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Generation of a Reduced First-Level Mixed Integer 

Programming Problem 

 
 

G.Chagwiza1,*, BC.Jones2, SD.Hove-Musekwa3, S.Mtisi4 
 

We introduce a new way of generating cutting planes of a mixed integer program by way of taking 

binary variables. Four binary variables are introduced to form quartic inequalities, resulting in a 

reduced first-level mixed integer program. A new way of weakening the inequalities is presented. 

An algorithm to carry-out the separation of the inequalities, being exponential in number, is 

developed. The proposed method of cut generation, separation and strengthening is compared to 

the Gomory, linear branching and coordinated cutting plane methods. The computational results 

show the proposed method to be promising while getting to be complicated as number of variables 

increases.  
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1. Introduction 

 

Mixed integer program (MIP) is a framework intended to capture discrete decisions and 

continuous variables. MIP is sometimes referred to as mixed integer linear program (MILP) and it is 

simply a special case of linear programming (LP) in which some of the decision variables are 

constrained to take only integer values. Resource allocation problems are inherently discrete, and  

therefore MIPs (Richards and How [21]) is extensively being used. Model formulations that possess 

tight linear relaxations are important in designing effective heuristic solution procedures for a MIP 

(Sherali et al. [24]). Solvability of discrete mathematical programs depends on how the model 

approximates the convex hull of feasible solutions within the region of optimal solution. Polyhedral 

approaches of discrete programming are means for approximating the convex hull of integer 

programs. Disaggregation is one of the many methods introduced to produce a tighter representation 

of MIP (see Barnhart et al. [6] and  Johnson et al. [14]). Disaggregation techniques increase the 
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number of constraints while preserving problem sparsity and significantly tighten the continuous 

relaxation of the problem.  

 

In practice, the first level relaxation is usually the most useful. Our research will focus on the 

reformulation linearization technique (RLT) introduced by Sherali and Adams [23]. RLT is a 

framework for constructing strong linear relaxations. A lift and project cutting plane algorithm was 

developed for a partial first level RLT relaxation that considers one binary variable at a time and its 

computational results are promising (Balas et al. [4]). RLT considers the facial disjunctive program,  

                                             Minimize{𝑐𝑇𝑥: 𝑥 ∈ 𝑋 ⋂ 𝑌},                                                      (1) 

where 𝑋 is a nonempty polytope, 𝑌 is the conjunction of 𝑢̂ disjunctions given by,  

    𝑌 = ⋂𝑢∈𝑈 (⋃𝑖∈𝑄𝑢
{𝑥: 𝑎𝑖

𝑢𝑥 ≥ 𝑏𝑖
𝑢}),                                         (2)                                                                           (2) 

with 𝑈 = {1, ⋯ 𝑢̂}, and at least one of the inequalities 𝑎𝑖
𝑢𝑥 ≥ 𝑏𝑖

𝑢, for 𝑖 ∈ 𝑄𝑢, must be satisfied for 

each 𝑢 ∈ 𝑈. Convex hull of feasible solutions may be recursively constructed via the following 

relations, as proposed by Balas [5], where 𝐾0 = 𝑋:  

 𝐾𝑢 = 𝑐𝑜𝑛𝑣[⋃𝑖∈𝑄𝑢
(𝐾𝑢−1 ⋂ {𝑥: 𝑎𝑖

𝑢𝑥 ≥ 𝑏𝑖
𝑢})],  for 𝑢 = 1, ⋯ , 𝑢̂,                                          (3) 

to obtain the relationship  

 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑢̂ ≡ 𝑐𝑜𝑛𝑣(𝑋 ⋂ 𝑌).                                                                                 (4) 

 

One can represent 𝐾𝑢 for 0 -1 MIP as follows: 

𝐾𝑢 = 𝑐𝑜𝑛𝑣[(𝐾𝑢−1 ⋂ {𝑥: 𝑥𝑢 ≤ 0}) ⋃ (𝐾𝑢−1 ⋂ {𝑥: 𝑥𝑢 ≥ 1})].                                          (5) 

 

Sherali and Adams [23] generated a hierarchy of relaxation of (4) using RLT. By this process, 

each constraint in 𝐾𝑢−1 is multiplied by 𝑥𝑢 and 1 − 𝑥𝑢. The linear inequality, say 𝜇𝑇𝑥 ≤ 𝜃, is 

multiplied by each variable in turn to give (𝜇𝑇𝑥)𝑥𝑠 ≤ 𝜃𝑥𝑠. The resulting nonlinear program is 

linearized using the variable substitution technique, thereby replacing each distinct product of 

variables by a single new variable. This yields a new convex hull of feasible solutions if applied 𝑛 

times and using the identity 𝑥𝑠
2 = 𝑥𝑠.  

 

Consider the feasible region 𝑋 which is defined in terms of binary variables 𝑥1, ⋯ , 𝑥𝑛 and 

bounded continuous variables 𝑦1, ⋯ , 𝑦𝑚. Consider the 𝑑th level of the RLT relaxation for 0 ≤ 𝑑 ≤
𝑛 (Sherali and Adams [23]), with the bound factors of order 𝑑 as  

𝐹𝑑(𝐽1, 𝐽2) = [∏𝑗∈𝐽1
𝑥𝑗][∏𝑗∈𝐽2

(1 − 𝑥𝑗)], ∀𝐽1, 𝐽2 ⊆ 𝑁 ≡ {1 ⋯ 𝑛},                                       (6) 

such that  𝐽1 ∩ 𝐽2 = ∅  and  𝐽1 ∪ 𝐽2 = 𝑑, where 𝐹0(∅, ∅) = 1. For any given 𝑑, there are (
𝑛
𝑑 ) 2𝑑 such 

bound-factors. The lowest level of RLT relaxation is the most widely used in order to control the size 

of the resulting relaxation and it has proved to be effective to obtain tight lower bounds for the 

original problem. This new LP relaxation of the problem is stronger than the LP relaxation of the 

original problem. The projection of the resulting LP formulation into the space of the original 𝑥 

variables satisfies all simple disjunctive cuts (Laurent [16]). RLT has been extended to mixed 0- 1 

LP and global optimisation (Sherali [25]). 

