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Generation of a Reduced First-Level Mixed Integer
Programming Problem

G.Chagwiza'", BC.Jones?, SD.Hove-Musekwa®, S.Mtisi*

We introduce a new way of generating cutting planes of a mixed integer program by way of taking
binary variables. Four binary variables are introduced to form quartic inequalities, resulting in a
reduced first-level mixed integer program. A new way of weakening the inequalities is presented.
An algorithm to carry-out the separation of the inequalities, being exponential in number, is
developed. The proposed method of cut generation, separation and strengthening is compared to
the Gomory, linear branching and coordinated cutting plane methods. The computational results
show the proposed method to be promising while getting to be complicated as number of variables
increases.
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1. Introduction

Mixed integer program (MIP) is a framework intended to capture discrete decisions and
continuous variables. MIP is sometimes referred to as mixed integer linear program (MILP) and it is
simply a special case of linear programming (LP) in which some of the decision variables are
constrained to take only integer values. Resource allocation problems are inherently discrete, and
therefore MIPs (Richards and How [21]) is extensively being used. Model formulations that possess
tight linear relaxations are important in designing effective heuristic solution procedures for a MIP
(Sherali et al. [24]). Solvability of discrete mathematical programs depends on how the model
approximates the convex hull of feasible solutions within the region of optimal solution. Polyhedral
approaches of discrete programming are means for approximating the convex hull of integer
programs. Disaggregation is one of the many methods introduced to produce a tighter representation
of MIP (see Barnhart et al. [6] and Johnson et al. [14]). Disaggregation techniques increase the
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number of constraints while preserving problem sparsity and significantly tighten the continuous
relaxation of the problem.

In practice, the first level relaxation is usually the most useful. Our research will focus on the
reformulation linearization technique (RLT) introduced by Sherali and Adams [23]. RLT is a
framework for constructing strong linear relaxations. A lift and project cutting plane algorithm was
developed for a partial first level RLT relaxation that considers one binary variable at a time and its
computational results are promising (Balas et al. [4]). RLT considers the facial disjunctive program,

Minimize{cTx:x € X N Y}, (1)
where X is a nonempty polytope, Y is the conjunction of @ disjunctions given by,
¥ = Nuev (Uieq, x:ai'x 2 b}), (2)

with U = {1, -1}, and at least one of the inequalities aj'x > b}*, for i € Q,, must be satisfied for
each u € U. Convex hull of feasible solutions may be recursively constructed via the following
relations, as proposed by Balas [5], where K, = X:

K, = conv[UiEQu (Ky—1 N {x:afx = b}‘})], foru=1,---,14, 3)
to obtain the relationship
Ky S K, S CK;=conv(XNY). 4)

One can represent K,, for 0 -1 MIP as follows:
Ky = conv[(Ky—1 N {x:xy, 0D U (Ky—1 N {13y = 1] )

Sherali and Adams [23] generated a hierarchy of relaxation of (4) using RLT. By this process,
each constraint in K,_; is multiplied by x, and 1 —x,,. The linear inequality, say u’x <9, is
multiplied by each variable in turn to give (u”x)x, < 8x,. The resulting nonlinear program is
linearized using the variable substitution technique, thereby replacing each distinct product of
variables by a single new variable. This yields a new convex hull of feasible solutions if applied n
times and using the identity x2 = x.

Consider the feasible region X which is defined in terms of binary variables x;,---,x, and
bounded continuous variables y;, -+, y;,,. Consider the dth level of the RLT relaxation for 0 < d <
n (Sherali and Adams [23]), with the bound factors of order d as

Fa(1)2) = [Hjeh xj][HjEJZ (1 - xj)]: V]i,J €N ={1--n}, (6)
n
suchthat J/; nJ, =@ and J; U J, = d, where F,(@,?) = 1. For any given d, there are (d >2d such

bound-factors. The lowest level of RLT relaxation is the most widely used in order to control the size
of the resulting relaxation and it has proved to be effective to obtain tight lower bounds for the
original problem. This new LP relaxation of the problem is stronger than the LP relaxation of the
original problem. The projection of the resulting LP formulation into the space of the original x
variables satisfies all simple disjunctive cuts (Laurent [16]). RLT has been extended to mixed 0- 1
LP and global optimisation (Sherali [25]).

