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1. Introduction 
 

In many areas in engineering, economics and science new developments are made possible by 

application of modern optimization methods. Optimization problems arising nowadays in 

applications are mostly multiobjective that is, several competing objectives are aspired 

simultaneously [8, 9]. However, a single solution may not generally minimize every objective 

function simultaneously. A concept of optimality which is useful in multiobjective framework is that 

of Pareto optimality. 
 

We present a numerical algorithm for the following non-convex constrained multiobjective 

problem, 
 

                                                 (P)        min          𝐹(𝑥) 
                               s.t.         𝑔𝑖(𝑥) ≤ 0        𝑖 ∈ 𝐿 = {1, . . . , 𝑙 }, 

                                                                              𝑥 ∈  ℝ𝑛, 
  

where the objective function  𝐹 = ( 𝐹1, . . . , 𝐹𝑚)
𝑇: ℝ𝑛 → ℝ𝑚  is continuously differentiable and the 

constraint functions  𝑔𝑖 : ℝ
𝑛 → ℝ, for i ∈ L, are continuously differentiable. 

 

We denote the set of feasible region by S: 
  

𝑆 = { 𝑥 ∈  ℝ𝑛    │    𝑔𝑖(𝑥) ≤ 0,   𝑖 ∈ 𝐿 } . 
 

Here, we present a quasi-Newton method for computing the critical points of (P) without any 

convexity assumption. Our aim is to extend the results of [5] for constrained multiobjective problems. 

Moreover, we reduce the assumptions used in [5]. The advantage of our work are: (1) there is no need 

to compute the Hessian, (2) convexity assumptions of the functions are not needed. Instead, we use 

the quasi-Newton method to approximate the second order information of the objective functions. 
 

The organization of the remainder of our work is as follows. In Section 2, we present some 

preliminaries and give notations. The new algorithm and its properties are described in Section 3. In 

Section 4, we focus on the analysis of global convergence under some suitable assumptions. 
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2. Preliminaries 
 

We begin this section by introducing some notations. Suppose that ℝ is the set of all real numbers, 

ℝ+ denotes the set of non-negative real numbers and ℝ++  is the set of positive real numbers. 

For any  𝑢 , 𝑣 ∈ ℝ𝑛, denote 

𝑢 ≤ 𝑣 ⟺ 𝑣 − 𝑢 ∈  ℝ+
𝑚 ⟺ 𝑣𝑗 − 𝑢𝑗  ≥ 0,          𝑗 = 1, . . . , 𝑚,  

𝑢 < 𝑣 ⟺ 𝑣 − 𝑢 ∈  ℝ++
𝑚 ⟺ 𝑣𝑗 − 𝑢𝑗  > 0,          𝑗 = 1, . . . , 𝑚. 

Generally, in multiobjective problems, it is not possible to find a joint optimality solution for all 

objective functions. So, we need to provide a concept of optimality in the multiobjective framework 

such as Pareto optimality or efficiency, as follows. 

 

Definition 2.1. A point 𝑥∗  ∈  𝑆 is said to be a local Pareto optimum of (P) if and only if there exists 

a neighborhood 𝑉 of 𝑥∗ such that there does not exist 𝑥 ∈  𝑉 ∩  𝑆 satisfying 

𝐹(𝑥) ≤ 𝐹(𝑥 ∗ )      and      𝐹(𝑥) ≠ 𝐹(𝑥 ∗ ). (1) 

Definition 2.2. A point 𝑥∗  ∈  𝑆 is said to be a global Pareto optimum of (P) if and only if there does 

not exist 𝑥 ∈  𝑆 such that 

 

𝐹(𝑥) ≤ 𝐹(𝑥 ∗ )      and      𝐹(𝑥) ≠ 𝐹(𝑥 ∗ ). 
 

These definitions have been extensively used; e.g., see [5, 6]. Obviously, any globally Pareto 

optimal solution is locally Pareto optimal. The converse is true if 𝑆 is a convex set and F is 𝑅𝑚 −
𝑐𝑜𝑛𝑣𝑒𝑥 (i.e., if F is componentwise convex). We use the following defnition to define a descent type 

algorithm for constrained multiobjective optimization. 

 

Defnition 2.3. A point 𝑥∗  ∈  𝑆 is a critical or stationary point for (P) if 
 

ℜ(∇𝐹(𝑥∗)) ∩ (− ℝ++
𝑚 ) =  ∅   and  ℜ(∇𝑔(𝑥∗)) ∩ (− ℝ++

𝑙 ) =  ∅, 

   
where ℜ(𝐵) denotes the image or range space of 𝐵. 
 

