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Boundedness of KKT Multipliers in Fractional Programming                

Problem Using Convexificators 
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Here, using the idea of convexificators, we study boundedness and nonemptiness of lagrange 

multipliers satisfying the first order necessary conditions. We consider a class of nonsmooth 
fractional programming problems with equality and inequality constraints and an arbitrary set 

constraint. Within this context, we define a generalized Mangasarian-Fromovitz type constraint 
qualification and show that this constraint qualification is necessary and sufficient conditions 

for the Karush-Kuhn-Tucker (KKT) multipliers set to be nonempty and bounded. 
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1. Introduction 
 

We discuss bounded and nonemptiness of Lagrange multipliers satisfying the first order necessary 

conditions. Bounded and nonemptiness of the Karush-Kuhn-Tucker (KKT) multipliers set for 

optimization problems have been studied by several researchers in recent years. A necessary and 

sufficient regularity condition for nonempty and boundedness of KKT multipliers set for a 

differentiable scalar optimization problem with equality and inequality constraints were derived in 

Gauvin [9]. For a nonsmooth scalar optimization problem, a necessary and sufficient condition for 

the set of multiplier vectors to be nonempty and bounded were obtained ([19] and [20]). In the more 

general setting of Banach spaces, Jourani [13] introduced several constraint qualifications, and 

showed that the conditions guarantee the nonemptiness and the boundedness of the Lagrange 

multiplier sets for general nondifferentiable programming problems. Also, Li and Zhang [15] 

introduced constraint qualifications and studied existence and boundedness of the KKT multipliers 

set for a nonsmooth multiobjective optimization problem with inequality constraints and an arbitrary 

set constraint, where all functions were locally Lipschitz. 

 

Convexificator is viewed as a generalization of the idea of subdifferential, in as much as many of 

the well-known subdifferentials, such as those by Clarke, Michel Penot and Treiman, are 

convexificators for locally Lipschitz functions. They are always closed sets, but not necessarily 

convex or compact, unlike the well-known subdifferentials which are convex and compact objects. 

The concept of convexificator was first introduced by Demyanov [4] in 1994 as a generalization of 

the notion of upper convex and lower concave approximation. Recently, the idea of convexificators 

has been employed to extend and strengthen various results in nonsmooth analysis and optimization 

(see [4, 5, 7, 11, 12, 16, 23]). For a locally Lipschitz function, most known subdifferentials are 

convexificators and these known subdifferentials may contain the convex hull of a convexificator; 

see, for instance, [5, 12, 24]. Optimality conditions were also discussed for vector minimization 

problems in terms of convexificators. For nonsmooth optimization problems, various results 

concerning Fritz-John type and KKT type necessary optimality conditions that use convexificators 

have been developed in [11, 16, 23, 24]. Later, Golestani et al. [10] obtained nonsmooth analogue of 

the generalized Mangasarian-Fromovitz constraint qualication by using the upper semi-regular 
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convexificators and for efficient solutions, thay derived strong KKT necessary optimality conditions 

for a nonsmooth multiobjective optimization problem with inequality constraints and an arbitrary set 

constraint. Upper semi-regular convexificator is a strengthened version of an upper convexifictor. 

Babahadda and Gadhi [1] studied necessary optimality conditions with the help of an appropriate 

regularity condition using convexificators for bilevel programming problems. Recently, Gadhi [8] 

established necessary and sufficient optimality conditions for a multiobjective fractional 

programming problem in terms of convexificators. 

 

Our aim here is to introduce generalized Mangasarian-Fromovitz type constraint qualification for 

a nonsmooth fractional programming problem with equality constraints, inequality constraints and an 

arbitrary set constraint via convexificator and show that are necessary and sufficint conditions for the 

KKT multipliers set to be nonempty and bounded. Since the Clarke and the Michel-Penot 

subdifferentials of a locally Lipschitz function are convexificators, the results in our work are valid 

with the convexificators being replaced respectively by the Clarke and the Michel-Penot 

subdifferentials. 

