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Here, we consider single vendor-buyer model with multi-product and multi-customer and
multi-facility location-production-distribution problem. It is assumed that the players of the
supply chain are coordinated by sharing information. Vendor manufactures produce
different products at different plants with limited capacities and then distribute the products
to the consumers according to deterministic demands. A mixed integer linear fractional
programming (MILFP) model is formulated and a solution approach for MILFP is discussed.
Product distribution and allocation of different customers along with sensitivity of the key
parameters and performance of the model are discussed through a numerical example. The
results illustrate that profit achieved by the MILFP model is slightly higher than mixed
integer programming (MIP) model. It is observed that increase in the opening cost decreases
the profit obtained by both MILFP and MIP models. If the opening cost of a location
decreases or increases, the demand and capacity of the location changes accordingly. The
opening cost dramatically changes the demand rather than the capacity of the product.
Finally, a conclusion is drawn in favor of the MILFP model as a relevant approach in a
logistic model searching for the optimum solution.
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1. Introduction

Supply Chain Management (SCM) as well as coordination among the members have undergone
rapid developments in theory and practice and are considered to be key issues at present. In the
literature, the most common definition of a supply chain is a system of suppliers, manufacturers,
distributors, retailers, and customers where materials flow downstream from suppliers to customers,
and information flows in both directions. SCM is primarily concerned with the efficient integration
of suppliers, factories, warehouses and stores so that the merchandise can be produced in the right
amounts, and distributed to the right locations and at the right time, as to minimize the total system
cost subject to satisfying service requirements.

In addition, in the global competition market, the importance of SCM is increasing daily.
Maximizing the profit and minimizing the cost are the main factors which play important roles in the
supply chain. Furthermore, it is important to make the model optimal for both consumers and the
manufacturer. The design of an optimal distribution network in supply chain has become extensively
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a contemporary enterprise. An efficient supply chain system operates under a strategy to minimize
costs by integrating the different functions inside the system and by meeting customer demands in
time.

There is an extensive research on SCM dealing with different aspects of the subject. Numerous
models in the literature, conceptual as well as quantitative, refer to planning and quantitative aspects
of the different business functions of location, production, inventory and transportation. Research has
also been done to consider combinations of these areas for optimization. Proposed models include a
combination of two or more of these areas for integration. Facility location problems typically being
used to design distribution networks, involve determining the sites to install resources, as well as the
assignment of potential consumers to resources. Drezner and Hamacher et al. [6] briefly described
FLP the location of manufacturing plants, the assignment of warehouses to these plants and finally
the assignment of retailers to each warehouse. Other than geographical boundaries, Hung and Kubiak
et al. [8] described the location allocation with balancing requirements among the distribution centers
(DC). They formulated a bi-level programming model to minimize the total cost of the distribution
network and balanced the work load to each DC for the delivery of products for its customer, and
finally the model was solved by a genetic algorithm.

Azad and Ameli et al. [1] modeled a two-echelon distribution network considering customer’s
responsiveness and a hybrid heuristic combining Tabu search and Simulated Annealing (SA) sharing
the same Tabu list developed for solving the problem. In addition, Jokar and Seifbarghy [9] explained
a two-echelon inventory system, where an independent Poisson demand with constant transportation
and lead-time were considered. Finally, an approximate cost function was developed to find the
optimal reorder points for given batch sizes in all installations and accuracy was assessed by
simulation. Moreover, Nagurney [10] derived a relationship between supply chain network
equilibrium and transportation network equilibrium with elastic demands.

In recent years, fractional programming with complex rather than real variables involving analytic
functions in the objective and the constraints has found renewed interest. In various applications of
nonlinear programming, a ratio of two functions is to be maximized or minimized. In other
applications, the objective function involves more than one such ratio. Ratio optimization is
commonly called fractional programming. The study of fractional programs with only one ratio has
largely dominated the literature in this field until about 1980. Ratios of convex and/or concave
functions as well as compositions of such ratios are not convex, in general, even in the case of linear
functions. However, they are often generalized convex in some sense, and fractional programming
has benefited from advances in generalized convexity and vice versa.