There are three main ways of strengthening the first level RLT relaxation in the literature as
outlined below

1. Let X be the n X n symmetric matrix in which X;; = x;, Vi, and let X;; = y;;, V i #j.
Note that X = xx”. Define the augmented matrix
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£ = (i )(i )T - (i f(T). )

We can strengthen the relaxation by adding the constraint that makes X positive semidefinite (Bixby

(8]).

2. Given two inequalities of the form u"x < 6 and vTx < &, we have (8 — uTx)(§ —vTx) >
0 which results in
uTXv —60vTx —su"x + 66 > 0. (8)

3. We can add any valid inequality to Boolean quadratic polytope defined as
n

convs (x +y) € {0,1}n+<2 >:yij =xx;({i,j} € N) . €)]

There are many valid inequalities known for this polytope; see Padberg [20]. Here, we are
proposing a new way of generating cutting planes for first-level RLT relaxations of mixed 0-1
programs motivated by the argument that when the degree of polynomial terms or factors is
equivalent to the number of 0-1 variables, the resulting linear system will represent a polytope whose
extreme points are precisely the 0-1 solutions feasible to the original problem (Sherali and Adams
[23]). The remainder of our paper is arranged as follows. In Section 2, we review recent research in
finding cutting planes. We develop new methods of generating cutting planes in Section 3. In Section
4, a new way of weakening the inequalities is presented and strengthening of the inequalities is
carried out in Sections 5. We implement the algorithm and executes the program on numerical
examples, comparing the results obtained with those of the instances in Section 6. Conclusions are
drawn in Section 7.

2. Review of Recent Work on Cutting Planes

Recent research has been carried out on ways of finding cutting planes. Amaldi [3] introduced
generation of coordinated cutting planes and the method reduces the number of branch-and-bound
nodes. Generation of valid inequalities that simulteneously maximizes the cut violation and measure
of diversity between the new and previously generated cutting planes have been suggested and the
method was named to be bi-criteria method (Amaldi [2]). The cuts generated by this method were
strong as compared to those obtained by maximizing the cut violation.

Choosing good separation methods may assist in handling large-size problems and effectively
reducing the computational time (Ben-Ameur [7]). Neumaier and Shcherbina [19] introduced the
idea of safe cuts which were further developed in the work of Cook et al. [9]. The floating-point
arithmetic and mixed-integer rounding procedure were introduced. A research of Margot [18]
attempted to compare cut generators using a method referred to as random diving towards a feasible
solution. The method depends on the cut generator and precision of the LP. Integer linear
combinations of rows of optimal simplex tableu were used to generate split cuts in a study of
Cornuéjols and Nannicini [11].

3. Generating New Cutting Plane

3.1 Generation by taking binary variables only
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We first construct a quartic valid inequality that is an inequality of up to four x variables without
a y value. Let x;, x; xi, and x; be binary variables. We can generate the following five quartic
inequalities:

X Xjxpx; = 0, (10)

xixjx (1 —x) =0, (11)
xixi(1—x)(1—x) =0, (12)
xi(1=x)(A—x)(1—x) =20, (13)

(1 =x)(1 = x)(1 = x)(1 —x)=0. (14)

Similarly, one can formulate inequalities for other x combinations. Our work here considers the
above inequalities (equations (10) to (14)), for brevity.

3.2 Generation by using inequalities

Given inequalities of the form

uTx <o, (15)
vix <6, (16)
YTx <7, (17)
alx <, (18)
and binary variables x,, and x,, we can generate quartic valid inequalities as
@ —u"x)( 6 —vTx)(T—yPTx)x,, =0, (19)
0 —p"0)(E v - P x)(1 —xpy) 20, (20)
O —uTx)(6 —vTx)xpx, =0, (21)
@ —uTx)(6 —vix)x,,(1—x,) =0, (22)
(6 —u"x) (6 = v (1 = x)(1 = xp) 2 0. (23)

It is also possible to take one linear inequality, say (15), and three binary variables, say
Xm X, and x,., to generate

(0 — uTx)xpxx, =0, (24)

@ — u"x)xpx,(1—x,) =0, (25)

(9 - MTx)xm(l - xn)(l - xr) = 0. (26)

(9 - .uTx)(l - xm)(l - xn)(l - xr) = 0. (27)

We can take four linear inequalities, (15) to (18), of the system Ax < b and form the quartic equality
as

(0 —u"x)(6 —vix) (T —yPpTx)(¢ —a’x). (28)
We can deal with quartic terms of the form x;x;x x; using Lemma 3.1 below.