Definition 2.4. A direction 𝑑 ∈  ℝ𝑛 is a descent direction for (P) at 𝑥 if 𝑑 satisfies the following 

conditions: 

𝐹𝑗
′ (𝑥; 𝑑) < 0,              𝑗 ∈ {1, . . . , 𝑚} (2) 

𝑔𝑖
′ (𝑥; 𝑑) ≤ 0,               𝑖 ∈  𝐿, (3) 

where the directional derivative at 𝑥 in the direction 𝑑 is defined as: 

𝐹𝑗
′(𝑥; 𝑑) =  lim

𝛼→0

𝐹𝑗(𝑥 + 𝛼𝑑) − 𝐹𝑗(𝑥)

𝛼
. (4) 

It follows from (4) that  𝐹𝑗
′(𝑥; 𝑑) =  ∇𝐹𝑗(𝑥)

𝑇𝑑, for 𝑗 ∈  {1,· · · ,𝑚}, and  𝑔𝑖
′(𝑥; 𝑑) = ∇𝑔𝑖(𝑥)

𝑇d,  for 

𝑖 ∈  𝐿. The descent direction d will reduce every objective function value and will not increase any 

constraint function value if it is used to update the design 𝑥. It is easy to see that (2) and (3) imply 

that 𝑑 ∈  ℝ𝑛 is a descent direction for (P) at 𝑥 if and only if 
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∇𝐹𝑗(𝑥)
𝑇𝑑 < 0,             ∀ 𝑗 ∈ {1, . . . , 𝑚}, 

∇𝑔𝑖(𝑥)
T𝑑 ≤ 0,                          ∀ 𝑖 ∈  𝐿. 

 

3. Algorithm 
 

Suppose that x is a feasible point for (P), that is, 𝑥 ∈  𝑆. Given sufficiently small 𝜖 > 0, we define 

𝑑𝜖(𝑥) as the optimal solution of 

 

𝑆𝑃𝜖(𝑥)

{
 
 

 
 
min  𝑡                                                                                  

s. t. ∇𝐹𝑗(𝑥)
𝑡𝑑 +

1

2
 𝑑𝑇 𝐵𝑗(𝑥)𝑑 ≤ 𝑡, 𝑗 ∈ {1, . . . , 𝑚}

∇𝑔𝑖(𝑥)
T𝑑 ≤ 𝑡,                                           𝑖 ∈  𝐿

∥ 𝑑 ∥≤ 1,               𝑡 ≤ −𝜖,                  𝑑 ∈ ℝ𝑛,

 

 

where 𝐵𝑗(𝑥) is the Hessian of 𝐹𝑗 at x or its approximation obtained by a quasi-Newton method. We 

use the approximation obtained by quasi-Newton methods, and impose ∥ 𝑑 ∥ ≤  1 to improve the 

performance as ∥ 𝑑 ∥ ≤  1 eliminates the possible case ∥ 𝑑 ∥→  ∞. 
 

Lemma 3.1. Let 𝑥 ∈  𝑆 be given. 

 (𝑖) If 𝜖 =  0, then the feasible set of 𝑆𝑃0(𝑥) is nonempty. 

 (𝑖𝑖) Let 𝐵𝑗  (𝑥), for 𝑗 ∈ {1,… ,𝑚}, be positive semidefinite. If the feasible set of 𝑆𝑃 𝜖(𝑥) is nonempty, 

then 𝑥 is noncritical and any feasible point 𝑑 𝜖(𝑥) is a descent direction for (P); otherwise, 𝑥 is a 

good estimate of the critical point for (P). 
 

Proof. (𝑖). If 𝜖 = 0, then 𝑑 = 0 is always a feasible point of 𝑆𝑃𝜖(𝑥). 
            (𝑖𝑖). Suppose 𝑑𝜖(𝑥) is a feasible point of 𝑆𝑃𝜖(𝑥). Then, for 𝑗 ∈ {1,· · · , 𝑚}, 
 

∇𝐹𝑗(𝑥)
𝑇𝑑𝜖(𝑥)  ≤ 𝑡 − 

1

2
 𝑑𝜖(𝑥)

𝑇 𝐵𝑗(𝑥)𝑑𝜖(𝑥)  < −𝜖 < 0, 

and 

∇𝑔𝑖(𝑥)
𝑇𝑑𝜖(𝑥) ≤ 𝑡 ≤  −𝜖 < 0,           ∀ 𝑖 ∈  𝐿. 