 

The remainder of our work is organized as follows. In the Section1, we introduce notations and 

give the basic definitions of convexificators and derive some preliminary results to be used in the rest 

of the article. In the Section2, we introduce an extended version of the Mangasarian-Fromovitz type 

constraint qualification for a nonsmooth fractional programming problem with equality constraints, 

inequality constraints and an arbitrary set constraint via convexificator. Furthermore, for this problem 

with locally Lipschitz objective and inequality constraint functions and continuously differentiable 

equality constraint functions, a necessary and sufficient condition is presented for the set of KKT 

multipliers to be nonempty and bounded. 

 

2. Preliminaries 
 

Throughout our work, ℝn is the usual 𝑛 −dimensional Euclidean space. Let 𝑆 be a nonempty 

subset of ℝn. The convex hull and closure of S are denoted by 𝑐𝑜𝑆 and 𝑐𝑙 𝑆 , respectively. The negative 

and strictly negative polar cones S
-
 and S

s
 are defined respectively by 

 

          S
- : = {𝑢 ∈ ℝ𝑛| 〈𝑥, 𝑢〉 ≤ 0  ∀𝑥 ∈ 𝑆},              𝑆𝑆:={𝑢 ∈ ℝ𝑛| 〈𝑥, 𝑢〉 < 0  ∀𝑥 ∈ 𝑆}. 

 

The Clarke tangent cone 𝑇𝐶  (𝑆, 𝑥) and the Clarke normal cone 𝑁𝐶  (𝑆, 𝑥) to S at 𝑥 ∈ 𝑐𝑙 𝑆    are 

defined respectively by   

 

  𝑇𝐶 (𝑆, 𝑥) ≔ {𝑑 ∈ ℝ𝑛 : ∀ 𝑥𝑘 ∈ 𝑆, 𝑥𝑘 ⟶ 𝑥, ∀ 𝑡𝑘 ↓ 0, ∃ 𝑑𝑘 ⟶ 𝑑  such that  𝑥𝑘 + 𝑡𝑘𝑑𝑘 ∈ 𝑆, ∀𝑘  },   
 

   𝑁𝐶 (𝑆, 𝑥) ≔ 𝑇𝐶 (𝑆, 𝑥)− ≔ {𝜉 ∈  ℝ𝑛 ∶  〈𝜉 , 𝑑〉 ≤ 0  ∀ 𝑇𝐶 (𝑆, 𝑥) }. 
 

It is well-known that 𝑇𝐶  (𝑆, 𝑥)  and 𝑁𝐶  (𝑆, 𝑥) are always nonempty, closed and convex. Let 

𝑓: ℝ𝑛 → ℝ̅ ∶= ℝ ∪ {+∞} be an extended real valued function and, 

 

𝑓−(𝑥; 𝑣) ≔ lim
𝑡↓0

𝑖𝑛𝑓   
𝑓(𝑥+𝑡𝑣)−𝑓(𝑥)

𝑡
    and    𝑓+(𝑥; 𝑣) ≔ lim

𝑡↓0
𝑖𝑛𝑓   

𝑓(𝑥+𝑡𝑣)−𝑓(𝑥)

𝑡
 

 

denote, respectively, the lower and upper Dini directional derivatives of  f  at x in direction v. It is 

worth mentioning that if  𝑓: ℝ𝑛 → ℝ is locally Lipschitz, then both the lower and upper Dini 
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derivatives exist finitely. Now, we recall the definitions of upper and lower convexificators  from 

[12]: 

 f  is said to have an upper convexificator (respectively, upper regular convexificator) at x ∈
ℝn if there is a closed set ∂∗f(x) ⊂ ℝn  such that for each v ∈ ℝn, 

 

𝑓−(𝑥; 𝑣) ≤ 𝑠𝑢𝑝𝜉∈𝜕∗𝑓(𝑥)〈𝜉, 𝑣〉     (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 𝑓+(𝑥; 𝑣) = 𝑠𝑢𝑝𝜉∈𝜕∗𝑓(𝑥)〈𝜉, 𝑣〉  ). 

   
 f is said to have a lower convexificator (resp., lower regular convexificator) at x if there is a 

closed set 𝜕∗𝑓(𝑥) ⊂ ℝ𝑛 such that for each 𝑣 ∈ ℝ𝑛, 

 

𝑓+(𝑥; 𝑣) ≥ 𝑖𝑛𝑓𝜉∈𝜕∗𝑓(𝑥)〈𝜉, 𝑣〉        (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 𝑓−(𝑥; 𝑣) = 𝑖𝑛𝑓𝜉∈𝜕∗𝑓(𝑥)〈𝜉, 𝑣〉  ). 