 

There are three main ways of strengthening the first level RLT relaxation in the literature as 

outlined below 

 

1. Let 𝑋 be the 𝑛 × 𝑛 symmetric matrix in which 𝑋𝑖𝑖 = 𝑥𝑖,  ∀ 𝑖, and let 𝑋𝑖𝑗 = 𝑦𝑖𝑗 , ∀  𝑖 ≠ 𝑗. 

Note that 𝑋 = 𝑥𝑥𝑇. Define the augmented matrix  
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 𝑋̂ = (
1
𝑥 ) (

1
𝑥 )

𝑇

= (
1 𝑥𝑇

𝑥 𝑋 ).  (7) 

We can strengthen the relaxation by adding the constraint that makes 𝑋̂ positive semidefinite (Bixby 

[8]).  

 

2. Given two inequalities of the form 𝜇𝑇𝑥 ≤ 𝜃 and 𝜈𝑇𝑥 ≤ 𝛿, we have (𝜃 − 𝜇𝑇𝑥)(𝛿 − 𝜈𝑇𝑥) ≥
0 which results in  

 𝜇𝑇𝑋𝜈 − 𝜃𝜈𝑇𝑥 − 𝛿𝜇𝑇𝑥 + 𝜃𝛿 ≥ 0. (8) 

  

3. We can add any valid inequality to Boolean quadratic polytope defined as  

 𝑐𝑜𝑛𝑣 {(𝑥 + 𝑦) ∈ {0,1}
𝑛+(

𝑛
2 )

: 𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗({𝑖, 𝑗} ⊂ 𝑁)}. (9) 

  

There are many valid inequalities  known for this polytope; see Padberg [20]. Here, we are 

proposing a new way of generating cutting planes for first-level RLT relaxations of mixed 0-1 

programs motivated by the argument that when the degree of polynomial terms or factors is 

equivalent to the number of 0-1 variables, the resulting linear system will represent a polytope whose 

extreme points are precisely the 0-1 solutions feasible to the original problem (Sherali and Adams 

[23]).  The remainder of our paper is arranged as follows. In Section 2, we review recent research in 

finding cutting planes. We develop new methods of generating cutting planes in Section 3. In Section 

4, a new way of weakening the inequalities is presented and strengthening of the inequalities is 

carried out in Sections 5. We implement the algorithm and executes the program on numerical 

examples, comparing the results obtained with those of the instances in Section 6. Conclusions are 

drawn in Section 7. 

 

2.  Review of Recent Work on Cutting Planes 

 
Recent research has been carried out on ways of finding cutting planes. Amaldi [3] introduced 

generation of coordinated cutting planes and the method reduces the number of branch-and-bound 

nodes. Generation of valid inequalities that simulteneously maximizes  the cut violation and measure 

of diversity between the new and previously generated cutting planes have been suggested and the 

method was named to be bi-criteria method (Amaldi [2]). The cuts generated by this method were 

strong as compared to those obtained by maximizing the cut violation. 

 

Choosing good separation methods may assist in handling large-size problems and effectively 

reducing the computational time (Ben-Ameur [7]). Neumaier and Shcherbina [19] introduced the 

idea of safe cuts which were further developed in the work of Cook et al. [9]. The floating-point 

arithmetic and mixed-integer rounding procedure were introduced.  A research of Margot [18]  

attempted to compare cut generators using a method referred to as random diving towards a feasible 

solution. The method depends on the cut generator and precision of the LP. Integer linear 

combinations of rows of optimal simplex tableu were used to generate split cuts in a study of 

Cornuéjols and Nannicini [11]. 

 

3.  Generating New Cutting Plane 
  

3.1  Generation by taking binary variables only 
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We first construct a quartic valid inequality that is an inequality of up to four 𝑥 variables without 

a 𝑦 value. Let 𝑥𝑖, 𝑥𝑗  𝑥𝑘 ,  and  𝑥𝑙 be binary variables. We can generate the following five quartic 

inequalities:  

                             𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≥ 0, (10) 

                   𝑥𝑖𝑥𝑗𝑥𝑘(1 − 𝑥𝑙) ≥ 0, (11) 

         𝑥𝑖𝑥𝑗(1 − 𝑥𝑘)(1 − 𝑥𝑙) ≥ 0, (12) 

                         𝑥𝑖(1 − 𝑥𝑗)(1 − 𝑥𝑘)(1 − 𝑥𝑙) ≥ 0, (13) 

               (1 − 𝑥𝑖)(1 − 𝑥𝑗)(1 − 𝑥𝑘)(1 − 𝑥𝑙) ≥ 0. (14) 

Similarly, one can formulate inequalities for other 𝑥 combinations. Our work here considers the 

above inequalities (equations (10) to (14)), for brevity.  

 

3.2  Generation by using inequalities 

 

Given inequalities of the form  

                              𝜇𝑇𝑥 ≤ 𝜃, (15) 

                               𝜈𝑇𝑥 ≤ 𝛿, (16) 

                              𝜓𝑇𝑥 ≤ 𝜏, (17) 

                               𝛼𝑇𝑥 ≤ 𝜁, (18) 

 and binary variables 𝑥𝑚  and  𝑥𝑛, we can generate quartic valid inequalities as  

                (𝜃 − 𝜇𝑇𝑥)(𝛿 − 𝜈𝑇𝑥)(𝜏 − 𝜓𝑇𝑥)𝑥𝑚 ≥ 0, (19) 

      (𝜃 − 𝜇𝑇𝑥)(𝛿 − 𝜈𝑇𝑥)(𝜏 − 𝜓𝑇𝑥)(1 − 𝑥𝑚) ≥ 0, (20) 

                             (𝜃 − 𝜇𝑇𝑥)(𝛿 − 𝜈𝑇𝑥)𝑥𝑚𝑥𝑛 ≥ 0, (21) 

                   (𝜃 − 𝜇𝑇𝑥)(𝛿 − 𝜈𝑇𝑥)𝑥𝑚(1 − 𝑥𝑛) ≥ 0, (22) 

         (𝜃 − 𝜇𝑇𝑥)(𝛿 − 𝜈𝑇𝑥)(1 − 𝑥𝑚)(1 − 𝑥𝑛) ≥ 0. (23) 

 

It is also possible to take one linear inequality, say (15), and three binary variables, say 

𝑥𝑚  , 𝑥𝑛  and  𝑥𝑟, to generate  

                         (𝜃 − 𝜇𝑇𝑥)𝑥𝑚𝑥𝑛𝑥𝑟 ≥ 0, (24) 

               (𝜃 − 𝜇𝑇𝑥)𝑥𝑚𝑥𝑛(1 − 𝑥𝑟) ≥ 0, (25) 

     (𝜃 − 𝜇𝑇𝑥)𝑥𝑚(1 − 𝑥𝑛)(1 − 𝑥𝑟) ≥ 0. (26) 

        (𝜃 − 𝜇𝑇𝑥)(1 − 𝑥𝑚)(1 − 𝑥𝑛)(1 − 𝑥𝑟) ≥ 0. (27) 

We can take four linear inequalities, (15) to (18), of the system 𝐴𝑥 ≤ 𝑏 and form the quartic equality 

as  

 (𝜃 − 𝜇𝑇𝑥)(𝛿 − 𝜈𝑇𝑥)(𝜏 − 𝜓𝑇𝑥)(𝜁 − 𝛼𝑇𝑥). (28) 

We can deal with quartic terms of the form 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 using Lemma 3.1 below. 