Sabri Ehap and Benita et al. [12] presented a multi-objective multi-product multi-echelon
stochastic model that simultaneously addressed strategic and operational planning while taking the
uncertainty in demand, and production and supply lead-times into consideration. The authors point
out some gaps in the SC literature — most stochastic models presented considered only up to two
echelons. Conversely, larger models were mostly deterministic in nature. Moreover, these
deterministic models considered only profitability and ignored other performance measures. Another
observation is that strategic and operational levels were not considered simultaneously. The main
model, presented here, consists of a mixed integer linear programming (MILP) sub-model for the
strategic level to determine the optimal number and locations of manufacturing facilities and DCs,
and assignment of service regions to DCs. The stochastic operational level sub-model is an extension
of the one given in Cohen and Lee et al. [3], considering simultaneous optimization of non-linear
production, distribution and transportation costs. An algorithm is presented to integrate these two sub-
models to achieve an overall supply chain performance vector. The approach presented here mainly
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emphasizes the integration of strategic and operational level decisions while considering demand
uncertainty.

Uddin and Sano [13] developed an MIP based vendor-buyer multiple products-consumers, facility
selection problem with a price-sensitive linear demand function. They assumed that a coordinating
mechanism among the members of supply chain could achieve the optimal solution and the optimal
location for the warehouse. Consequently, Uddin and Sano [14] explained an MIP based supply chain
with a coordination mechanism consisting of a single vendor and buyer. Instead of a price sensitive
linear or deterministic demand function, a price-sensitive non-linear demand function was introduced.
They assumed that the production and shipping functions of the vendor were continuously
harmonized and occurred at the same rate. These models showed that, using a coordinating
mechanism, individual profit as well as coordinated profit could be increased and consumer’s
purchasing price could be reduced. Gaur and Arora [7] presented a technique for solving a special
class of non-linear fractional programs where the both numerator and denominator were separable
functions and used the concept of piecewise linear approximation. The problem was then solved by
using the Charnes and Cooper [2] transformation method.

On the other hand, Dhaenens-Flipo and Finke [4] considered an integrated production-distribution
problem in multi-facility, multi-product and multi-period environment. They formulated a network
flow problem with an objective to match products with production lines to minimize the related costs
generated randomly and solved using the CPLEX software. Moreover, an MIP model for a
production, transportation, and distribution problem was developed to represent a multi-product tri-
echelon capacitated plant and warehouse location problem by Pirkul and Jayaraman [11]. They
minimized the sum of fixed costs of operating the plants and warehouses, and the variable costs of
transporting multiple products from the plants to the warehouses and finally to the customers. In
addition, a solution procedure was provided based on the Lagrangian relaxation (LR) to find the lower
bound, followed by a heurwastic to solve the problem. There are copious researches on LFP to find
the best solution approach. Among these, Charnes and Cooper [2] described a transformation
technique to transform LFP into an equivalent linear program. The method is quite simple but needs
to solve two transformed model to obtain the optimal solution.

Considering the importance of MILFP and its application in SCM, here, a vendor-buyer multi-
product, multi-facility, and multi-customer location production problem is formulated as a MILFP
which maximizes the ratio of return on investment, and at the same time optimizes location,
transportation cost, and the investment. It is assumed that the vendor and buyer of this supply chain
are coordinated by sharing information. Furthermore, an MIP model is derived from the same model
to determine the sites for vendor and the best allocation for both the buyer and the vendor. Using the
suitable transformation of Charnes and Cooper [2], the formulated MILFP is solved by AMPL.
Finally, a numerical example along with sensitivity of the opening cost is considered to estimate the
performance of the models.