 

Hence, 𝑑𝜖(𝑥) is a descent direction for (P) and  
 

ℜ(∇𝐹(𝑥∗)) ∩ (− ℝ++
𝑚 ) ≠  ∅, 

 ℜ(∇𝑔(𝑥∗)) ∩ (− ℝ++
𝑙 ) ≠ ∅.   

Therefore, 𝑥 is noncritical. 

 

Now, we show that if the feasible set of 𝑆𝑃𝜖(𝑥) is empty for a given 𝜖, then there does not exist 

any descent direction at 𝑥. Suppose, by contradiction that �̅�  ∈  ℝ𝑛 is a descent direction at 𝑥 for (P). 
We have 

 

∇𝐹𝑗(𝑥)
𝑇�̅� < 0,              𝑗 ∈ {1, . . . , 𝑚} 

∇𝑔𝑖(𝑥)
T�̅� ≤ 0,                          𝑖 ∈  𝐿. 

Therefore, there exists 0 < �̅� < 1 such that for all 𝛼 ∈ (0, �̅�], 
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𝛼∇𝐹𝑗(𝑥)
𝑇�̅� +

1

2
 𝛼2�̅�𝑇𝐵𝑗(𝑥)�̅�  ≤ 0,           𝑗 ∈ {1, . . . , 𝑚}, 

𝛼∇𝑔𝑖(𝑥)
𝑇�̅� ≤ 0,                             𝑖 ∈ 𝐿. 

 

If we set 

−𝜖 = {𝛼  ∇𝐹𝑗(𝑥)
𝑡�̅� +

1

2
 𝛼2 �̅�𝑇 𝐵𝑗(𝑥)�̅�, 𝛼 ∇𝑔𝑖(𝑥)

𝑇𝑑 ̅ }. 

 

for any 𝛼 ∈ (0, �̅�], then 𝛼𝑑 ̅ is feasible for 𝑆𝑃𝜖(𝑥). Thus, we arrive at a contradiction which complete 

the proof.   

 

Lemma 3.2. Suppose that 𝑥𝑘 ∈  𝑆 and a sufficiently small 𝜖 > 0 is given. Let �̅�𝑘  be the solution of 

𝑆𝑃𝜖(𝑥) and 𝛼𝑘 ∈ (0, 1) be the step-length. Then, 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘�̅�𝑘 
 

is a feasible point. 

 

Proof. Since 𝑥𝑘 ∈  𝑆, it follow that 

 

𝑔𝑖(𝑥𝑘) ≤ 0,              ∀𝑖 ∈  𝐿. 
 

Since �̅�𝑘  is the solution of 𝑆𝑃𝜖(𝑥), then it is feasible and 

 

∇𝑔𝑖(𝑥𝑘)
𝑇�̅�𝑘 ≤ 𝑡 < 0,               ∀𝑖 ∈  𝐿. 

 

By using Taylor series, we obtain: 

 

𝑔𝑖(𝑥𝑘+1) =  𝑔𝑖(𝑥𝑘 + 𝛼𝑘�̅�𝑘) =  𝑔𝑖(𝑥𝑘) + 𝛼𝑘  ∇𝑔𝑖(𝑥𝑘)
𝑇�̅�𝑘 + 𝛼𝑘 ∥ �̅�𝑘 ∥  𝜙(𝑥𝑘+1, 𝑥𝑘), 

 

where lim
∥𝑥𝑘+1−𝑥𝑘 ∥→0 

𝜙(𝑥𝑘+1, 𝑥𝑘) = 0.  

Hence, 

  
𝑔𝑖(𝑥𝑘+1) − 𝑔𝑖(𝑥𝑘) 

𝛼𝑘
=  ∇𝑔𝑖(𝑥)

𝑇�̅�𝑘⏟      
<0

+ ∥ �̅�𝑘 ∥  𝜙(𝑥𝑘+1, 𝑥𝑘)  ≤ 0  . 

 

Therefore, 𝑥𝑘+1 ∈ 𝑆 and the proof is complete.                                                                       

 

Based on the above results, we now state the following algorithm. 

 

Algorithm 1. A quasi-Newton Algorithm. 