  

Lemma 3.1.  Let 𝑥𝑖, 𝑥𝑗, 𝑥𝑘 and 𝑥𝑙 be variables all constrained to belong to the interval [0,1]. Let 

𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗 = (𝑥𝑖𝑥𝑗)2, 𝑦𝑖𝑘 = 𝑥𝑖𝑥𝑘 = (𝑥𝑖𝑥𝑘)2, 𝑦𝑖𝑙 = 𝑥𝑖𝑥𝑙 = (𝑥𝑖𝑥𝑙)2, 𝑦𝑗𝑘 = 𝑥𝑗𝑥𝑘 = (𝑥𝑗𝑥𝑘)2, 𝑦𝑗𝑙 =

𝑥𝑗𝑥𝑙 = (𝑥𝑗𝑥𝑙)2, and  𝑦𝑘𝑙 = 𝑥𝑘𝑥𝑙 = (𝑥𝑘𝑥𝑙)2 Then, the following lower and upper bounds on 

𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 hold:  

𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≥ max{0;  𝑦𝑖𝑗 + 𝑦𝑖𝑘 + 𝑦𝑖𝑙 − 𝑥𝑖;   𝑦𝑖𝑗 + 𝑦𝑗𝑘 + 𝑦𝑗𝑙 − 𝑥𝑗;   𝑦𝑖𝑘 + 𝑦𝑗𝑘 + 𝑦𝑘𝑙 − 𝑥𝑘; 

   𝑦𝑖𝑙 + 𝑦𝑗𝑙 + 𝑦𝑘𝑙 − 𝑥𝑙}, (29) 

𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≤ min{𝑦𝑖𝑗, 𝑦𝑖𝑘 , 𝑦𝑖𝑙 , 𝑦𝑗𝑘 + 𝑦𝑗𝑙 + 𝑦𝑘𝑙 , 1 − 𝑥𝑖 − 𝑥𝑗 − 𝑥𝑘 − 𝑥𝑙 + 𝑦𝑖𝑗 + 𝑦𝑖𝑘 + 𝑦𝑖𝑙 + 𝑦𝑗𝑘 +

𝑦𝑗𝑙 + 𝑦𝑘𝑙}.  (30) 

  

Proof. The inequality xixjxkxl ≥ 0 is trivial. The fact that (1 − xi)(1 − xj)(1 − xk)(1 − xl) must 
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be non-negative proves the inequalities 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≥ 𝑦𝑖𝑗 + 𝑦𝑖𝑘 + 𝑦𝑖𝑙 − 𝑥𝑖 , 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≥ 𝑦𝑗𝑘 + 𝑦𝑗𝑙 − 𝑥𝑗,

𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≥ 𝑦𝑖𝑘 + 𝑦𝑗𝑘 − 𝑥𝑘 and 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≥ 𝑦𝑖𝑙 + 𝑦𝑘𝑙 − 𝑥𝑘. Since 𝑥𝑖𝑥𝑗𝑥𝑘(1 − 𝑥𝑙) is non-negative, it 

follows that 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≤ 𝑦𝑖𝑗.  

 

Similarly, inequalities 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≤ 𝑦𝑖𝑘 , 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≤ 𝑦𝑖𝑙 , 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≤ 𝑦𝑗𝑘 , 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≤ 𝑦𝑗𝑙 ,

𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≤ 𝑦𝑘𝑙 hold. The fact that (1 − 𝑥𝑖)(1 − 𝑥𝑗)(1 − 𝑥𝑘)(1 − 𝑥𝑙) is non-negative proves the 

inequality 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 ≤ (1 − 𝑥𝑖 − 𝑥𝑗 − 𝑥𝑘 − 𝑥𝑙 + 𝑦𝑖𝑗 + 𝑦𝑖𝑘 + 𝑦𝑖𝑙 + 𝑦𝑗𝑘 + 𝑦𝑗𝑙 + 𝑦𝑘𝑙). □ 

  

4.  Weakening inequalities 

 
Cutting planes can be produced by weakening the inequalities (24) to (27). Since 𝑥𝑚, 𝑥𝑛  and  𝑥𝑟 

are binary variables, at least two of them are equal. Suppose in this case that 𝑥𝑛 = 𝑥𝑟. We have  

 𝑥𝑚𝑥𝑛𝑥𝑟 = 𝑥𝑚𝑥𝑛
2 = 𝑦𝑚𝑛. (31) 

The quartic inequality (24) can be rewritten as  

        (𝜃 − 𝜇𝑇𝑥)𝑥𝑚𝑥𝑛𝑥𝑟 ≥ 0, 
                  𝜇𝑖𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟 ≤ (𝜃 − 𝜇𝑚 − 𝜇𝑛 − 𝜇𝑟)𝑥𝑚𝑥𝑛𝑥𝑟, 
                                       ≤ (𝜃 − 𝜇𝑚 − 𝜇𝑛 − 𝜇𝑟)𝑥𝑚𝑥𝑛

2, 
                                       ≤ (𝜃 − 𝜇𝑚 − 𝜇𝑛 − 𝜇𝑟)𝑦𝑚𝑛. 