Lemma 3.1. Letx;, x;, x;, and x; be variables all constrained to belong to the interval [0,1]. Let
Yij = XiXj = (xixj)zi YVik = XiXk = (xixk)2: Yiu = XiX; = (xixl)z' YVik = XjXg = (xjxk)zl YiL =
xjx; = (x;x7)%, and yj; = x,x; = (x,x;)* Then, the following lower and upper bounds on
x; XX x; hold:
X XXX = max{0; yii + Vi +Yu — X5 Yij tVik T Vi — X5 Yik + Vik T Y — Xk

Vit Y+ Y — X1} (29)
X XXXy < minfyij, Yie, Yio Yik v VitV 1= xi =% —xx =X+ yij + Ve + Yu + Vi +
Vit + Vi) (30)

Proof. The inequality x;x;xx; = 0 is trivial. The fact that (1 — x;)(1 — x;)(1 — xy) (1 — x;) must
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be non-negative proves the inequalities x;x;x,x; = ¥i; + Yue + Y — Xip XiXjXeXy = Yji + Yji — X;,
Xl'ijkxl = Yik + y]k — Xg and xix]-xkxl = Yit + Vil — Xk- Since Xinxk(l — Xl) is non-negative, it
follows that XiXjXp Xy < Vij-

Similarly, inequalities XiXjXpX| < Vi XiXjXp X < Y XiXjXp X < Vikr XiXjXpX) < Yiv
XiXjxx; < yi hold. The fact that (1 — x;)(1 — x;)(1 — x,) (1 — x;) is non-negative proves the
inequality XiXjXp X < (1 —X; T Xj — X — Xy + Yij + yik +yiu + Vik + Vit + ykl)' O

4. Weakening inequalities

Cutting planes can be produced by weakening the inequalities (24) to (27). Since x,,,, x, and x,
are binary variables, at least two of them are equal. Suppose in this case that x,, = x,.. We have
XmXnXyr = xmxrzl = Ymn- (31)
The quartic inequality (24) can be rewritten as
(6 — uTx)xpxx, = 0,
WiXiXmXnXy < (0 — Um — fn — Ur) XipXn X,
< (0 — tn — tn = Ky )X X5,
< (0 — thm — Un — ty)Ymn-
We can generalise the inequality as
ZieQ\{m,n,r} HiXiXmXn Xy < (9 —HUm — Un — .ur)(:)’mn + Ymr + ynr)- (32)

If x,,, = x,,, then quartic inequality (25) can also be rewritten as
@ - #Tx)xmxn(l —x) 20,
OXmXp — 0XmXnXy = (1 X)Xy — (U X)X X0 X,
OVmn — OXmXnXy 2 WiXiXmXn — WXiXmXnXy — UmXmXnXy — UnXnXy
—HrXnXy,
Hi (xixmxn - xixmxnxr) = (9 - :um)ymn — XmXnXr (9 - .um) + UnYnr t UrYar,
Hi (yim - xixmxnxr) < (9 - :um)ymn - Ymr(e - ,le) + UnYnr + Uy Ynr-
Therefore, ZiEQ\{m,n,r} M (Yim + Yin — xixmxnxr) < (9 - rum)(Ymn —Ymr — ynr)
+(tn + Ur)Ynr- (33)