The remainder of our work is organized as follows. In Section 2, a mathematical formulation of
the model as MILFP and MIP are presented. The section has four subsections, which describe the
concept of mixed integer linear fractional programming problem, notations, assumption, prerequisites
and finally the MILFP and MIP models. In Section 3, a numerical example is worked through. In
Section 4, the obtained results are discussed. Finally, in Section 5, our conclusions and contributions
are summarized.
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2. Model Formulation

In this section, we formulate an integrated model that explores the tradeoff among location,
transportation cost and distribution considering a multi-product, multi-facility, and multi-customer
location-production-distribution system. It is assumed that a logistics center seeks to determine an
integrated plan of a set of L locations of the vendor with production capability of m products and n
buyer’s destinations as shown in Figure 1. In Figure 1, solid arrows represent the commodity flow
and dotted arrows stand for the information flow. Each source has an available supply of commodity
to distribute in various destinations, and each destination has a forecast demand of commodity to be
received by various sources. The coordination contains a set of manufacturing facilities with limited
production capacities situated within a geographical area. Each of these facilities can produce one or
all of the products in the company’s portfolio. The buyer demands for multiple products are to be
satisfied from this set of manufacturing facilities. Therefore, the production capacities of these
facilities effectively represent the current and potential capacities. Our work focuses on developing
MILFP and MIP programs to optimize the capacitated facility location, buyer allocation decisions
and production quantities at these locations and satisfy customer demands.
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Figure 1. Distribution pattern of a coordinated supply chain
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2.1. Mixed integer linear fractional program

Recently, various optimization problems, involving optimization of the ratio of functions, such as
time/cost, volume/cost, profit/cost, loss/cost or other quantities measuring the efficiency of the
system, have been of wide interest in non-linear programming.

A fractional programming problem is a mathematical programming problem in which the objective
is the ratio of two functions and needs to be optimized with respect a set of constraints. If the
numerator and denominator of the objective function and the constraint set are all linear, then the
fractional programming problem is called a linear fractional programming (LFP) problem.
Mathematically, the LFP problem can be represented as:
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CTx
Optimize (Minimize or Maximize) Z = T—+a
D x+p
S.t.
Xe X ={X€RnZAX=B,XZO},
where

x is the set of decision variables (n x 1)

A is the constraint matrix (m x n)

C and D are the contribution coefficient vectors (n x 1)

B is the constant or resource vector (m x 1)

a and B are scalars, which shows some constant profit and cost, respectively.
n and m are the number of variables and constraints, respectively.

A mixed integer programming (MIP) problem arises when some variables in the model are real
valued (can take on fractional values) and some variables are integer valued. When the objective
function and the constraint set are all linear, then we have an MIP problem. On the other hand, if the
problem is of an LFP type, then it is called a mixed integer linear fractional programming (MILFP)
problem.

Charnes and Coorper [2] Transformation Technique:

Numerous methods such as iterative, parametric, genetic and fuzzy are available in the literature
to solve an LFP problem. In our work, we use the Charnes and Coorper transformation technique.
Charnes and Cooper [2] considered the LFP problem as defined above and assumed that

(1) the feasible region X is non—empty and bounded,

(2) C"x+a and DX+ do not vanish simultaneously at x.

Introducing the variable transformationy = tx, wheret > 0, Charnes and Cooper [2] proved that the
LFP problem is reduced to either one of the following two equivalent linear programs:

(EQP): Maximize Z, =C'"y+at
s.t.
Ay+Bt=0

D'y+pt=1
y>0,t>0,

and

(EQN): Maximize Z, =—C'y—at
s.t.
Ay-Bt=0

D'y+p4t=-1
y>0,t>0.


http://iors.ir/journal/article-1-359-en.html

[ Downloaded from iors.ir on 2026-01-29 ]

Comparison and Supply Chain Optimization for Vendor-Buyer Coordination System 69

_________________________________________________________

| < S
Solve EQP |« > Solve EQN ]

Unbounded Unboun

Optimalit

timalit
Optima Vv test

Vv test

Solution is

) Unbounded Optimal
Inconsistent

- e e e e e e e —

Inconsistent

Optimal

. e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = =

Figure 2. Flowchart for the Charnes and Cooper algorithm

The equivalent positive (EQP) and equivalent negative (EQN) problems are solved by the well
known Dantzig and George [5] simplex method. If one of the problems EQP and EQN has an optimal
solution (y*, t*) and the other is inconsistent, then the LFP problem has an optimal solution, which
can be obtained simply by x* = y*/t*. If any one of the two problems is unbounded, then the LFP
problem is unbounded. So, if one problem is found unbounded, then one can avoid solving the other
as described in Figure 2.