We can generalise the inequality as  

 ∑𝑖∈𝑄\{𝑚,𝑛,𝑟} 𝜇𝑖𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟 ≤ (𝜃 − 𝜇𝑚 − 𝜇𝑛 − 𝜇𝑟)(𝑦𝑚𝑛 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟). (32) 

 

If 𝑥𝑚 = 𝑥𝑛, then quartic inequality (25) can also be rewritten as  

 (𝜃 − 𝜇𝑇𝑥)𝑥𝑚𝑥𝑛(1 − 𝑥𝑟) ≥ 0, 
         𝜃𝑥𝑚𝑥𝑛 − 𝜃𝑥𝑚𝑥𝑛𝑥𝑟 ≥ (𝜇𝑇𝑥)𝑥𝑚𝑥𝑛 − (𝜇𝑇𝑥)𝑥𝑚𝑥𝑛𝑥𝑟, 
           𝜃𝑦𝑚𝑛 − 𝜃𝑥𝑚𝑥𝑛𝑥𝑟 ≥ 𝜇𝑖𝑥𝑖𝑥𝑚𝑥𝑛 − 𝜇𝑖𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟 − 𝜇𝑚𝑥𝑚𝑥𝑛𝑥𝑟 − 𝜇𝑛𝑥𝑛𝑥𝑟 

                                            −𝜇𝑟𝑥𝑛𝑥𝑟, 
             𝜇𝑖(𝑥𝑖𝑥𝑚𝑥𝑛 − 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟) ≤ (𝜃 − 𝜇𝑚)𝑦𝑚𝑛 − 𝑥𝑚𝑥𝑛𝑥𝑟(𝜃 − 𝜇𝑚) + 𝜇𝑛𝑦𝑛𝑟 + 𝜇𝑟𝑦𝑛𝑟, 
       𝜇𝑖(𝑦𝑖𝑚 − 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟) ≤ (𝜃 − 𝜇𝑚)𝑦𝑚𝑛 − 𝑦𝑚𝑟(𝜃 − 𝜇𝑚) + 𝜇𝑛𝑦𝑛𝑟 + 𝜇𝑟𝑦𝑛𝑟. 

Therefore,  ∑𝑖∈𝑄\{𝑚,𝑛,𝑟} 𝜇𝑖(𝑦𝑖𝑚 + 𝑦𝑖𝑛 − 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟) ≤ (𝜃 − 𝜇𝑚)(𝑦𝑚𝑛 − 𝑦𝑚𝑟 − 𝑦𝑛𝑟) 

                                                                 +(𝜇𝑛 + 𝜇𝑟)𝑦𝑛𝑟. (33) 

 

 Inequality (26) is rewritten as  

 (𝜃 − 𝜇𝑇𝑥)𝑥𝑚(1 − 𝑥𝑛)(1 − 𝑥𝑟) ≥ 0, 
 (𝜃 − 𝜇𝑇𝑥)(𝑥𝑚 − 2𝑥𝑚𝑥𝑟 + 𝑥𝑚𝑥𝑛𝑥𝑟) ≥ 0, 
 𝜃𝑥𝑚 − 2𝜃𝑦𝑚𝑟 + 𝜃𝑥𝑚𝑥𝑛𝑥𝑟 − 𝜇𝑖[𝑦𝑖𝑚 − 2𝑥𝑖𝑥𝑚𝑥𝑟 + 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟] − 𝜇𝑚𝑥𝑚 

 +2𝜇𝑚𝑦𝑚𝑟 − 𝜇𝑚𝑥𝑚𝑥𝑛𝑥𝑟 − 𝜇𝑛𝑦𝑛𝑟 ≥ 0, 
 𝜇𝑖[𝑦𝑖𝑚 − 2𝑥𝑖𝑥𝑚𝑥𝑟 + 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟] ≤ 𝜃𝑥𝑚 − 2𝜃𝑦𝑚𝑟 + 𝜃𝑥𝑚𝑥𝑛𝑥𝑟 

 −𝜇𝑚𝑥𝑚 + 2𝜇𝑚𝑦𝑚𝑟 − 𝜇𝑚𝑥𝑚𝑥𝑛𝑥𝑟 − 𝜇𝑛𝑦𝑛𝑟, 
 𝜇𝑖[𝑦𝑖𝑚 − 2𝑥𝑖𝑥𝑚

2 + 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟] ≤ 𝜃𝑥𝑚 − 2𝜃𝑦𝑚𝑟 + 𝜃𝑥𝑚
2 𝑥𝑟 

 −𝜇𝑚𝑥𝑚 + 2𝜇𝑚𝑦𝑚𝑟 − 𝜇𝑚𝑥𝑚
2 𝑥𝑟 − 𝜇𝑛𝑦𝑛𝑟. 

 It follows that  

 ∑𝑖∈𝑄\{𝑚,𝑛,𝑟} 𝜇𝑖[𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟 − 𝑦𝑖𝑚] ≤ (𝜃 − 𝜇𝑚)(𝑥𝑚 − 𝑦𝑚𝑟 − 𝑦𝑛𝑟) − 𝜇𝑛𝑦𝑛𝑟. (34) 

  

Similarly, (27) is rewritten as  

 (𝜃 − 𝜇𝑇𝑥)(1 − 𝑥𝑚)(1 − 𝑥𝑛)(1 − 𝑥𝑟) ≥ 0, 
 𝜃(1 − 𝑥𝑚 − 𝑥𝑛 − 𝑥𝑟 + 𝑦𝑚 + 𝑦𝑛 + 𝑦𝑟) + 𝜃𝑥𝑚𝑥𝑛𝑥𝑟 − 𝜇𝑖(𝑥𝑖 − 𝑥𝑚 − 𝑥𝑛 − 𝑥𝑟 

 −𝑦𝑖𝑚 − 𝑦𝑖𝑛 − 𝑦𝑖𝑟 − 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟) + 𝜇𝑚(𝑥𝑚 − 𝑦𝑚𝑟) + 𝜇𝑛(𝑥𝑛 − 𝑦𝑛𝑟) 

 [
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 −𝜇𝑟𝑥𝑟 ≥ 0, 
 𝜇𝑖(𝑥𝑖 − 𝑥𝑚 − 𝑥𝑛 − 𝑥𝑟 − 𝑦𝑖𝑚 − 𝑦𝑖𝑛 − 𝑦𝑖𝑟 − 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟) ≤ 𝜃(1 − 𝑥𝑚 − 𝑥𝑛 − 𝑥𝑟) 

 +𝜃(𝑦𝑚 + 𝑦𝑛 + 𝑦𝑟) + 𝜇𝑚(𝑥𝑚 − 𝑦𝑚𝑟) + 𝜇𝑛(𝑥𝑛 − 𝑦𝑛𝑟) − 𝜇𝑟𝑥𝑟 + 𝜃𝑥𝑚𝑥𝑛𝑥𝑟. 
  