 

A closed set  𝜕∗𝑓(𝑥) ⊂ ℝ𝑛 is said to be a convexificator of f at x if and only if  it is both upper 

and lower convexificator of f at x. 

 

Convexificators are not necessarily convex or compact. These relaxations allow applications to a 

large class of nonsmooth functions. The upper convexificator is also known as the Jeyakumar-Luc 

subdifferential of f at x [24]. We point out that if a continuous function 𝑓: ℝ𝑛 → ℝ̅ admits a locally 

bounded upper convexificator at x, then it is locally Lipschitz around the point (see [12]). In [11], the 

notion of convexificator was extended and used to unify and strengthen various results in nonsmooth 

analysis and optimization. Along the lines of [7], we now give the definition of upper semi-regular 

convexificators which will be useful later: 

 

 The function 𝑓: ℝ𝑛 → ℝ̅ is said to have an upper-semi regular convexficator at 𝑥 ∈ ℝ𝑛 if 

there is a closed set 𝜕∗𝑓(𝑥) ⊂ ℝ𝑛 such that for each 𝑣 ∈ ℝ𝑛 , 𝑓+(𝑥; 𝑣) ≤ 𝑠𝑢𝑝𝜉∈𝜕∗𝑓(𝑥)〈𝜉, 𝑣〉. 

 

 f is said to have a lower semi-regular convexificator at 𝑥 ∈ ℝ𝑛 if there is a closed set 

𝜕∗𝑓(𝑥) ⊂ ℝ𝑛 such that for each 𝑣 ∈ ℝ𝑛 , 𝑓−(𝑥; 𝑣) ≥ 𝑖𝑛𝑓𝜉∈𝜕∗𝑓(𝑥)〈𝜉, 𝑣〉.  

 

Obviously, an upper (lower) regular convexificator of f is also an upper (lower) semi-regular 

convexificator of f and each upper (lower) semi-regular convexificator is an upper (lower) 

convexificator. Moreover, convex hull of an upper semi-regular convexificator of a locally Lipschitz 

function may be strictly contained in the Clarke and Michel-Penot subdifferential (see Example 2.1 

of [12]). 

 

Example 1.1. Let ℚ denote the set of rationals and consider f: ℝ → ℝ  given as follows 

 

𝑓(𝑥) = {

sin 2𝑥,            𝑖𝑓 𝑥 ∈ ℚ⋂[0, +∞)

𝑥3 − 3𝑥       𝑖𝑓 𝑥 ∈ ℚ⋂(−∞, 0]
 0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

  

 

 

Observe that in this case for the point x = 0 we have the upper and lower Dini derivatives given 

as follows: 

 

𝑓(𝑥) = {
2𝑣         𝑖𝑓 𝑣 ≥ 0
−3𝑣      𝑖𝑓 𝑣 < 0

  ,    𝑓−(0; 𝑣) = 0, (∀ 𝑣 ∈ ℝ ).  

 

The sets {−3, 2} and [−3, 2] are upper semi-regular convexificators of  f at x = 0. 
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Since for all 𝑣 ∈ ℝ, 𝑓−(𝑥; 𝑣) ≤ 𝑓+(𝑥; 𝑣) , an upper semi-regular convexificator is also an upper 

convexificator of f at x. The converse is not necessarily true. 

 

Remark 1.2. It is clear that every differentiable function has an upper regular convexificator given 

by ∂∗f(x) = {∇f(x)}. Since a locally Lipschitz function is differentiable almost everywhere, it admits 

upper regular convexificator over a dense set. If f: ℝn → ℝ is locally Lipschitz, then the Clarke 

subdifferential ∂Cf(x) [3], the Michel-Penot subdifferential ∂⋄f(x) [17], the Mordukhovich 

subdifferential ∂Mf(x) [18] and the Treiman subdifferential ∂Tf(x) [22] are examples of upper semi-

regular convexificators for f. 