Inequality (26) is rewritten as
(9 - .uTx)xm(l - xn)(l - xr) =0,
(0 — uTx) (= 2% + XpXpxy) =0,
Oxm — 20Ymr + OxmXnXr — 1 [Yim — 2X XXy + xixmxnxr] — UmXm
+2UmYmr — HmXmXnXy = UnYnr 2 0,
.ui[Yim = 2XiXm Xy + xixmxnxr] < Oxpy = 20Ymy + OxpXn Xy
—HmXm + 2UmYmr — BmXmXnXr = UnYnr
Hi [Yim - inxrzn + xixmxnxr] < Oxp — 20y + exrznxr
~HmXm + 2UmYimr — #mxrznxr — UnYnr-
It follows that
ZiEQ\{m,n,r} Hi [xixmxnxr - yim] <(6- .um) (xm —Ymr — ynr) — UnYnr- (34)

Similarly, (27) is rewritten as

0 —p"x)(1 = x,) (1 = x)(A —x,) 20,
9(1 —Xm — Xn — Xr +ym +Yn +Yr) + mexnxr _.ui(xi —Xm — Xn — Xr

—Yim — Yin — Yir — xixmxnxr) + .um(xm - ymr) + .un(xn - ynr)
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—Urxy 20,
.ui(xi —Xm — Xn — Xy = Vim — Yin — Yir — xixmxnxr) < 9(1 —Xm — Xn — xr)
+9(3’m + Yn + yr) + P‘m(xm - Ymr) + :un(xn - an) — UyrXy + mexnxr-

If x,,, = x, = X, then x,, x,x, = x2x, = x,.. Therefore,
ZiEQ\{m,n,r} .ui(xi —Xm — Xn = Xr = Yim ~ Yin — Vir — xixmxnxr)
< 9(1 —Xm —Xp — xr) + Q(Ym +yn + Yr) + .um(xm - Ymr) + .un(xn - ynr)
+x,.(60 — ). (39)

Using Lemma 3.1, inequalities (32) to (35) can be weakened by substituting x;x,,, x,,x,- with the right
hand side of (29) and (30) for lower and upper bounds respectively. Consider the mixed integer 0-1
program given by

Min cTx
subject to ¥7_ ay;xj = by, for k=1,-+,m, (36)
0 <x <e, x; binary, for i € B, x; continuous, for i € C, (37)

where B ={1,-,n}, C ={n; +1,---,n},and e = (1,---,1)T. Multiplying the MIP by the bound-
factors x; and (1 — x;), Vi € B, and linearizing the problem for x? = x;, Vi € B, and substituting
Yij = xixj, Vi < j, we obtain the first level RLT problem as follows:

Min c"x

SUbjCCt to (akl- - bk)xi + Zj;ei akjy(l-j) =0,V k = 1,---,m, Vi € B, (38)
bixi +Zj¢i akj(xj _y(l])) > bk! V k= 1,--~,m, Vi € B, (39)
OSyU < Xx; and 0 < (xj_yij) < (l—xl-), VieB, JEN, i <j, (40)

where N = {1,---,n} = BUC.

Theorem 4.1. Let RLT be feasible, and define RLT as a formulation of RLT to which the implied
original constraints (36) have been added. Then, there exists a dual optimal solution of RLT such that
foreach k = {1,---,m} and i € B, the dual variable associated with at least one of the equalities (38)
and (39) is zero. Hence, deleting such constraints from the RLT with associated dual multipliers
being zero would yield a reduced first level RLT relaxation that preserves the lower bounding
objective value of RLT.

Proof. See Sherali et al. [24]. O
By Theorem 4.1 we can safely discard (32) to (35) and concentrate on (32).

Theorem 4.2. For any set {m,n,r} c A, let M,N,R and K be disjoint subsets of Q\{m,n,r}. Let
P =Q\[{mnr}UMUNURUK], and let uTx < 6 be one of the inequalities of the system Ax <
b. Then, the following exponential large inequalities hold:

Yiemuk KiVim +ZieNuK KiYin T ZieRuI{ WiYir — Diek KiXi < ._.“(Kmin)
Fu(M™MAX Y KMy 4 (N Y KM 4 (R™MAX y KMy (41)
+(9 - y[{m, n, T} U MMa¥ y Nmax y Rmax y gmin Pmin])

