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1. Introduction

In many areas in engineering, economics and science new developments are made possible by
application of modern optimization methods. Optimization problems arising nowadays in
applications are mostly multiobjective that is, several competing objectives are aspired
simultaneously [8, 9]. However, a single solution may not generally minimize every objective
function simultaneously. A concept of optimality which is useful in multiobjective framework is that
of Pareto optimality.

We present a numerical algorithm for the following non-convex constrained multiobjective
problem,

(P) min F(x)
st gi(0)<0 ieL={1,..,1}
x € R™,

where the objective function F = (Fy,...,E,)T: R®™ - R™ is continuously differentiable and the
constraint functions g;: R™ - R, for i €L, are continuously differentiable.

We denote the set of feasible region by S:

S={xeR" | g(x)<0, i€elL}.

Here, we present a quasi-Newton method for computing the critical points of (P) without any
convexity assumption. Our aim is to extend the results of [5] for constrained multiobjective problems.
Moreover, we reduce the assumptions used in [5]. The advantage of our work are: (1) there is no need
to compute the Hessian, (2) convexity assumptions of the functions are not needed. Instead, we use
the quasi-Newton method to approximate the second order information of the objective functions.

The organization of the remainder of our work is as follows. In Section 2, we present some
preliminaries and give notations. The new algorithm and its properties are described in Section 3. In
Section 4, we focus on the analysis of global convergence under some suitable assumptions.
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2. Preliminaries

We begin this section by introducing some notations. Suppose that R is the set of all real numbers,
R, denotes the set of non-negative real numbers and R, .. is the set of positive real numbers.
Forany u,v € R", denote

usvev—u € R vi—u; =0, j=1,....m,
u<v eov—u € R, < v;—u; >0, j=1,...,m.

Generally, in multiobjective problems, it is not possible to find a joint optimality solution for all
objective functions. So, we need to provide a concept of optimality in the multiobjective framework
such as Pareto optimality or efficiency, as follows.

Definition 2.1. A point x* € S is said to be a local Pareto optimum of (P) if and only if there exists
a neighborhood V of x* such that there does not exist x € V n S satisfying

F(x)<F(xx) and F(x)# F(xx*). 1)

Definition 2.2. A point x* € S is said to be a global Pareto optimum of (P) if and only if there does
not exist x € S such that

F(x) <F(x=*) and F(x)+# F(x=*).

These definitions have been extensively used; e.g., see [5, 6]. Obviously, any globally Pareto
optimal solution is locally Pareto optimal. The converse is true if S is a convex set and F is R™ —
convex (i.e., if F is componentwise convex). We use the following defnition to define a descent type
algorithm for constrained multiobjective optimization.

Defnition 2.3. A point x* € S is acritical or stationary point for (P) if
R(VFx))N (-RT) = @ and R(Vg(x"))n (- RYy) = 9,
where R(B) denotes the image or range space of B.

Definition 2.4. A direction d € R" is a descent direction for (P) at x if d satisfies the following
conditions:

F/ (x;d) <0, jef1,...,m} 2)
g; (x;d) <0, i €L, (3)

where the directional derivative at x in the direction d is defined as:

Fi(x+ ad) — F;(x
Fi(x;d) = lim i )~ Fi( ).
a—-0 a

(4)

It follows from (4) that F/(x;d) = VF;(x)"d, for j € {1,---,m}, and g;(x;d) = Vg;(x)"d, for
i € L. The descent direction d will reduce every objective function value and will not increase any
constraint function value if it is used to update the design x. It is easy to see that (2) and (3) imply
thatd € R™is a descent direction for (P) at x if and only if
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VFi(x)"d <0, vje{l,...,m}
Vg;(x)"d <0, Vi e L

3. Algorithm

Suppose that x is a feasible point for (P), that is, x € S. Given sufficiently small ¢ > 0, we define
dc(x) as the optimal solution of

(min ¢t
1
t. VEM)d+=-dTB:(x)d <t, je{1,...,
SPE(x)!S t VE@)d+ dnBi(x) jefl,...,m}
L Vg;(x)Td <t, i €L
ldi<t, t < —¢, d € R",

where B;(x) is the Hessian of F; at x or its approximation obtained by a quasi-Newton method. We
use the approximation obtained by quasi-Newton methods, and impose |l d || < 1 to improve the
performance as || d || < 1 eliminates the possible case || d ||[— oo.

Lemma 3.1. Letx € S be given.