2.2. Notations and assumptions

Here, we describe the notations, assumptions, parameters declaration and decision variables for
the MILFP based vendor-buyer coordination model. The prerequisite terms require to formulate the
model are also briefly explained. The notations are defined as shown in Table 1.

Assumptions

(1) Each manufacturing facility is able to produce all products.

(2) The selling price for a product may vary from buyer to buyer depending on the order size, discount,
historical relationships, etc.

(3) The company and buyer agree beforehand on the inventory distribution pattern and the shipping
plans are formulated accordingly.
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Table 1. Notations for the multi-product multi-customer and multi-facility vendor-buyer system

TNUEX and Parameters

i :index for product,i =1, ...,m.

j :index for buyer,j =1, ...,n.

[ :index for location of vendor, [ =1, ..., L.

cij : the price of ith product to jth buyer ($/unit).

a; : the fixed cost for opening the vendor at location [ ($).

B any positive scalar.

c} : the price of a unit of raw material for ith product at Ith vendor ($/unit).
al : the amount of raw material needed to produce ith product at ith vendor ($/unit).
t! : unit transportation cost of raw material for ith product at [th vendor ($/unit).
p;; - the production cost of ith product for jth buyer at ith vendor ($/unit).
( : unit holding cost of ith product from Ith vendor for jth buyer for a given unit of time
Y ($/unit-time).
: the shipment cost of ith product from [th vendor to jth buyer ($/unit).
d;; : the total demand of ith product by jth buyer (unit).
w} : the capacity for ith product at [th vendor (unit).
t! : the required time for delivery of products from Ith vendor to jth buyer (unit).
t:! : the time within which product should be delivered from Ith vendor to jth buyer (unit).
p : penalty cost for delay in delivery for one unit of demand in one unit of time

($/unit).

cj*l : the transportation cost per unit of product from [th vendor to jth buyer ($/unit).

A binary variable:

PN
1if t; >t

0, otherwise

where t} is the required time for delivery of product from [th vendor to jth buyer and tjl is the time
within which product should be delivered from [th vendor to jth buyer.

Decision variables:

, _J,if customer jisassigned to manufacturer |,
Y] _{O,otherwise
" :{1, if location | is used,
0, otherwise

Qf}: the production quantity of product i for buyer j at [th vendor (in units).

2.3. The MILFP model

Here, we formulate the MILFP problem.

Objective function:
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.2
Maximize Z 1)
where
Zl = ; j:ngileU
L L m o L m | | L nm I | L n m I |
22 :leal +ZZciai +ZZti a +Z ZZQIJ pij +Z ZZQU. ccij +
1=1 1=1i=1 1=1i=1 1=1j=1li=1 1=1j=1li=1
L nm m L n -
YY>aQ n2+Y> > p d z (t' t by 9] +ZZt' C,
I=1j=1i=1 ) i=11=j=1 I=1j=1
S.t.
L m
229> Zdu’ V] @
L n
;2%>Z%N' 3)
= J_
L
;QIIJ Zdij’ Vi, j 4
Zn:Qi'j <w!, Vi, (5)
=1
lelqu <BX Vi (6)
j=1i=
L, )
Dy =1Yj (7)
1=1
Qi € dy. Wi cci, i pi tt t p.ci'al e >0, .y are binary Vi j,| (8)