Omn + Ymr + Ynr)-

Proof. From Lemma 3.1, the inequality (32) can be weakened by replacing x;x,,x,x, with y;, +
Yin + YVir — X, when i € Kmax’ Yim t Ymn + Ymr — Xmo when { € M™% Yin t Ymn + Ynr —
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Xn, When i € Ny 4+ yoo + Y — X, When i € R™%*, 0, when i € P, y,,., when i €
M™", yin, when i € N™™, y;,., when i € R™", 1 —x; — X — X — X + Yim + Vin + Yir +
Ymn + Ymr + Ynr» when i € K™ and yyun + Vi + Vi, When i € P,

Rearranging proves (41). o

The produced inequalities are exponential in number. The separation can be achieved in a

polynomial time as (10) to (28) are polynomial in number. There are z choices for the inequality
|A]

ufx < 6 and (3 ) choices for {m, n,r}. If we assume that u, 8, m, n, and r are fixed. Then (41)

IS rewritten as
ZiEMmax .ui(yim + Ymn + Ymr — xm) + ZieNm“x .ui(yin + Ymn + Ynr — xn)
+ZieRm“x :ui(yir + VYmr + Ynr — xr) + ZieKmax .ui(:)’im t Vin + YVir — xi)
+ Diemmin HiYim + Lienmin HiYin T Liegmin WiYir + Xiegmin fi(1 — x; —
Xm = Xn = Xr T Yim t Vin + Vir + Ymn + Ymr + ynr) + Ziepmin .ui(:)’mn + Ymr + ynr) (42)
< (0 — tm — Ha — ) Omn + Yir + Yor)-

We examine the left hand side of the inequality to find the most violated {m, n, r} inequality. Below,
an algorithm is suggested to carry-out this task:

START Placei ineitherset M, N, R, K,or P
if u; > 0 then
Find max{ylfkm + y;;m + y;;w - x:n; yi*n + y;;m + y;;r - x:l; Yi*r + y;;w + y;{r - x;; yi*m +
Yin +y_ir __xi; 0}
(Break ties arbitrarily)
else if u; < 0 then
Find mil’_l{l - xz* __ x;‘;l - x‘;kl - x; + ygkm + y;n + yi*r + y;;ln + y;;lr + y;{r; y;;ln + y;w + yﬁr}
(Break ties arbitrarily)

elsey; =0
Place i in any set
STOP

5. Strengthening Inequalities

We strengthen the inequalities using the disjunctive argument.

Lemma 5.1. For any pair {m,n,r} c A, for every binary vector x € {0,1}%, the following
disjunctive terms are satisfied:

e =0Ax,=x, =DV, =0Axp,, =%, =1D)V(x, =0Ax,,, =x,=1)

Vit =1Ax,=x=0)V(x,=1Ax, =X,
Vi =x,=0Ax, =) V(x, =x,=1Ax,
V=% =1Ax, =0)V(x, =x,=0Ax,,

VX =x,=x,=1)V (x, = x, = X,

Using Lemma 5.1, we can strengthen the inequality,
defined as in Theorem 4.2.

=0V =1Ax, =x,=0)
=0)Vx,=x,=0Ax,=1)
=DV, =x=1Ax, =0)
=0). (43)

if we let m,n,v,M,N,R,K,u and 6 be
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Theorem 5.2. Let
H,, = min{uM*; (0 —u({m}UN-UR- UK~ UP7)},

H, = min{uN*; (6 —u({fn}UM~"UR" UK~ UP7)}
and
H, = min{uR*; (6 —u({r}UM~-UN- UK~ UP7)}.
Then, equation (44) is valid for Q:
Yiemuk Hi¥im + Zienvk Kilin T Zieruk MiYir — Diek WiXi < (Hpy + UK )Xy
(H, + uK )x, + (H, + uK )x,. + (6 — H,, — H, — Hr —u({m,n,r}
U P_))YmnYernr - .UK_- (44)

Proof. Using the disjunctive terms in (43), taking x,, = x,, = x,- = 0 and substituting into the left
hand side of (44), we get — Y.;cx p;ix; Which should not exceed —uK ™. Substituting x,,, = 0 and
X, = x, = 1 reduces the left hand side of (44) to }.;ep wix; Which cannot exceed H,,,. We can do the
same for the other disjunctive terms. If x,, = x,, = x,, = 1, then the left hand side reduces to
Yiemunuruk Mix; which also cannot exceed 6 — u({n,m,r} U P~). Therefore, the left hand side
does not exceed the right hand side of (44) in any of the disjunctive terms. o