If 𝑥𝑚 = 𝑥𝑛 = 𝑥𝑟, then 𝑥𝑚𝑥𝑛𝑥𝑟 = 𝑥𝑟
2𝑥𝑟 = 𝑥𝑟. Therefore,  

 ∑𝑖∈𝑄\{𝑚,𝑛,𝑟} 𝜇𝑖(𝑥𝑖 − 𝑥𝑚 − 𝑥𝑛 − 𝑥𝑟 − 𝑦𝑖𝑚 − 𝑦𝑖𝑛 − 𝑦𝑖𝑟 − 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟) 

 ≤ 𝜃(1 − 𝑥𝑚 − 𝑥𝑛 − 𝑥𝑟) + 𝜃(𝑦𝑚 + 𝑦𝑛 + 𝑦𝑟) + 𝜇𝑚(𝑥𝑚 − 𝑦𝑚𝑟) + 𝜇𝑛(𝑥𝑛 − 𝑦𝑛𝑟) 

 +𝑥𝑟(𝜃 − 𝜇𝑟). (35) 

 

Using Lemma 3.1, inequalities (32) to (35) can be weakened by substituting 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟 with the right 

hand side of  (29) and (30) for lower and upper bounds respectively. Consider the mixed integer 0-1 

program given by  

 

 Min  𝑐𝑇𝑥 

 subject to  ∑𝑛
𝑗=1 𝑎𝑘𝑗𝑥𝑗 ≥ 𝑏𝑘 ,  for  𝑘 = 1, ⋯ , 𝑚, (36) 

 0 ≤ 𝑥 ≤ 𝑒, 𝑥𝑖  binary, for  𝑖 ∈ 𝐵, 𝑥𝑖  continuous, for  𝑖 ∈ 𝐶, (37) 

 

where 𝐵 = {1, ⋯ , 𝑛}, 𝐶 = {𝑛1 + 1, ⋯ , 𝑛}, and  𝑒 = (1, ⋯ ,1)𝑇 .  Multiplying the MIP by the bound- 

factors 𝑥𝑖 and (1 − 𝑥𝑖),  ∀𝑖 ∈ 𝐵, and linearizing the problem for 𝑥𝑖
2 = 𝑥𝑖 ,  ∀𝑖 ∈ 𝐵, and substituting 

𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗, ∀𝑖 < 𝑗, we obtain the first level RLT problem as follows:  

 Min  𝑐𝑇𝑥 

 subject to  (𝑎𝑘𝑖 − 𝑏𝑘)𝑥𝑖 + ∑𝑗≠𝑖 𝑎𝑘𝑗𝑦(𝑖𝑗) ≥ 0, ∀  𝑘 = 1, ⋯ , 𝑚, ∀𝑖 ∈ 𝐵, (38) 

 𝑏𝑖𝑥𝑖 + ∑𝑗≠𝑖 𝑎𝑘𝑗(𝑥𝑗 − 𝑦(𝑖𝑗)) ≥ 𝑏𝑘 , ∀  𝑘 = 1, ⋯ , 𝑚, ∀𝑖 ∈ 𝐵, (39) 

 0 ≤ 𝑦𝑖𝑗 ≤ 𝑥𝑖   and  0 ≤ (𝑥𝑗 − 𝑦𝑖𝑗) ≤ (1 − 𝑥𝑖), ∀𝑖 ∈ 𝐵, 𝑗 ∈ 𝑁, 𝑖 < 𝑗, (40) 

where 𝑁 = {1, ⋯ , 𝑛} ≡ 𝐵 ∪ 𝐶.  

 

Theorem 4.1.  Let RLT be feasible, and define R̂LT as a formulation of RLT to which the implied 

original constraints (36) have been added. Then, there exists a dual optimal solution of R̂LT such that 

for each 𝑘 = {1, ⋯ , 𝑚} and 𝑖 ∈ 𝐵, the dual variable associated with at least one of the equalities (38) 

and (39) is zero. Hence, deleting such constraints from the R̂LT with associated dual multipliers 

being zero would yield a reduced first level RLT relaxation that preserves the lower bounding 

objective value of RLT.  

  

Proof. See Sherali et al. [24]. □  

 

By Theorem 4.1 we can safely discard (32) to (35) and concentrate on (32).  

 

Theorem 4.2.  For any set {𝑚, 𝑛, 𝑟} ⊂ 𝐴, let 𝑀, 𝑁, 𝑅  and  𝐾 be disjoint subsets of 𝑄\{𝑚, 𝑛, 𝑟}. Let 

𝑃 = 𝑄\[{𝑚, 𝑛, 𝑟} ∪ 𝑀 ∪ 𝑁 ∪ 𝑅 ∪ 𝐾], and let 𝜇𝑇𝑥 ≤ 𝜃 be one of the inequalities of the system 𝐴𝑥 ≤
𝑏. Then, the following exponential large inequalities hold:  

 

 ∑𝑖∈𝑀∪𝐾 𝜇𝑖𝑦𝑖𝑚 + ∑𝑖∈𝑁∪𝐾 𝜇𝑖𝑦𝑖𝑛 + ∑𝑖∈𝑅∪𝐾 𝜇𝑖𝑦𝑖𝑟 − ∑𝑖∈𝐾 𝜇𝑖𝑥𝑖 ≤ −𝜇(𝐾𝑚𝑖𝑛) 

 +𝜇(𝑀𝑚𝑎𝑥 ∪ 𝐾𝑚𝑖𝑛)𝑥𝑚 + 𝜇(𝑁𝑚𝑎𝑥 ∪ 𝐾𝑚𝑖𝑛)𝑥𝑛 + 𝜇(𝑅𝑚𝑎𝑥 ∪ 𝐾𝑚𝑖𝑛)𝑥𝑟                 (41) 

 +(𝜃 − 𝜇[{𝑚, 𝑛, 𝑟} ∪ 𝑀𝑚𝑎𝑥 ∪ 𝑁𝑚𝑎𝑥 ∪ 𝑅𝑚𝑎𝑥 ∪ 𝐾𝑚𝑖𝑛 ∪ 𝑃𝑚𝑖𝑛]) 

 (𝑦𝑚𝑛 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟).  
   