The objective function (1) estimates the ratio of return and investment. Constraints (2) ensure that
the total amount of products being manufactured at all plants for a particular buyer is equal to the
total demand of that buyer. Similarly, constraints (3) guarantee that the total amount of a particular
product being manufactured at all plants for all buyers is equal to the total demand of that product
from all buyers. It is important to note here that the first two constraints are stated separately to show
better accountability of the total demands from all buyers and for all products respectively.
Constraints (4) assure that the total amount of a specific product being manufactured for a particular
buyer at all plants is equal to the demand of the specific product from that buyer. Constraints (5)
present the capacity constraints. Constraints (6) ensure that a plant is located if and only if there is a
demand for any product. Constraints (7) show that each buyer is assigned to exactly one vendor. The
constraints (8) are the nonnegative constraints.
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2.4. The MIP model

Here, we formulate the equivalent mixed integer programming problem to estimate the total profit
as well as optimal allocation and distribution. The objective function is the difference between return
and investment.

Obijective function: Maximize Z; — Z,
s.t.
Constraints (2)-(8) hold.

3. Solution Approach

In order to solve the formulated MILFP problem, we need to apply a suitable transformation. We
apply the Charnes and Cooper transformation to solve the formulated MILFP problem as described
in subsection 2.1.

For any non-negative r, let the new decision be redefined as follows:

z, =rx,for r>0and | =1,...L
z =ryj,for r>0and j=1..,n, I=1,.L
zy =rQj,forr>0andi=1..,m, j=1..,n,1=1.L

Since r >0, y} and x; are binary, z; and z} are either zero or r. Also, since ij IS nonnegative, the

zilj are also nonnegative. Therefore, the MILFP problem can be reformulated as two equivalent linear
problems as follows:

m n L
(EQP): Maximize » > > zic;
i1 jL |1

s.t.

;;zi’j >r Zzlldij, Y j 9)
L

Yz zrYd,,vi (10

j=1 j=1
L
Dz >rdy, Vi, (11)
1=1

zi <rw, Vil (12)
j=1

Dz <Mz, VI (13)
j=1 i=1
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L
>zt =rvj (14)
1=1
L L m | L m L n
Yaa+2dr dd +3 > da +zzzz” pu+zzzz” el
1=1 1=1i=1 i 1=1li=1 1=1j=1i=1 1=1j=1i=1
(15)
L nm | | m L n | n | |
+ZZZzij hij/2+z . p do z (t] —t h g +22rt ¢; =
I=1j=1li=1 i=1l=j=1 1=1j=1
m n L
(EQN) Maximize Z Z Z.C
i=1 j=1 I=1
s.t.
L m m
22,221 24y, V] (16)
1=l i= i=
L n n
Y>> er”,w (17)
=1 j=1 j=1
L
>z =-rdy, Vi, j (18)
1=1
Zn:zi'j <-rw, Vil (19)
j=1
Zn:izi'j <-Mz, VI (20)
j=1 i=1
L
D 2} =1,V (21)
1=1
L L m L m | L nm
Zzlal+ZZr 4cg+22r ciai+zzz ZZZZ cc
1=1 I=1li=1 1=1li=1 1=1j=1i=1 I=1j=1li=
(22)

L n m | | m L n | | | |
+ZZZZU hij/2+ZZZp d;z; (] —t h g +22rt ¢; =-1
I=1j=1li=1 i=11=j=1 I=1j=1
zi € o Oy, wiccq, hapi bt peal ez, 2 20, Vi i, . (23)

In order to find the solution of the formulated MILFP problem, first the EQP and EQN models are
solved by employing AMPL of Bonmin and Couenne. A program was written according to the
flowchart illustrated in Figure 2 for AMPL. The program consists of two main parts; the main module
contains the actual program and the data file containing data of the various parameters. The
formulated MIP model is solved by a branch and bound algorithm deploying AMPL with CPLEX
accordingly. Eventually, the solution of the EQN turned to be inconsistent, whereas the solution of
the EQP model was optimal. Therefore, by the Charnes and Cooper algorithm it is concluded that the
optimal solution of the MILFP problem is obtained by the optimal solution of the EQP problem. The
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program was executed on a Pentium IV personal machine with a 1.73 GHz processor and 2.0 GB
RAM.