(i) If e = 0, then the feasible set of SP,(x) is nonempty.

(ii) Let B; (x), for j € {1, ..., m}, be positive semidefinite. If the feasible set of SP .(x) is nonempty,
then x is noncritical and any feasible point d .(x) is a descent direction for (P); otherwise, x is a
good estimate of the critical point for (P).

Proof. (i). If e = 0, then d = 0 is always a feasible point of SP.(x).
(ii). Suppose d.(x) is a feasible point of SP.(x). Then, forj € {1,-- -, m},

VE(x)Tde(x) <t — % d. ()" Bj(x)de(x) < —€ <0,

and
Vgi(x)Td.(x) <t < —e <0, Vi€ L

Hence, d.(x) is a descent direction for (P) and

R(VF(x)) n (- RTY) = 0,

R(Vg(x)) n (- RLy) = 0.
Therefore, x is noncritical.

Now, we show that if the feasible set of SP,(x) is empty for a given ¢, then there does not exist
any descent direction at x. Suppose, by contradiction that d € R™ is a descent direction at x for (P).
We have

VFi(x)"d <0, jef1,...,m}
Vg;(x)Td <0, i €L.
Therefore, there exists 0 < @ < 1 such that for all « € (0, &],
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aVP}-(x)ch+% a?d"Bj(x)d <0,  je{1,...,m},
aVg;(x)Td <0, [ €L.

If we set

— e, 1 2 ar 7 T
—€ ={a VF;(x) d+§a d" Bj(x)d,a Vg;(x)"d t.

forany a € (0, @], then ad is feasible for SP.(x). Thus, we arrive at a contradiction which complete
the proof.

Lemma 3.2. Suppose that x;, € S and a sufficiently small € > 0 is given. Let d; be the solution of
SP.(x) and ay € (0, 1) be the step-length. Then,

Xep1 = X+ ady

is a feasible point.

Proof. Since x;, € S, it follow that

gilx) <0, Vi € L.
Since d,, is the solution of SP.(x), then it is feasible and
Vgi(x)Tdy <t <0, Vi € L.
By using Taylor series, we obtain:
9iCekr1) = 9i(xe + awdy) = 9:(a) + i Vg () "dy + g I die Il (g, xi),

where lim ¢ (X41,x1) = 0.
Ixp+1—xk 10

Hence,

9i (1) — 9i(xy)
294

= Vgi()Td + I dj I| ¢p(xgrq,x,) <0 .

<0

Therefore, x,,1 € S and the proof is complete.
Based on the above results, we now state the following algorithm.
Algorithm 1. A quasi-Newton Algorithm.

Step 0: Let x, € S be the initial point. Let a sufficiently small positive scalar ¢ > 0 and a
positive semidefinte initial matrix B;(x,), forj € {1,---,m}, be given. Setk = 0.

Step 1: Construct SP.(x). If it is infeasible then stop, else solve SP.(x;) and compute d. (xy).
Step 2: Choose the step size a;, by Armijo-like rule such that x,,; = x; + apd:(xx) € S.
Step 3: Update B; (xy1) with the BFGS method forj € {1,---,m}. Setk = k + 1. Goto Step


http://iors.ir/journal/article-1-354-en.html

[ Downloaded from iors.ir on 2026-01-29 ]

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization 51

Remarks:
(1) In Stepl, if x;, is noncritical, then by solving SP.(x;), we can find d.(x;) for (P) at x;, such that

VF; () de(x) <0, je{l,...,m},
Vgi(x)"de(xy) <0, i €L

Hence, there exists d} > 0 such that
Fj(xk + ade(xk)) < Fi(xy), Vaée (0 ,chl),
and there exists @ > 0 such that

9i(xx + ade(x) < gi(xp), vace (0,a?).

%, = min (@ %, = min{@?
Now, let @; = min {a;}, and a, riIgLn{al } and

a@ = min{a,;, @,}.
Therefore a can be chosen in Step 2.