 

Let us now examine some calculus rules for upper semi-regular convexificators under appropriate 

conditions. The proofs for the following two lemmas are based on the technique used in [12, Rules 

4.1 and 4.2]. 

 

Lemma 1.3. Let ∂∗f(x) be an upper semi-regular convexificator and ∂∗f(x) be a lower semi-regular 

convexificator of  f at x. Then, λ ∂∗f(x) is an upper semi-regular convexifi cator for λf at x for every 

λ > 0 and λ ∂∗f(x)  is an upper semi-regular convexificator for λf at x for every λ < 0. 

 

Lemma 1.4. Assume that the functions f, g: ℝn ⟶ ℝ  admit upper semi-regular convexificators 

∂∗f(x)  and ∂∗g(x)  at x, respectively. Then, ∂∗f(x) + ∂∗g(x)   is an upper semi-regular convexificator 

of  f + g  at  x. 

 

3    Main Results 

 
The present section will be devoted to developing nonempty and boundedness of the KKT 

multipliers set for a fractional optimization problem with equality and inequality constraints and an 

arbitrary set constraint in terms of lower and upper semi-regular convexificators.  

 

Consider the following nonsmooth fractional programming problem: 

 

(P)           min           
𝑓(𝑥)

𝑔(𝑥)
                                       

                             s. t.             𝑘𝑖(𝑥) ≤ 0,        𝑖 ∈ 𝐼 ≔ {1, … , 𝑚}, 
                                                    ℎ𝑗(𝑥) = 0,            𝑗 ∈ 𝐽 ≔ {1, … , 𝑞}, 

             𝑥 ∈ 𝑆,        
 

where 𝑓, 𝑔, 𝑘𝑖 and ℎ𝑗 (for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 ) are function from ℝ𝑛 to ℝ̅ with 𝑓(𝑥)  ≥  0 and 𝑔(𝑥)  >

 0. The active constraint indices at the feasible point 𝑥̅ is denoted by 𝐼(𝑥̅). Here, we assume that all 

the functions 𝑓, 𝑔, 𝑘𝑖, 𝑖 ∈  𝐼(𝑥̅) are locally Lipschitz around 𝑥̅ and all the functions 𝑘𝑖 , 𝑖 ∉  𝐼(𝑥̅), are 

continuous at 𝑥̅. Suppose, in addition, that all the functions ℎ𝑗 , 𝑗 ∈  𝐽 are continuously differentiable 

and 𝑆 is an arbitrary subset of ℝ𝑛. Also, for the vector function ℎ ∶=  (ℎ1, . . . , ℎ𝑞), we define 

 

𝐻 ∶=  {𝑥 ∈  ℝ𝑛
∶  ℎ(𝑥)  =  0 }. 

 

Let 𝑥̅ be a feasible point for problem (𝑃). Denote the set of all KKT multiplier vectors associated 

with the inequality and equality constraints by Λ(𝑥̅), i.e., (𝜇, 𝜆) ∈  ℝ𝑚  × ℝ𝑞 , belong to Λ(𝑥̅) if and 

only if 
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0 ∈ 𝑐𝑜 𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅ )𝑐𝑜 𝜕∗ 𝑔(𝑥̅) + ∑ 𝜇𝑖

𝑚

𝑖=1

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + ∑ 𝜆𝑖

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) + 𝑁𝐶  (𝑆, 𝑥̅), 

𝜇𝑖 ≥ 0,         𝜇𝑖𝑘𝑖(𝑥̅  ) = 0,   ∀𝑖 ∈ 𝐼, 
 

where 𝜑(𝑥̅ ) =
𝑓(𝑥̅)

𝑔(𝑥̅)
. 

 

In the rest of our work, using the idea of upper semi-regular convexificators, we introduce a 

constraint qualification of Mangasarian-Fromovitz type for the fractional optimization problem (P) 

and show that this constraint qualification is necessary and suffcint for the KKT multiplier set to be 

nonempty and bounded. 