4. Computational Analysis

In order to analyze the effectiveness of the proposed models, a numerical example was worked
through. It was assumed that a vendor had 5 locations, with 3 productions for 2 buyers. The
deterministic demand of unit products for buyers are (1700, 3500, 2200) and (2300, 1500, 2800),
selling per unit prices (in $) of products for buyers are (40, 56, 82) and (42, 58, 75), penalty cost of
per unit (in $) products for buyers are (0.50, 0.60, 0.60) and (0.25, 0.40, 0.30), respectively. Table 2
describes additional information regarding the parameters of the MILFP and MIP models.

Table 2. Parameters of the MILFP model

Parameters Locations of the vendor
1 2 3 4 5

Raw materials (units) (130,120,130) | (120,180,200) | (150,200,170) | (100,100,100) | (100,100,100)
Trans. cost (input) ($) | (0.3,0.2,0.3) [(0.2,0.25,0.2) | (0.5,0.45,0.6) (0.1,0.1,0.1) |(0.1,0.1,0.1)
Production cost ($) (10,17,15) (12,12,18) (14,15,16) (20,25,30) (5,10,15)
Holding cost ($) (1,2,3) (3.2.2) (3.4.3) (5,4.5) (231)
Shipping cost ($) (11,23,36) (25,27,32) (13,26,35) (25,27,32) (10,15,20)
Capacity (inhundreds) | 131513y | (121820) | (152017) | (10.1010) | (10,10,10)
Travel time units 5,7 (9,10) (12,8) (15,20) (10,10)
Required delivery time (5,7 (10,10) (12,8) (15,20) (10,10)
g’rz';gatory delivery 5.7) (9,10) (12,8) (10,10) (15,20)
Trans. cost ($/unit time) (0.5,0.7) (0.6,0.4) (0.6,0.5) (1.0,1.2) (0.5,0.5)

In order to observe the effect of the key parameters, six sets of the vendor’s opening costs ($) with
same average value such as (50000,30000, 40000,60000, 20000),(40000, 40000, 40000, 40000,
40000), (60000, 30000, 40000, 50000, 20000), (50000, 60000, 40000, 30000, 20000), (50000, 30000,
60000, 40000, 20000) and (50000, 30000, 40000, 20000, 60000) were considered, while all other
remaining parameters were kept unchanged as shown in Table 2. Significant findings regarding the
numerical example of the proposed MILFP and MIP models as well as the allocations and the
distributions of different products for the two buyers are briefly summarized in tables 3 and 4. The
values Return on Investment (RI in %) in tables 3 and 4 represent the gap in percentage between the
total return on investment incurred by the MILFP and MIP model, that is,

RI(%):|RI 1-RI 2|x@,
RI 2

where RI 1 and RI 2 are the ratio of return on investment obtained by the MILFP and MIP models,

respectively. Finally, in order to estimate effect of the sensitivity of the opening cost parameter, we

employed sensitivity on the opening cost ($) for location 3. It was assumed that the opening costs of

the vendor located at location 3 were 50, 100, 1000, 2000, 3000, 4000, 5000 and 10000, while all

other remaining parameters were kept unchanged.
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Figures 3 and 4 describe the optimal allocation of different products for the first case and for both
buyers. From the distribution pattern of different products, it is clear that the MILFP model provides
the optimal locations of the vendor for buyer 1 as 1, 2 and 5, whereas the MIP provides the optimal
locations of the vendor for buyer 1 as 1, 2, 3 and 5. The optimal locations achieved by the MILFP
model of the vendor for buyer 2 are 1, 2, 3 and 5. Similarly, the MIP model provides the optimal
locations of the vendor for buyer 2 as 1, 2, 3 and 5. Therefore, from the distribution of different
products by the MILFP and MIP models, it is recommended that vendor 4 does not remain optimal
for the first case.