6. Computational Analysis

To explore efficiency of the proposed method for generating cutting planes, separation and
strengthening, 26 instances were taken from the second DIMACS challenge on max-clique, coloring,
and satisfability; see Johnson and Trick [15]. The instances were subjected to the proposed method,
coordinated cutting plane (COORD) method of Amaldi et al. [3], local branching (LB) method
(Rodriguez-Martin and JoseSalazar-Gonzalez[22]) and the Gomory method (Gomory [12]). The
instances were solved in MATLAB 7.0.4.365 environment using the Cplex solver provided by
TOMLAB 7.9, an optimization environment in MATLAB, recording the number of cuts, time and
the number iterations required to reach the bound; see Holmstrom [13] for a full description of
TOMLAB and how it can be used.

In order to ensure that the proposed inequalities are not repeated, each linear inequality was also
multiplied by the complement of each variable, to obtain n linear inequalities. The complexity of the
proposed algorithm in ensuring that there were no repeatitions is a challenge needing further
investigation. This has led to a limitation on the number of variables for the instances with a
maximum of 15 variables. Verticies in nonincreasing order were sorted and added to the subset of
vertices one at a time until a maximal clique was formed. Those that violeted a constraint were
discarded. This technique was used to ensure that the inequalities already generated were not
repeated in consecutive iterations. The method was used by Amaldi et al. [3].

Table 1 presents the comparison of the results recorded for the Gomory, COORD, local branching
(LB) algorithms and our proposed method. The results show that the Gomory, COORD and LB
algorithms are slower than our proposed method to achieve the bound. The proposed method
required fewer number of iterations to achieve the bound, while the Gomory, COORD and LB
required the on average, 5 more iterations to achieve the bound. The proposed method produced
fewer cuts as iterations increased, thereby needing less CPU time as compared to the other methods.
Considering all the instances, LB produced between 1.81 and 2.21, COORD produced between 1.21
and 1.34 and Gomory produced between 2.0 and 2.9 times more cuts than the proposed method. The
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computational results has shown the proposed method to be promising.
Table 1. Comparison of proposed method with the Gomory, COORD and LB methods