 

Let us first consider the following nonsmooth optimization problem: 

 

(P̃)           min           𝐹(𝑥)                                       
                             𝑠. 𝑡.     𝐺𝑖(𝑥) ≤ 0,     𝑖 ∈ 𝐼,     𝑥 ∈ 𝐶,           

 

where 𝐹 ∶  ℝ𝑛 ⟶ ℝ̅  and 𝐺𝑖 ∶  ℝ𝑛 ⟶ ℝ̅  are real-valued functions (for 𝑖 ∈  𝐼) and 𝐶 is a subset of 

ℝ𝑛. The active constraint indices at the feasible point 𝑥̅ is denoted by 𝐼 ̂(𝑥̂̅). 

 

Let 𝑥̅ be a feasible point for problem ( P̃). We say that the (𝐶𝑄1) is satisfied at 𝑥̅ if 𝐺𝑠 ∩ 𝑇𝐶(𝐶, 𝑥̅) 

is nonempty, where 

 

𝐺 ≔ ⋃ 𝑐𝑜𝜕∗

𝑖∈𝐼 ̂(𝑥̂̅)

𝐺𝑖(𝑥̅). 

  

In order to establish our main theorem, we present the following auxiliary result without proof, 

since it follows along the lines of the proof given for [10, Theorem 1]. 

 

Lemma 2.1. Let x̅ be a local optimal solution for ( P̃). Suppose that F and Gi
s are locally Lipschitz 

functions at x̅ which admit bounded upper semi-regular convexificators ∂∗F(x̅) and ∂∗Gi(x̅) for all 

i ∈  I. If (CQ1) holds at x̅, then there exists a vector μ ∈ ℝm  such that 

 

0 ∈ 𝑐𝑜𝜕∗𝐹(𝑥̅) + ∑  𝜇𝑖

𝑚

𝑖=1

 𝑐𝑜𝜕∗𝐺𝑖(𝑥̅) + 𝑁𝐶  (𝐶, 𝑥̅), 

𝜇𝑖 ≥ 0,         𝜇𝑖𝐺𝑖(𝑥̅  ) = 0,   ∀𝑖 ∈ 𝐼. 
 

Using the idea of upper semi-regular convexificators, we introduce the following nonsmooth 

analogue of the generalized Mangasaria-Fromovitz constraint qualification which is called (𝐶𝑄2). 
 

Definition 2.2. Let x̅ be a feasible point of problem (P). We say that the generalized Mangasaria-

Fromovitz constraint qualification (CQ2) is satisfied at x̅ if {∇hj(x ̅)}j∈J is a linearly independent set 

and there exists d ∈  intTC(S, x̅) satisfying 

 

〈ξi , d〉 ≤  −bi ,           ∀ξi ∈  co ∂∗ki(x̅), 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-1
0-

16
 ]

 

                             5 / 13

http://iors.ir/journal/article-1-413-en.html


84 A. Ansari Ardali 

 

And 

 

〈∇hj(x ̅), d〉 = 0,                          ∀j ∈ J. 

 

for all i ∈  I(x̅) and some bi  >  0. 
 

Using the following lemma we can find a necessary and suffcient condition for nonempty and 

boundedness of Λ(𝑥̅). 

 

Lemma 2.3. [14]. Let x̅ be a feasible point of fractional programming problem (P). Then x̅ is a local 

solution of (P) iff  x̅ be a local solution of the following scalar optimization problem: 

 

(SP)           min                     f(x) − φ(x̅) g(x)                                     
s. t                   ki(x) ≤ 0,     i ∈ I,    hj(x) = 0,    ∀j ∈ J,    x ∈ S. 

 

Now, we are ready to prove our main result which establish the equivalence of (𝐶𝑄2) with the 

nonempty and boundedness of the KKT multiplier set at a local optimal solution of (𝑃). 
 

Theorem 2.4. Let x ̅be a local optimal solution for (P). Suppose that f, g and ki s  are locally Lipschitz 

functions at x̅. Assume that g admit bounded lower semi-regular convexificator ∂∗g(x̅) and f and ki s 

admit bounded upper semi-regular convexificators ∂∗f(x̅) and ∂∗ki(x̅) for all i ∈  I. Also, suppose 

that hjs are continuously differentiable and that intTC(S, x ̅) ≠ ∅. Then the following conditions are 

equivalent. 