Proof. From Lemma 3.1, the inequality (32) can be weakened by replacing 𝑥𝑖𝑥𝑚𝑥𝑛𝑥𝑟 with 𝑦𝑖𝑚 +
𝑦𝑖𝑛 + 𝑦𝑖𝑟 − 𝑥𝑖,  when  𝑖 ∈ 𝐾𝑚𝑎𝑥, 𝑦𝑖𝑚 + 𝑦𝑚𝑛 + 𝑦𝑚𝑟 − 𝑥𝑚,  when  𝑖 ∈ 𝑀𝑚𝑎𝑥  𝑦𝑖𝑛 + 𝑦𝑚𝑛 + 𝑦𝑛𝑟 −
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𝑥𝑛, when  𝑖 ∈ 𝑁𝑚𝑎𝑥, 𝑦𝑖𝑟 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟 − 𝑥𝑟,  when  𝑖 ∈ 𝑅𝑚𝑎𝑥, 0,  when  𝑖 ∈ 𝑃𝑚𝑎𝑥 , 𝑦𝑖𝑚,  when  𝑖 ∈
𝑀𝑚𝑖𝑛, 𝑦𝑖𝑛,  when  𝑖 ∈ 𝑁𝑚𝑖𝑛, 𝑦𝑖𝑟 ,  when  𝑖 ∈ 𝑅𝑚𝑖𝑛, 1 − 𝑥𝑖 − 𝑥𝑚 − 𝑥𝑛 − 𝑥𝑟 + 𝑦𝑖𝑚 + 𝑦𝑖𝑛 + 𝑦𝑖𝑟 +
𝑦𝑚𝑛 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟,  when  𝑖 ∈ 𝐾𝑚𝑖𝑛  and  𝑦𝑚𝑛 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟,  when  𝑖 ∈ 𝑃𝑚𝑖𝑛. 

 

Rearranging proves (41). □ 

  

The produced inequalities are exponential in number. The separation can be achieved in a 

polynomial time as (10) to (28) are polynomial in number. There are 𝑧 choices for the inequality 

𝜇𝑇𝑥 ≤ 𝜃 and (
|𝐴|
3 ) choices for {𝑚, 𝑛, 𝑟}. If we assume that 𝜇, 𝜃, 𝑚, 𝑛,  and  𝑟 are fixed. Then (41) 

is rewritten as  

∑𝑖∈𝑀𝑚𝑎𝑥 𝜇𝑖(𝑦𝑖𝑚 + 𝑦𝑚𝑛 + 𝑦𝑚𝑟 − 𝑥𝑚) + ∑𝑖∈𝑁𝑚𝑎𝑥 𝜇𝑖(𝑦𝑖𝑛 + 𝑦𝑚𝑛 + 𝑦𝑛𝑟 − 𝑥𝑛)  

+ ∑𝑖∈𝑅𝑚𝑎𝑥 𝜇𝑖(𝑦𝑖𝑟 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟 − 𝑥𝑟) + ∑𝑖∈𝐾𝑚𝑎𝑥 𝜇𝑖(𝑦𝑖𝑚 + 𝑦𝑖𝑛 + 𝑦𝑖𝑟 − 𝑥𝑖)  

                      + ∑𝑖∈𝑀𝑚𝑖𝑛 𝜇𝑖𝑦𝑖𝑚 + ∑𝑖∈𝑁𝑚𝑖𝑛 𝜇𝑖𝑦𝑖𝑛 + ∑𝑖∈𝑅𝑚𝑖𝑛 𝜇𝑖𝑦𝑖𝑟 + ∑𝑖∈𝐾𝑚𝑖𝑛 𝜇𝑖(1 − 𝑥𝑖 −
𝑥𝑚 − 𝑥𝑛 − 𝑥𝑟 + 𝑦𝑖𝑚 + 𝑦𝑖𝑛 + 𝑦𝑖𝑟 + 𝑦𝑚𝑛 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟) + ∑𝑖∈𝑃𝑚𝑖𝑛 𝜇𝑖(𝑦𝑚𝑛 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟)             (42) 

       ≤ (𝜃 − 𝜇𝑚 − 𝜇𝑛 − 𝜇𝑟)(𝑦𝑚𝑛 + 𝑦𝑚𝑟 + 𝑦𝑛𝑟).  

 

We examine the left hand side of the inequality to find the most violated {𝑚, 𝑛, 𝑟} inequality. Below, 

an algorithm is suggested to carry-out this task: 

   

START  Place 𝑖 in either set 𝑀, 𝑁, 𝑅, 𝐾, 𝑜𝑟  𝑃  

if 𝜇𝑖 > 0  then 

   Find max{𝑦𝑖𝑚
∗ + 𝑦𝑚𝑛

∗ + 𝑦𝑚𝑟
∗ − 𝑥𝑚

∗ ;   𝑦𝑖𝑛
∗ + 𝑦𝑚𝑛

∗ + 𝑦𝑛𝑟
∗ − 𝑥𝑛

∗ ;   𝑦𝑖𝑟
∗ + 𝑦𝑚𝑟

∗ + 𝑦𝑛𝑟
∗ − 𝑥𝑟

∗;   𝑦𝑖𝑚
∗ +

                 𝑦𝑖𝑛
∗ + 𝑦𝑖𝑟

∗ − 𝑥𝑖
∗;   0}   

   (Break ties arbitrarily)  

else if 𝜇𝑖 < 0  then 

   Find min{1 − 𝑥𝑖
∗ − 𝑥𝑚

∗ − 𝑥𝑛
∗ − 𝑥𝑟

∗ + 𝑦𝑖𝑚
∗ + 𝑦𝑖𝑛

∗ + 𝑦𝑖𝑟
∗ + 𝑦𝑚𝑛

∗ + 𝑦𝑚𝑟
∗ + 𝑦𝑛𝑟

∗ ;   𝑦𝑚𝑛
∗ + 𝑦𝑚𝑟

∗ + 𝑦𝑛𝑟
∗ }   

   (Break ties arbitrarily)  

else 𝜇𝑖 = 0   

   Place 𝑖 in any set    

STOP   

 

5.  Strengthening Inequalities 
 

We strengthen the inequalities using the disjunctive argument. 