 

Step 0: Let 𝑥0 ∈  𝑆 be the initial point. Let a sufficiently small positive scalar  𝜖 >  0 and a 

positive semidefinte initial matrix 𝐵𝑗(𝑥0), for 𝑗 ∈  {1,· · · ,𝑚}, be given. Set 𝑘 =  0.   

Step 1: Construct 𝑆𝑃𝜖(𝑥). If it is infeasible then stop, else solve 𝑆𝑃𝜖(𝑥𝑘) and compute 𝑑𝜖(𝑥𝑘). 
Step 2: Choose the step size 𝛼𝑘 by Armijo-like rule such that 𝑥𝑘+1  =  𝑥𝑘 + 𝛼𝑘𝑑𝜖(𝑥𝑘)  ∈  𝑆. 
Step 3: Update 𝐵𝑗(𝑥𝑘+1) with the BFGS method for 𝑗 ∈  {1,· · · , 𝑚}. Set 𝑘 =  𝑘 +  1. Go to Step 

1. 
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Remarks: 

 

(1) In Step1, if 𝑥𝑘   is noncritical, then by solving 𝑆𝑃𝜖(𝑥𝑘), we can find 𝑑𝜖(𝑥𝑘) for (P) at 𝑥𝑘  such that 

 

∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝜖(𝑥𝑘) < 0,              𝑗 ∈ {1, . . . , 𝑚}, 

∇𝑔𝑖(𝑥𝑘)
𝑇𝑑𝜖(𝑥𝑘) ≤ 0,                            𝑖 ∈  𝐿. 

 

Hence, there exists �̅�𝑗
1  >  0 such that 

 

𝐹𝑗(𝑥𝑘 +  𝛼𝑑𝜖(𝑥𝑘)) <  𝐹𝑗(𝑥𝑘),                    ∀ 𝛼 ∈ (0 , �̅�𝑗
1),     

 

and there exists �̅�𝑖
2  >  0  such that 

 

𝑔𝑖(𝑥𝑘 +  𝛼𝑑𝜖(𝑥𝑘)) <  𝑔𝑖(𝑥𝑘),                    ∀ 𝛼 ∈ (0 , �̅�𝑖
2) .  

 

Now, let �̅�1 = min
𝑗=1,...,𝑚 

{�̅�𝑗
1}, and �̅�2 = min

𝑖 ∈𝐿 
{�̅�𝑖
2} and 

 

𝛼 ̅  ≔ min{�̅�1, �̅�2}. 
 

Therefore 𝛼 can be chosen in Step 2. 

 

(2) In Step 3, 𝐵𝑗(𝑥𝑘+1) needs to be updated. We use the BFGS update formula to update 𝐵𝑗(𝑥𝑘+1) 

similar to the one given in [4]. The quasi-Newton matrix 𝐵𝑗(𝑥𝑘+1), for 𝑗 ∈  {1,· · · , 𝑚}, is updated as 

follows: 

 𝐵𝑗(𝑥𝑘+1) = 𝐵𝑗(𝑥𝑘) − 
𝐵𝑗(𝑥𝑘)𝑠𝑘 𝑠𝑘

𝑇 𝐵𝑗(𝑥𝑘)  

𝑠𝑘
𝑇 𝐵𝑗(𝑥𝑘)𝑠𝑘  

+ 
𝑟𝑗𝑘 𝑟𝑗𝑘

𝑇

𝑠𝑘
𝑇 𝑟𝑗𝑘 

, 

 

where 𝑟𝑗𝑘 = 𝜃𝑗𝑘 𝑦𝑗𝑘 + (1 − 𝜃𝑗𝑘)𝐵𝑗(𝑥𝑘)𝑠𝑘, 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 , 𝑦𝑗𝑘 = ∇𝐹𝑗(𝑥𝑘+1) − ∇𝐹𝑗(𝑥𝑘) +

(𝐴(𝑥𝑘+1) − 𝐴(𝑥𝑘))
𝑇
𝜆𝑘+1 and  

 

𝜃𝑗𝑘 = {

1,                                                     if   𝑠𝑘
𝑇 𝑦𝑗𝑘 ≥ 0.2  𝑠𝑘

𝑇 𝐵𝑗(𝑥𝑘)𝑠𝑘

0.8𝑠𝑘
𝑇 𝐵𝑗(𝑥𝑘)𝑠𝑘   

𝑠𝑘
𝑇  𝐵𝑗(𝑥𝑘)𝑠𝑘 − 𝑠𝑘

𝑇 𝑦𝑗𝑘  
,             if   𝑠𝑘

𝑇 𝑦𝑗𝑘 < 0.2  𝑠𝑘
𝑇 𝐵𝑗(𝑥𝑘)𝑠𝑘,

 

 

𝐴(𝑥) = [∇𝑔(𝑥)𝑇]𝑇 is the Jacobian of the constraints. The approximate Hessian matrix 𝐵𝑘  generated 

by this formula is positive semidefinite. 