 

(i) (CQ2) is satisfied at x,̅ 
(ii) Λ(x̅) is a nonempty bounded subset of ℝm+q. 
 

𝐏𝐫𝐨𝐨𝐟. (𝐢)  ⇒  (𝐢𝐢). Let us first show that (𝐶𝑄2) ensures the nonemptiness of Λ(𝑥̅). Since all ℎ𝑗𝑠 is 

continuously differentiable and the set {𝛻ℎ𝑗(𝑥 ̅)}𝑗∈𝐽 are linearly independent, it can be shown that   

 

𝑁𝐶(𝐻, 𝑥̅) = 𝑠𝑝𝑎𝑛{𝛻ℎ𝑗(𝑥 ̅) ∶  𝑗 ∈ 𝐽}, 

𝑇𝐶(𝐻, 𝑥̅) = {𝑣 ∈  ℝ𝑛 ∶  〈𝛻ℎ𝑗(𝑥 ̅), 𝑣〉 = 0,   𝑗 ∈ 𝐽 } 

 

(1) 

 

Since (𝐶𝑄2) holds, int𝑇𝐶(𝑆, 𝑥̅) ∩ 𝑇𝐶(𝐻, 𝑥̅) is nonempty, thus using of [21, Theorem 5] we get 

 

𝑇𝐶(𝐻, 𝑥̅) ∩ 𝑇𝐶(𝑆, 𝑥̅) ⊆ 𝑇𝐶(𝐻 ∩ 𝑆, 𝑥̅),, 
𝑁𝐶(𝐻 ∩ 𝑆, 𝑥̅) ⊆  𝑁𝐶(𝐻, 𝑥̅) +  𝑁𝐶(𝑆, 𝑥̅).             

 

(2) 

 

Since 𝜕∗𝑓(𝑥̅) is an upper semi-regular convexificator of 𝑓(·) at 𝑥̅ and 𝜕∗𝑔(𝑥̅) is a lower semi-

regular convexificator of 𝑔(·) at 𝑥̅, using Lemma 1.3 and Lemma 1.4, we have that 𝜕∗𝑓(𝑥̅) −
𝜑(𝑥̅)𝜕∗𝑔(𝑥̅) is an upper semi-regular convexifactor of 𝑓(·) − 𝜑(𝑥̅)𝑔(·) at 𝑥.̅ On the other hand, 𝐶𝑄2 

together with (2) implies that 𝐶𝑄1 is satisfied for ( 𝑃̃). Thus, by Lemma 2.1 and Lemma2.3 there 

exist nonnegative numbers 𝜇1, . . . , 𝜇𝑚 such that 

 

0 ∈ 𝑐𝑜(𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝜕∗𝑔(𝑥̅)) + ∑ 𝜇𝑖

𝑚

𝑖=1

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + 𝑁𝐶(𝐻 ∩ 𝑆, 𝑥̅) 
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⊆ 𝑐𝑜𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝑐𝑜𝜕∗𝑔(𝑥̅) + ∑ 𝜇𝑖

𝑚

𝑖=1

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + 𝑁𝐶(𝐻 ∩ 𝑆, 𝑥̅), 

𝜇𝑖𝑘𝑖(𝑥̅  ) = 0,   ∀𝑖 ∈ 𝐼.  
 

Therefore, from  (1) and (2) there exists a vector 𝜆 ∈ ℝ𝑞 such that 

 

0 ∈ 𝑐𝑜𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝑐𝑜𝜕∗𝑔(𝑥̅) + ∑ 𝜇𝑖

𝑚

𝑖=1

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + ∑ 𝜆𝑖

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) + 𝑁𝐶(𝑆, 𝑥̅), 

𝜇𝑖𝑘𝑖(𝑥̅  ) = 0,   ∀𝑖 ∈ 𝐼.  
 

Thus  Λ(𝑥̅) is a nonempty set. 