 

Lemma 5.1.  For any pair {𝑚, 𝑛, 𝑟} ⊂ 𝐴, for every binary vector 𝑥 ∈ {0,1}𝑎, the following 

disjunctive terms are satisfied: 

 

(𝑥𝑚 = 0 ∧ 𝑥𝑛 = 𝑥𝑟 = 1) ∨ (𝑥𝑛 = 0 ∧ 𝑥𝑚 = 𝑥𝑟 = 1) ∨ (𝑥𝑟 = 0 ∧ 𝑥𝑚 = 𝑥𝑛 = 1) 

∨ (𝑥𝑚 = 1 ∧ 𝑥𝑛 = 𝑥𝑟 = 0) ∨ (𝑥𝑛 = 1 ∧ 𝑥𝑚 = 𝑥𝑟 = 0) ∨ (𝑥𝑟 = 1 ∧ 𝑥𝑚 = 𝑥𝑛 = 0) 

∨ (𝑥𝑚 = 𝑥𝑛 = 0 ∧ 𝑥𝑟 = 1) ∨ (𝑥𝑚 = 𝑥𝑛 = 1 ∧ 𝑥𝑟 = 0) ∨ (𝑥𝑚 = 𝑥𝑟 = 0 ∧ 𝑥𝑛 = 1) 

∨ (𝑥𝑚 = 𝑥𝑟 = 1 ∧ 𝑥𝑛 = 0) ∨ (𝑥𝑛 = 𝑥𝑟 = 0 ∧ 𝑥𝑚 = 1) ∨ (𝑥𝑛 = 𝑥𝑟 = 1 ∧ 𝑥𝑚 = 0) 

 ∨ (𝑥𝑚 = 𝑥𝑛 = 𝑥𝑟 = 1) ∨ (𝑥𝑚 = 𝑥𝑛 = 𝑥𝑟 = 0). (43) 

  

Using Lemma 5.1, we can strengthen the inequality, if we let 𝑚, 𝑛, 𝑟, 𝑀, 𝑁, 𝑅, 𝐾, 𝜇 and 𝜃 be 

defined as in Theorem 4.2.  
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Theorem 5.2. Let  

 𝐻𝑚 = min{𝜇𝑀+; (𝜃 − 𝜇({𝑚} ∪ 𝑁− ∪ 𝑅− ∪ 𝐾− ∪ 𝑃−)}, 
 

 𝐻𝑛 = min{𝜇𝑁+; (𝜃 − 𝜇({𝑛} ∪ 𝑀− ∪ 𝑅− ∪ 𝐾− ∪ 𝑃−)} 

and  

 𝐻𝑟 = min{𝜇𝑅+; (𝜃 − 𝜇({𝑟} ∪ 𝑀− ∪ 𝑁− ∪ 𝐾− ∪ 𝑃−)}. 

Then, equation (44) is valid for 𝑄: 

 ∑𝑖∈𝑀∪𝐾 𝜇𝑖𝑦𝑖𝑚 + ∑𝑖∈𝑁∪𝐾 𝜇𝑖𝑦𝑖𝑛 + ∑𝑖∈𝑅∪𝐾 𝜇𝑖𝑦𝑖𝑟 − ∑𝑖∈𝐾 𝜇𝑖𝑥𝑖 ≤ (𝐻𝑚 + 𝜇𝐾−)𝑥𝑚 

 (𝐻𝑛 + 𝜇𝐾−)𝑥𝑛 + (𝐻𝑟 + 𝜇𝐾−)𝑥𝑟 + (𝜃 − 𝐻𝑚 − 𝐻𝑛 − 𝐻𝑟 − 𝜇({𝑚, 𝑛, 𝑟} 

 ∪ 𝑃−))𝑦𝑚𝑛𝑦𝑚𝑟𝑦𝑛𝑟 − 𝜇𝐾−. (44) 

  

  

Proof. Using the disjunctive terms in (43), taking 𝑥𝑚 = 𝑥𝑛 = 𝑥𝑟 = 0 and substituting into the left 

hand side of (44), we get − ∑𝑖∈𝐾 𝜇𝑖𝑥𝑖 which should not exceed −𝜇𝐾−. Substituting 𝑥𝑚 = 0 and 

𝑥𝑛 = 𝑥𝑟 = 1 reduces the left hand side of (44) to ∑𝑖∈𝑀 𝜇𝑖𝑥𝑖 which cannot exceed 𝐻𝑚. We can do the 

same for the other disjunctive terms. If 𝑥𝑚 = 𝑥𝑛 = 𝑥𝑟 = 1, then the left hand side reduces to 
∑𝑖∈𝑀∪𝑁∪𝑅∪𝐾 𝜇𝑖𝑥𝑖 which also cannot exceed 𝜃 − 𝜇({𝑛, 𝑚, 𝑟} ∪ 𝑃−). Therefore, the left hand side 

does not exceed the right hand side of (44) in any of the disjunctive terms. □ 

 

 

6.  Computational Analysis 
 

To explore efficiency of the proposed method for generating cutting planes, separation and 

strengthening, 26 instances were taken from the second DIMACS challenge on max-clique, coloring, 

and satisfability; see Johnson and Trick [15]. The instances were subjected to the proposed method, 

coordinated cutting plane (COORD) method of Amaldi et al. [3], local branching (LB) method 

(Rodriguez-Martin and JoseSalazar-Gonzalez[22])  and the Gomory method (Gomory [12]). The 

instances were solved in MATLAB 7.0.4.365 environment using the Cplex solver provided by 

TOMLAB 7.9, an optimization environment in MATLAB, recording the number of cuts, time and 

the number iterations required to reach the bound; see Holmstrom [13] for a full description of 

TOMLAB and how it can be used.  

 

In order to ensure that the proposed inequalities are not repeated, each linear inequality was also 

multiplied by the complement of each variable, to obtain 𝑛 linear inequalities.  The complexity of the 

proposed algorithm in ensuring that there were no repeatitions is a challenge needing further 

investigation. This has led to a limitation on the number of variables for the instances with a 

maximum of 15 variables.  Verticies in nonincreasing order were sorted and added to the subset of 

vertices one at a time until a maximal clique was formed. Those that violeted a constraint were 

discarded. This technique was used to ensure that the  inequalities already generated were not 

repeated in consecutive iterations. The method was used by Amaldi et al. [3]. 

 

Table 1 presents the comparison of the results recorded for the Gomory, COORD, local branching 

(LB)  algorithms and our proposed method. The results show that the Gomory, COORD and LB 

algorithms are slower than our proposed method to achieve the bound. The proposed method 

required fewer number of  iterations to achieve the bound, while the Gomory, COORD and LB 

required the on average, 5 more iterations to achieve the bound. The proposed method produced 

fewer cuts as iterations increased, thereby needing less CPU time as compared to the other methods. 