 

4.  Global Convergence 
 

In this section, we prove the global convergence of Algorithm 1. First, we make an assumption. 

Note that here the assumptions used in [5] are reduced: 

 

       Assumption (A): Let the level set 𝐿 0 = {𝑥 ∈  𝑆 | 𝐹(𝑥)  ≤  𝐹(𝑥0)} be bounded. 
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Assumption (A) has been used in proving global convergence of Newton type methods in solving 

standard scalar optimization problems and also in proving global convergence for solving 

multiobjective optimization problems.  

 

Now, we state our main theorem result. Define 

 

𝜋(𝑥) =  sup
∥𝑑∥ ≤1 

min
𝑗 ∈{1,..,𝑚}
𝑖 ∈𝐿

{− ∇𝐹𝑗(𝑥)
𝑇𝑑 , − ∇𝑔𝑖(𝑥 )

𝑇𝑑 } . 

Lemma 4.1. A point 𝑥∗ is critical for (P) if and only if 𝜋(𝑥∗) = 0. 

 

Proof. Suppose 𝑥∗ is a critical point for (P). By Definition 2.3 we obtain: 

ℜ(∇𝐹(𝑥∗)) ∩ (− ℝ++
𝑚 ) =  ∅      and    ℜ(∇𝑔(𝑥∗)) ∩ (− ℝ++

𝑙 ) = ∅. 
 

It follows that the following system 

 

∇𝐹𝑗(𝑥
∗)𝑇𝑑 < 0,              𝑗 ∈ {1, . . . , 𝑚} 

∇𝑔𝑖(𝑥
∗)𝑇𝑑 < 0,                           𝑖 ∈  𝐿. 

 

has no solution. Hence, 

 min
𝑗 ∈{1,..,𝑚}
𝑖 ∈𝐿

{− ∇𝐹𝑗(𝑥)
𝑇𝑑 , − ∇𝑔𝑖(𝑥 )

𝑇𝑑 } ≤ 0. 

Therefore, 

sup
 

min
𝑗 ∈{1,..,𝑚}
𝑖 ∈𝐿

{− ∇𝐹𝑗(𝑥)
𝑇𝑑 , − ∇𝑔𝑖(𝑥 )

𝑇𝑑 } = 0, 

and  

𝜋(𝑥∗) = 0. 

It is easy to verify that 𝜋(𝑥∗) = 0 implies that 𝑥∗ is a critical point.  

Theorem 4.2. Suppose that Assumption (A) holds, and for sufficiently large 𝑘, the step-length 𝛼𝑘, 
1

3
≤ 𝛼𝑘 ≤

1

2
, is accepted. Then, every limit point of the sequence {𝑥𝑘} is critical for (P). 

 

Proof. By Lemma 4.1, it is sufficient to show that every limit point is a solution of 𝜋(. )  =  0. 
 

Now, suppose that 𝑥∗ is a limit point of {𝑥𝑘}. Without loss of generality, we may assume that the 

subsequence {𝑥𝑘}𝑘∈𝜅 converges to 𝑥∗. Let 𝑑𝑘 be a solution of 𝑆𝑃𝜖(𝑥𝑘). We have 

𝐹𝑗(𝑥𝑘+1) − 𝐹𝑗(𝑥𝑘) =  𝛼𝑘  ∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘 +

1

2
 𝛼𝑘

2 𝑑𝑘
𝑇 𝐵𝑗(𝑥)𝑑𝑘 +  𝑂 (∥ 𝑑𝑘 ∥

2). (5) 

Then, 

 ∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘 +

1

2
𝑑𝑘

𝑇 𝐵𝑗(𝑥)𝑑𝑘 ≤ 𝑡 ≤ −𝜖 < 0. 
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Therefore, 

1

2
𝑑𝑘

𝑇 𝐵𝑗(𝑥)𝑑𝑘 < −∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘 . (6) 

From (5), we deduce  

− 𝛼𝑘  ∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘 = −𝐹𝑗(𝑥𝑘+1) + 𝐹𝑗(𝑥𝑘) +

1

2
𝛼𝑘

2 𝑑𝑘
𝑇 𝐵𝑗(𝑥)𝑑𝑘 +  𝑂 (∥ 𝑑𝑘 ∥

2). 