 

Now, we show that (𝐶𝑄2) ensures the boundedness of Λ(𝑥̅). Since {∇ℎ𝑗(𝑥̅) ∶  𝑗 ∈  𝐽} is a linearly 

independent set, for each subset 𝐽  ⊆  𝐽, by Gordan's theorem, there exists 𝑑̂  ∈ ℝ𝑛 such that 

 

〈∇ℎ𝑗(𝑥̅) , 𝑑̂ 〉 < 0,        ∀𝑗 ∈ 𝐽, 

〈∇ℎ𝑗(𝑥̅) , 𝑑̂ 〉 > 0,        ∀𝑗 ∈ 𝐽 ∖  𝐽.    

 

(3) 

 

Let 𝑑0 ∈  𝑖𝑛𝑡𝑇𝐶(𝑆, 𝑥̅) be a vector which is satisfied in (𝐶𝑄2). Thus, for all 𝑖 ∈  𝐼(𝑥̅), 
 

〈𝜉𝑖   , 𝑑0〉 ≤ −𝑏𝑖,        ∀𝜉𝑖 ∈ 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅). 
Then, there exists a 𝛿  >  0 such that 𝜖̂  ∈  (0, 1) may be chosen so small that for every 𝑖 ∈  𝐼(𝑥̅), 

 

(1 − 𝜖̂)〈𝜉𝑖  , 𝑑0〉 + 𝜖̂〈𝜉𝑖   , 𝑑̂〉 ≤ −𝛿̂ < 0,           ∀𝜉𝑖 ∈ 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅),    (4) 

 

and such that 𝑑 ̅ =  (1 −  𝜖̂)𝑑0  +  𝜖̂ 𝑑̂ ∈  𝑇𝐶(𝑆, 𝑥̅). Since by  (𝐶𝑄2), we have 

 

〈∇ℎ𝑗(𝑥̅) , 𝑑0  〉 = 0,        ∀𝑗 ∈ 𝐽, 

from (3), we have 

 

〈∇ℎ𝑗(𝑥̅) , 𝑑̅ 〉 = 𝜖̂〈∇ℎ𝑗(𝑥̅) , 𝑑̂ 〉 ≤ −𝜖̂ 𝜌 ̂ ≤ −𝛽 ̂,         ∀𝑗 ∈ 𝐽, 

〈∇ℎ𝑗(𝑥̅) , 𝑑̅ 〉 = 𝜖̂〈∇ℎ𝑗(𝑥̅) , 𝑑̂ 〉 ≥ 𝜖̂ 𝜌 ̂ ≥ 𝛽 ̂,         ∀𝑗 ∈ 𝐽 ∖  𝐽.   

 

(5) 

 

and from (4), for all 𝑖 ∈  𝐼(𝑥̅), 
 

〈𝜉𝑖   , 𝑑̅〉 ≤ −𝛿̂  ≤ −𝛽 ̂ < 0,               ∀𝜉𝑖 ∈ 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) , (6) 

 

where  𝜌 ̂ = min
𝑗∈𝐽

|〈∇ℎ𝑗(𝑥̅) , 𝑑̂〉|  and 𝛽 ̂ = min{𝛿, 𝜖̂ 𝜌 ̂} > 0. Now, suppose that (𝜇, 𝜆)  ∈  ℝ𝑚  × ℝ𝑞  is 

an arbitrary multiplier vector in Λ(𝑥̅) and 𝐽  =  {𝑗 ∈  𝐽 ∶  𝜆𝑗  >  0}. Therefore, there exist 𝜉 ∈

 𝑐𝑜𝜕∗𝑓(𝑥̅), 𝜌 ∈ 𝜕∗𝑔(𝑥̅), 𝜉𝑖  ∈ 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) , 𝑖 ∈  𝐼 and 𝜂 ∈ 𝑁𝐶(𝑆, 𝑥̅) such that 
 

0 = 𝜉 − 𝜑(𝑥̅)𝜌 + ∑ 𝜇𝑖

𝑚

𝑖=1

𝜉𝑖 + ∑ 𝜆𝑗

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) + 𝜂, 

𝜇𝑖 = 0,        ∀𝐼 ∉ 𝐼(𝑥̅). 
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Since 𝑑̅ ∈ 𝑇𝐶(S, 𝑥̅), we have 