Instances COORD Local Branching | Gomory Proposed

Bound | Iter | Cuts | Time | Iter | Cuts | Time | Iter | Cuts | Time | Iter | Cuts | Time
1-Fulllns_ 3 3.3 13 |13 |0.0 11 |11 |0.0 14 114 ]0.0 10 |8 0.0
1-Insertions 4 | 2.8 218 | 218 | 24.3 188 | 188 | 225 |218|218 | 243 |165| 158 | 19.0
3-Fulllns_3 5.2 36 |36 |02 19 |19 |01 35 |35 |02 17 |17 ]0.1
3-Insertions_3 | 2.3 202 | 202 | 8.6 181 | 181 | 8.7 205 | 205 | 9.6 167 | 153 | 8.7
c-fat200-1 12.0 186 | 186 | 1.4 166 | 166 | 1.4 188 | 188 | 1.6 142 1 142 | 1.0
c-fat200-5 66.7 254 | 254 | 6.6 204 |1 204 | 5.2 255|255 | 7.0 188 | 185 | 5.0
david 11.0 31 |31 |02 24 124 |0.2 31 |31 |02 23 |21 |0.2
huck 11.0 26 |26 |0.1 23 |23 |0.1 25 |25 |0.1 20 |20 |0.1
jean 10.0 25 |25 |01 20 |20 |0.1 26 |26 |0.1 18 |14 |01
johnson16-2-4 | 8.0 20 |20 |34 20 |20 |57 20 |20 |57 20 120 |29
johnson8-2-4 | 4.0 10 |10 |0.0 10 |10 | 0.0 11 |11 |01 8 8 0.0
mug88 1 3.0 364 | 364 | 4.0 270 | 270 | 3.1 366 | 366 | 4.1 2431236 | 2.7
myciel3 2.9 14 |14 0.0 12 |12 |0.0 14 114 |0.0 10 |9 0.0
petersen 2.5 13 |13 0.0 7 7 0.0 14 |14 [0.0 6 6 0.0
queen5 5 5.0 5 5 0.0 5 5 0.0 5 5 0.0 5 5 0.0
queen8_8 8.4 123 | 123 | 3.4 112 | 112 | 3.1 124 | 124 | 3.8 102 | 102 | 24
queen9 9 9.0 252 | 252 | 12.1 256 | 256 | 12.8 | 251|251 |121 |251|251 |12.0
r125.1c 46.0 54 |54 |26.3 54 |54 936 |52 |52 |27.0 |48 |48 |23.1
sudokuc 9.0 20 |20 |13 22 | 22 2.1 24 | 24 1.3 20 | 20 1.3
ship-shipc 19.0 29 |29 |08 30 |30 1.2 32 132 |20 29 |25 |07
knights8 8c 32.0 110 | 110 | 3.9 67 |67 |33 115 | 115 | 4.0 68 |68 |33
kneser8-3c 28.0 9% |96 |49 59 |59 5.4 96 |96 |5.0 59 |59 5.0
barleyc 20.0 27 |27 | 0.6 26 |26 |0.8 27 |27 | 0.6 25 |24 |08
alarmc 18.0 19 |19 |0.2 19 |19 |03 19 |19 |0.2 18 |18 |0.2
lubgc 30.5 57 |57 |37 49 |49 |42 59 |59 |37 40 |40 |29
hamming6-2 32.0 105 | 105 | 1.9 82 |82 1.5 111 | 111 | 2.9 71 |71 1.4

Fig. 1 and fig. 2 present graphical illustrations of the performance of the Gomory, COORD, LB
and the proposed method for the cases queen8 8 and huck, respectively, as a function of the
iterations. The graphical charts illustrate notable improvement provided by the proposed method,
notably in the earlier generation of the cutting planes. The proposed method also provides tighter
bounds as compared to the Gomory, COORD and LB algorithms, thereby converging faster than the
other considered algorithms.
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Figure 1. Comparison of the proposed method , COORD, LB and Gomory using queen8_8
as the instance.
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Figure 2. Comparison of the proposed method , COORD, LB and Gomory using huck as the
instance.
5.1 Statistical analysis

An analysis of variance (ANOVA) parametric statistical test was performed using the SPSS
version 20.0.0 software package to compare the time value. This was done to compare the obtained
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results. The results of the LB algorithm and the proposed method are compared, since it is reported
in the literature that LB algorithm presents best results (Rodriguez-Martin and JoseSalazar-
Gonzalez[22]). The significance level is considered at 5%. The null hypothesis is taken to be that the
results of the proposed method and that of the LB algorithm are not significantly different while the
alternative hypothesis is that the difference is significant. Table 2 presents the ANOVA results from
SPSS. The results in Table 2 show that the p-value is 0.0 (0.0< 0.05) and we may conclude that there
is a significant difference between the local branching algorithm and proposed method interms of
the execution time and number of iterations in achieving optimality. The ANOVA table shows that
the proposed method performs better as compared to the local branching method.

Table 2. SPSS output table for the ANOVA test of local branching and the proposed method

Source of Sum of DF Mean square | F P- Value
variation squares

Between 76.0 1 76.0 5.7 0.0
groups

Within groups | 992.0 25 10.0

Total 1068.0 26

7. Conclusion

There are several ways of generating cutting planes of a MIP. Using binary values to develop
quartic inequalities seems to be promising. Generated inequalities can be weakened easily to
generate the cutting planes of a MIP. Separation is achieved in a polynomial time and the proposed
algorithm to carry-out this task seems to be promising. It is therefore recommended that further
research be focused on development of prototypes or solvers that include several generations of first-
level reduced MIPs, which are easier to solve. The proposed algorithm for cutting planes generation
becomes complicated as the number of variables increases and may lead to repeats of inequalities
already generated. It is therefore recommended that the proposed algorithm be modified to overcome
this difficulty.
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