Considering all the instances, LB produced between 1.81 and 2.21, COORD produced between 1.21 

and 1.34 and Gomory produced between 2.0 and 2.9 times more cuts than the proposed method. The 
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computational results has shown the proposed method to be promising. 

 

Table  1. Comparison of proposed method with the Gomory, COORD and LB methods 

Instances  COORD  Local Branching Gomory Proposed 

Bound Iter Cuts Time Iter Cuts Time Iter Cuts Time Iter Cuts Time 

1-FullIns_ 3 3.3  13 13 0.0 11 11 0.0 14 14 0.0 10 8 0.0 

1-Insertions_4 2.8  218 218 24.3 188  188 22.5 218 218 24.3 165 158 19.0 

3-FullIns_3 5.2  36 36 0.2 19 19 0.1 35 35 0.2 17 17 0.1 

3-Insertions_3  2.3 202 202 8.6 181 181 8.7 205 205 9.6 167 153 8.7 

c-fat200-1  12.0 186 186 1.4 166 166 1.4 188 188 1.6 142 142 1.0 

c-fat200-5  66.7 254 254 6.6 204 204 5.2 255 255 7.0 188 185 5.0 

david  11.0 31 31 0.2 24 24 0.2 31 31 0.2 23 21 0.2 

huck  11.0 26 26 0.1 23 23 0.1 25 25 0.1 20 20 0.1 

jean  10.0 25 25 0.1 20 20 0.1 26 26 0.1 18 14 0.1 

johnson16-2-4  8.0 20 20 3.4 20 20 5.7 20 20 5.7 20 20 2.9 

johnson8-2-4  4.0 10 10 0.0 10 10 0.0 11 11 0.1 8 8 0.0 

mug88_1  3.0 364 364 4.0 270 270 3.1 366 366 4.1 243 236 2.7 

myciel3  2.9 14 14 0.0 12 12 0.0 14 14 0.0 10 9 0.0 

petersen  2.5 13 13 0.0 7 7 0.0 14 14 0.0 6 6 0.0 

queen5_5  5.0 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.0 

queen8_8  8.4 123 123 3.4 112 112 3.1 124 124 3.8 102 102 2.4 

queen9_9  9.0 252 252 12.1 256 256 12.8 251 251 12.1 251 251 12.0 

r125.1c  46.0 54 54 26.3 54 54 93.6 52 52 27.0 48 48 23.1 

sudokuc  9.0 20 20 1.3 22 22 2.1 24 24 1.3 20 20 1.3 

ship-shipc  19.0 29 29 0.8 30 30 1.2 32 32 2.0 29 25 0.7 

knights8_8c  32.0 110 110 3.9 67 67 3.3 115 115 4.0 68 68 3.3 

kneser8-3c  28.0 96 96 4.9 59 59 5.4 96 96 5.0 59 59 5.0 

barleyc  20.0 27 27 0.6 26 26 0.8 27 27 0.6 25 24 0.8 

alarmc  18.0 19 19 0.2 19 19 0.3 19 19 0.2 18 18 0.2 

1ubqc  30.5 57 57 3.7 49 49 4.2 59 59 3.7 40 40 2.9 

hamming6-2  32.0 105 105 1.9 82 82 1.5 111 111 2.9 71 71 1.4 

 

 

Fig. 1 and fig. 2 present graphical illustrations of the performance of the Gomory, COORD, LB 

and the proposed method for the cases queen8_8 and huck, respectively, as a function of the 

iterations. The graphical charts illustrate notable improvement provided by the proposed method, 

notably in the earlier generation of the cutting planes. The proposed method also provides tighter 

bounds as compared to the  Gomory, COORD and LB algorithms, thereby converging faster than the 

other considered algorithms.  
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Figure 1. Comparison of the proposed method , COORD, LB and Gomory using queen8_8 

as the instance. 

 

 

 

 
 

Figure 2. Comparison of the proposed method , COORD, LB and Gomory using huck as the 

instance. 

 

 

5.1 Statistical analysis 

 

An analysis of variance (ANOVA) parametric statistical test was performed using the SPSS 

version 20.0.0 software package to compare the time value. This was done to compare the obtained 

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100110120130

B

o

u

n

d

Iterations

COORD

LB

GOMORY

PROPOSED

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26

B

o

u

n

d

Iterations

COORD

LB

GOMORY

PROPOSED

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-1
0-

23
 ]

 

                            10 / 12

http://iors.ir/journal/article-1-393-en.html


Generation of a reduced first-level mixed integer programming problem 

 

11 

 

results. The results of the LB algorithm and the proposed method are compared, since it is reported 

in the literature that LB algorithm presents best results (Rodriguez-Martin and JoseSalazar-

Gonzalez[22]). The significance level is considered at 5%. The null hypothesis is taken to be that the 

results of the proposed method and that of the LB algorithm are not significantly different while the 

alternative hypothesis is that the difference is significant. Table 2 presents the ANOVA results from 

SPSS. The results in Table 2 show that the 𝑝-value is 0.0 (0.0< 0.05) and we may conclude that there 

is a significant difference between  the local branching algorithm and proposed method interms of 

the execution time and number of  iterations in achieving optimality. The ANOVA table shows that 

the proposed method performs better as compared to the local branching method. 

 

Table 2. SPSS output table for the  ANOVA test of local branching and the proposed method 

Source of 

variation 

Sum of 

squares 

DF Mean square F P- Value 

Between 

groups 

76.0 1 76.0 5.7 0.0 

Within groups 992.0 25 10.0   

Total 1068.0 26    

 

 

7.  Conclusion 
 

There are several ways of generating cutting planes of a MIP. Using binary values to develop 

quartic inequalities seems to be promising. Generated inequalities can be weakened easily to 

generate the cutting planes of a MIP. Separation is achieved in a polynomial time and the proposed 

algorithm to carry-out this task seems to be promising. It is therefore recommended that further 

research be focused on development of prototypes or solvers that include several generations of first-

level reduced MIPs, which are easier to solve. The proposed algorithm for cutting planes generation 

becomes complicated as the number of variables increases and may lead to repeats of inequalities 

already generated. It is therefore recommended that the proposed algorithm be modified to overcome 

this difficulty. 
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