopment analysis model for determining alternative targets in Iranian electricity
distribution companies, Expert Systems with Applications, 38(8), 9830-9839.

Sengupta, J.K. (1992), A fuzzy systems approach in data envelopment analysis, Computers &
Mathematics with Applications, 24(8), 259-266.

Shokouhi, A.H., Hatami-Marbini, A., Tavana, M. and Saati, S. (2010), A robust optimization
approach for imprecise data envelopment analysis, Computers & Industrial Engineering, 59(3),
387-397.

Shokouhi, A.H., Shahriari, H., Agrell, P.J. and Hatami-Marbini, A. (2014), Consistent and
robust ranking in imprecise data envelopment analysis under perturbations of random subsets
of data, OR Spectrum, 36(1), 133-160.

Smirlis, Y.G., Maragos, E.K. and Despotis, D.K. (2006), Data envelopment analysis with
missing values: an interval DEA approach, Applied Mathematics and Computation, 177(1), 1-
10.

Soyster, A.L. (1973), Technical note—convex programming with set-inclusive constraints and
applications to inexact linear programming, Operations Research, 21(5), 1154-1157.

Toloo, M., Aghayi, N. and Rostamy-Malkhalifeh, M. (2008), Measuring overall profit
efficiency with interval data, Applied Mathematics and Computation, 201(1), 640-649.

Wang, Y.M., Greatbanks, R. and Yang, J.B. (2005), Interval efficiency assessment using data
envelopment analysis, Fuzzy Sets and Systems, 153(3), 347-370.

Wang, K. and Wei, F. (2010), Robust data envelopment analysis based MCDM with the
consideration of uncertain data, Journal of Systems Engineering and Electronics, 21(6), 981-
989.

Zhu, J. (2003), Imprecise data envelopment analysis (IDEA): a review and improvement with
an application, European Journal of Operational Research, 144(3), 513-529.

Appendix A

Theorem 4.1. Model (9) is always feasible.

Proof: Letz; =2y =2;=2/=0,0; = )(iljJ —XijL, p; = ytj —y; . Then, constraints (9¢) and (9f)

imply that X; > XiLjJ and X; < X,-LjJ , respectively, and also constraints (9¢) and (9d) lead to Y, < y,ﬁ and

1
Yy 2 y,ﬁ , respectively. Hence, we have X; = XiLJ-J and Y, = y;. Setting V; =X—Uand U =—,

1

ij rj

completes the proof.
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