From (6), we get 

− 𝛼𝑘  ∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘 ≤ −𝐹𝑗(𝑥𝑘+1) + 𝐹𝑗(𝑥𝑘) − 𝛼𝑘

2 ∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘. 

Hence,  

𝛼𝑘
2 ∇𝐹𝑗(𝑥𝑘)

𝑇𝑑𝑘 − 𝛼𝑘 ∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘 ≤ −𝐹𝑗(𝑥𝑘+1) + 𝐹𝑗(𝑥𝑘) 

 (𝛼𝑘 − 𝛼𝑘
2 )(−∇𝐹𝑗(𝑥𝑘)

𝑇𝑑𝑘) ≤ −𝐹𝑗(𝑥𝑘+1) + 𝐹𝑗(𝑥𝑘) 

(𝛼𝑘 − 𝛼𝑘
2) min
𝑗 ∈{1,..,𝑚}

(−𝛻𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘) ≤ min

𝑗 ∈{1,..,𝑚}
(𝐹𝑗(𝑥𝑘) − 𝐹𝑗(𝑥𝑘+1)) 

We know 

 (𝛼𝑘 − 𝛼𝑘
2)  min

𝑗 ∈{1,..,𝑚}
𝑖 ∈𝐿

 ( − ∇𝐹𝑗(𝑥𝑘)
𝑇𝑑𝑘, − ∇𝑔𝑖(𝑥 )

𝑇𝑑) ≤ (𝛼𝑘 − 𝛼𝑘
2 ) min

𝑗 ∈{1,..,𝑚}
 (−∇𝐹𝑗(𝑥𝑘)

𝑇𝑑𝑘). 

So, we obtain: 

(𝛼𝑘 − 𝛼𝑘
2) 𝜋(𝑥𝑘)  ≤   max

𝑗 ∈{1,..,𝑚}
(𝐹𝑗(𝑥𝑘) − 𝐹𝑗(𝑥𝑘+1)) . 

Hence, 

∑(𝛼𝑘 − 𝛼𝑘
2)𝜋(𝑥𝑘)  

𝑘 ≥𝑁
𝑘∈𝜅

 ≤ ∑ max
𝑗 ∈{1,..,𝑚}

(𝐹𝑗(𝑥𝑘) − 𝐹𝑗(𝑥𝑘+1))
𝑘 ≥𝑁
𝑘∈𝜅

 

(7) 

 ≤  max
𝑗 ∈{1,..,𝑚}

(𝐹𝑗(𝑥0) − 𝐹𝑗( 𝑥
∗)) =  𝑀. 

Now, we prove 𝜋( 𝑥∗)  =  0, by contradiction. Assume that 𝜋( 𝑥∗)  >  0. It follows that there exist 

𝜇 >  0 and 𝜖 0 >  0 such that 

 

∀ 0 < 𝜖 < 𝜖 0        ∥ 𝑥𝑘 −  𝑥
∗ ∥≤ 𝜖      s.t.    𝜋(𝑥𝑘) ≥ 𝜇 >  0 . 

 

On the other hand, from 𝛼𝑘 ∈ (0, 1), it follows 

 

0 < 𝛼𝑘
2 < 𝛼𝑘  . 

 

Hence, 

(𝛼𝑘 − 𝛼𝑘
2)  > 0 . 
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Then, from the assumption, there exists �̅� and the step-length 
1

3
 ≤  𝛼𝑘  ≤  

1

2
 is accepted, for any 𝑘 ≥

�̅� and 𝑘 ∈ 𝜅. So, there exists 𝛿 > 0 such that (𝛼𝑘 − 𝛼𝑘
2)  ≥ 𝛿 > 0 and we have 

 

𝜋(𝑥𝑘) (𝛼𝑘 − 𝛼𝑘
2)  ≥  𝜇 𝛿. 

 

This means 
  

∑(𝛼𝑘 − 𝛼𝑘
2) 𝜋(𝑥𝑘)  ≤  ∑ 𝜇 𝛿

𝑘 ≥𝑁
𝑘∈𝜅

 
𝑘 ≥𝑁
𝑘∈𝜅

=  ∞, 

which contradicts (7). Therefore, 𝜋(𝑥∗)  =  0 and 𝑥∗ is a critical point.    
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