(2) In Step 3, B;(x+1) needs to be updated. We use the BFGS update formula to update B;(xy1)
similar to the one given in [4]. The quasi-Newton matrix B;(xy1), for j € {1,---,m}, is updated as
follows:
Bj(xi)sk s, Bj(xk) Tjk Tka

A Bj(xi)sk A Tk’

Bj(xk+1) = Bj(xk) -

where T = Ok Vi + (1 = 0j3) Bj (i) sk, Sk = X1 — X Yjke = VFj(Xk41) — VF(xg) +
T
(A(xk+1) - A(xk)) Ak+1 and

1, if sg yjx =0.2 s B;j(xp)sy
ij = 0851’1{w Bj(xk)sk

sk Bi(xx)sk — Sk Yik

) if sg yjx <0.2 si Bj(xx)sk

A(x) = [Vg(x)T]T is the Jacobian of the constraints. The approximate Hessian matrix B, generated
by this formula is positive semidefinite.
4. Global Convergence

In this section, we prove the global convergence of Algorithm 1. First, we make an assumption.
Note that here the assumptions used in [5] are reduced:

Assumption (A): Letthe level set L, = {x € S| F(x) < F(xy)} be bounded.
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Assumption (A) has been used in proving global convergence of Newton type methods in solving
standard scalar optimization problems and also in proving global convergence for solving
multiobjective optimization problems.

Now, we state our main theorem result. Define

— ; _ i T _ . T
mx) = ||3|l|1£1 ier{ri}..r,lm}{ VE()'d, = Vgi(x)"d }.
i €L
Lemma 4.1. A point x™* is critical for (P) if and only if m(x™) = 0.
Proof. Suppose x* is a critical point for (P). By Definition 2.3 we obtain:
R(VFx))N(-RT) =0 and R(Vg(x))n(—Riy)=0.
It follows that the following system

VF;(x")7d < 0, je{l,...m}
Vg;(x)7d <0, i €L

has no solution. Hence,

min }{— VF;(x)"d,—Vg;(x)Td} <0.

je{1,.m
i€L
Therefore,
R (Td — Ve (T ) —
Stuer{T..r,lm}{ VFi(x)'d,—Vg;(x) d} 0,
ieL
and

w(x*) = 0.
It is easy to verify that m(x*) = 0 implies that x* is a critical point.

Theorem 4.2. Suppose that Assumption (A) holds, and for sufficiently large k, the step-length ay,
% <ap< % is accepted. Then, every limit point of the sequence {x;} is critical for (P).

Proof. By Lemma 4.1, it is sufficient to show that every limit point is a solution of =(.) = 0.

Now, suppose that x* is a limit point of {x;}. Without loss of generality, we may assume that the
subsequence {xy }re, CONverges to x*. Let dj, be a solution of SP.(x;). We have

1
Fi(xs1) — Fj(x) = ay V()" dy + > ap? di” Bj(x)dy + 0 (Il dy I?). ()

Then,

1
VE ()" dy + EdkT Bi(x)dy <t < —€ <0.
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Therefore,

1
EdkT B;j(x)dy < —VF;(x;)" dy. (6)
From (5), we deduce
1
— ay VFj(xk)Tdk = —Fj(xg41) + Fi(x) + Eakz dy,” Bi(x)dy + O (ll dy 1%).
From (6), we get

— a VF(x) dje < —Fj(Xpe41) + F(xp) — a® VF; (x) " d.

Hence,
a? VF; ()" dye — ap VE ()T die < —F;Cgerr) + F (i)
(ar — ax® )Y (=VF () dy) < —F;(err) + F(ox)
— (.2 i —VF. T i ] —F.
(o — ax )jer{ri}..r’lm}( VE(x)"di) < jdun (Fj(xk) F}(xk+1))
We know

(ay — ax?) i r{nm (= VE(x) dy, — Vgi(x)'d) < (o) — ) mm ( VE; (xi) " dy).

i EL

So, we obtain:

(a — ax®) m(xy) < jpax (Fj (xi) = Fj(xpe41)) -

Hence,

Z (o — ap®)m(xy) < z max, (F (xx) — Fi(x41))
SN

k=N
kek kek (7)
< max (F (x0) —F(x")=M
je{1,.m

Now, we prove t( x*) = 0, by contradiction. Assume that w( x*) > 0. It follows that there exist
u > 0andey > 0such that

VOi<e<ey lx,— x*lI<e st mwlx,)=u>0.
On the other hand, from «;, € (0, 1), it follows
0 < akz < ay -

Hence,
(ak — akz) > O .
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Then, from the assumption, there exists K and the step-length % < qp < % is accepted, for any k >
K and k € k. So, there exists § > 0 such that (a; — a,>) = & > 0 and we have

m(x) (@ — ax’) = ué.
This means

(@ — @) n(w) < ) wé =,

k=N k =N
kek kex

which contradicts (7). Therefore, m(x*) = 0 and x™ is a critical point.
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