Figure 4. Allocations for buyer 2 by the MILFP and MIP Models

From the sensitivity analysis, it appears that by the MILFP model for buyer 1 the vendors located
at location 3 do not remain optimal, except for the second case. In addition, the MILFP model has no
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optimal product distribution from location 4 for buyer 1 for all the six cases as depicted in Table 3.
In the same way, for the entire six cases, the vendor located at location 4 is not profitable for buyer 2
by the MILFP model as shown in Table 4. Similarly, by the MIP model for both buyers, the not
selected vendor is located at location 4 for all the cases. Therefore, the results of these algorithms
indicate that vendors 1, 2, 3 and 5 should be located to satisfy the buyers’ demands and vendor 4
could be removed without loss of optimality. Furthermore, it may be concluded that the optimal
solutions obtained by MILFP problem are as good as the ones due to the MIP problem. In addition,
for the six cases, all the differences of the return on investment for both solutions are less than 0.94%
as displayed in Table 4.

Figures 5 and 6 describe the average demands of different products achieved by the MILFP and
MIP models for buyer 1. By both MILFP and MIP models, the highest demand of the product for
buyer 1 is product 2, which is followed by product 3 and product 1 as shown in figures 5 and 6. The
MILFP and MIP models satisfy the optimal demand of buyer 1 by the manufactures located at the
location points 1, 2, 3 and 5. The MILFP model illustrates that vendor located at locations 1 is
profitable for all the three products. The MIP model illustrates that locations 1 and 3 are profitable
for all the three products. Furthermore, both MILFP and MIP models describe that vendor 4 is not in
any way optimum for buyer 1 for all the three products.
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Figure 5. Demands for different products at different locations for buyer 1 by the MILFP model
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Figure 6. Demands for different products at different locations for buyer 1 by the MIP model

Figures 7 and 8 depict the average demands of different products obtained by the MILFP and MIP
models for buyer 2. By both MILFP and MIP models, the maximum demand for product of buyer 2
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is for product 2 which is followed by product 3 and product 1 as shown in figures 7 and 8. The MILFP
and MIP models give the optimal demand of buyer 2 by the manufactures located at the location
points 1, 2, 3 and 5. The MILFP model illustrates that vendor located at 3 is profitable and can satisfy
the optimal demand of all the three products. The MIP model illustrates that locations 3 and 5 are
profitable for all the three products. Furthermore, both MILFP and MIP models show that vendor 4
is not in any way profitable for buyer 2 for all the products.
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Figure 7. Demands for different products at different locations for buyer 2 by the MILFP model
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Table 3. Sensitivity of opening cost for buyer 1

MILFP model MIP model
Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5 RI'1 Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5 RI 2
(700,700,1300) | (0,1800,900) (0,0,0) (0,0,0)| (1000,1000,0) | 1.15|  (1300,0,0) (0,1800,2000) | (400,700,200) | (0,0,0) | (0,1000,0) | 1.15
(700,0,1300) | (0,1800,200) | (0,1000,700) | (0,0,0)| (1000,700,0) | 1.07|  (1300,0,0) (0,1800,2000) | (400,1000,200) | (0,0,0) | (0,700,0) | 1.06
(700,700,1300) | (0,1800,900) (0,0,0) (0,0,0)| (1000,1000,0) | 1.14|  (1300,0,0) (0,1800,2000) | (400,700,200) | (0,0,0) | (0,1000,0) | 1.14
(700,700,1300) | (0,1800,900) (0,0,0) (0,0,0) | (1000,1000,0) | 1.11 (1300,0,0) (0,1800,2000) | (400,700,200) | (0,0,0) | (0,1000,0) | 1.11
(700,700,1300) | (0,1800,900) (0,0,0) (0,0,0) | (1000,1000,0) | 1.12|  (1300,0,0) (0,1800,2000) | (400,700,200) | (0,0,0) | (0,1000,0) | 1.12
(700,700,1300) | (0,1800,900) (0,0,0) (0,0,0) | (1000,1000,0) | 1.09| (1300,1200,200) | (0,1800,2000) | (400,500,0) | (0,0,0) | (0,0,0) 1.10
Table 4. Sensitivity of opening cost for buyer 2
MILFP model MIP model
Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5 Loc. 1 Loc. 2 Loc. 3 Loc. 4 Loc. 5 (?/:)
(600,500,0) | (200,0,1100) | (1500,1000,700) | (0,0,0) | (0,0,1000) | (0,1200,300)| (200,0,0) | (1100,300,1500) | (0,0,0)| (1000,0,1000) | 0.0
(600,1200,0) | (200,0,1800) (1500,0,0) (0,0,0) | (0,300,1000) | (0,1200,300)| (200,0,0) (1100,0,1500) (0,0,0) | (1000,300,1000) | 0.94
(600,500,0) | (200,0,1100) | (1500,1000,700) | (0,0,0) | (0,0,2000) | (0,1200,300)| (200,0,0) | (1100,300,1500) | (0,0,0)| (1000,0,1000) | 0.0
(600,500,0) | (200,0,1100) | (1500,1000,700) | (0,0,0) | (0,0,2000) | (0,1200,300)| (200,0,0) | (1100,300,1500) | (0,0,0)| (1000,0,1000) | 0.0
(600,500,0) | (200,0,1100) | (1500,1000,700) | (0,0,0) | (0,0,1000) | (0,1200,300)| (200,0,0) | (1100,300,1500) | (0,0,0)| (1000,0,1000) | 0.0
(600,500,0) | (200,0,1100) | (1500,1000,700) | (0,0,0) | (0,0,1000) | (0,0,1100) | (1200,0,0) | (1100,1500,1700) | (0,0,0) (0,0,0) 0.91
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Figure 9 describes the sensitivity of the opening cost on the total ratio of return on investment
obtained in different cases by the MILFP and MIP models. The proportion of return and investment
obtained by both MILFP and MIP models are almost the same. In addition, in all cases the profit
achieved by the MILFP model is slightly higher than that of the MIP model as shown in Figure 9,
due to the nature of the MILFP and MIP models. The sensitivity of the opening cost demonstrates
that in all the cases, increase in the opening cost decreases the profit by both MILFP and MIP models,
since the additional cost increases the investment as well as cost. Figures 10 and 11 illustrate the
influence of the opening cost on demand and capacity of each location. If the opening cost of a
location decreases or increases, the demand and capacity of that location change accordingly. The
opening cost changes the demand more dramatically than the capacity of the product. This can be
interpreted that by additional opening cost, additional advertisement and promotion can be offered
which increase the demand. Similarly, increase in the opening cost, which also concerns the
reconstruction and expansion activities, turns to increase the capacity can be increased by increasing
the opening cost.

5. Conclusion

An MILFP based model was developed for the coordinated supply chain and, using a suitable
transformation, the model was solved by AMPL. The formulated model also maximizes the ratio of
return on investment. It was assumed that the vendor and buyer of the supply chain were coordinated
by sharing information regarding their status. Furthermore, in order to demonstrate the significances
of the MILFP model, an MIP based model was also formulated. Our significant findings are
summarized as follows.

First, the illustrated numerical example apparently showed that both MILFP and MIP model
provide very similar distribution patterns for the integrated multi-product, multi-facility, and multi-
buyer location production supply chain network, which is worthwhile for the developed MILFP
model. Second, the optimal locations of the warehouses obtained by both models, were quite similar
and rejected the same locations. The optimal demands for different products by the buyer were almost
analogous for both MILFP and MIP models. The differences of the ratio of the return on investment
achieved by both models were less than 0.94%. Moreover, from the sensitivity analysis of the opening
cost, it was concluded that opening cost was a momentous factor to increase and decrease the demand
and capacity of a vendor, respectively. Moreover, the fixed opening cost had a negative influence on
the total profit. Therefore, the MILFP model could be a relevant approach in a logistic model to find
the optimal manufacturer as well as optimal distribution with profit maximization and cost
minimization.

Additional work may be needed to extend our work to be more realistic. In a future work, these
models might be applied to calibrate and validate the latest surveyed data, which might require
additional assumptions.
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