 

〈𝜉 − 𝜑(𝑥̅)𝜌 , 𝑑̅ 〉 + ∑ 𝜇𝑖

𝑚

𝑖=1

〈𝜉𝑖  , 𝑑̅  〉 + ∑ 𝜆𝑗

𝑞

𝑗=1

〈∇ℎ𝑗(𝑥̅) , 𝑑̅ 〉 ≥ 0, 

 

which combined with (5), (6) and the definition of  𝐽 ̂gives 

 

〈𝜉 − 𝜑(𝑥̅)𝜌 , 𝑑̅ 〉 ≥ 𝛽 ̂ (∑ 𝜇𝑖

𝑚

𝑖=1

+ ∑|𝜆𝑗|

𝑞

𝑗=1

 ). 

 

Since 𝑐𝑜𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝑐𝑜𝜕∗𝑔(𝑥̅)   is bounded and there are only a finite number of possible 

subsets 𝐽,̂ there is a finite upper bound on 
〈𝜉−𝜑(𝑥̅)𝜌 ,𝑑̅ 〉

𝛽 ̂   independent of  𝐽 ̂, which is also an upper bound 

for 

 

∑ 𝜇𝑖

𝑚

𝑖=1

+ ∑|𝜆𝑗|

𝑞

𝑗=1

 . 

 

Therefore, since (𝜇, 𝜆) is arbitrary, Λ(𝑥̅) is bounded. 

 

      (𝑖𝑖)  ⇒  (𝑖). We now establish that the nonempty and boundedness of the set Λ(𝑥̅) ensures that 

(𝐶𝑄2) holds at 𝑥̅. First, we show that {𝛻ℎ𝑗(𝑥 ̅)}𝑗∈𝐽  is linearly independent. Suppose, on the contrary, 

that this is not true. Then, there exist numbers 𝜆̅1, . . . , 𝜆̅𝑞 not all being zero such that 

 

∑ 𝜆𝑗̅

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) = 0. (7) 

 

Now, since the KKT multiplier set Λ(𝑥̅) is nonempty, there exists a multiplier vector 

(𝜇, 𝜆)  ∈  ℝ𝑚  × ℝ𝑞
 such that 

 

0 ∈ 𝑐𝑜𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝑐𝑜𝜕∗𝑔(𝑥̅) + ∑ 𝜇𝑖

𝑚

𝑖=1

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + ∑ 𝜆𝑖

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) + 𝑁𝐶(𝑆, 𝑥̅), 

𝜇𝑖𝑘𝑖(𝑥̅  ) = 0,   ∀𝑖 ∈ 𝐼.  

(8) 

 

 

From relations (7) and (8), we know that, for any γ > 0, we have 

0 ∈ 𝑐𝑜𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝑐𝑜𝜕∗𝑔(𝑥̅) + ∑ 𝜇𝑖

𝑚

𝑖=1

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + ∑ 𝜆𝑖

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) +  ∑ 𝛾

𝑞

𝑗=1

 𝜆𝑗̅∇ℎ𝑗(𝑥̅) + 𝑁𝐶(𝑆, 𝑥̅), 

𝜇𝑖𝑘𝑖(𝑥̅  ) = 0,   ∀𝑖 ∈ 𝐼.  
 

Thus, 

 

(𝜇1, … 𝜇𝑚, 𝜆1 + 𝛾𝜆̅1, … , 𝜆𝑞 + 𝛾𝜆̅𝑞) ∈ Λ(𝑥̅) ,         ∀ 𝛾 > 0. 
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which, by noting that 𝜆𝑗̅  ≠ 0, for at least one 𝑗 ∈  𝐽, contradicts the hypothesis that Λ(𝑥̅) is bounded. 

 

Now, we assert that  𝑖𝑛𝑡𝑇𝐶(𝑆, 𝑥̅) ∩ 𝑇 𝐶(𝐻, 𝑥̅)  is nonempty. Indeed, if the assertion is not true, 

then by a strict separation theorem, there exists a 𝑣 ∈ ℝ𝑛  such that 

 

〈  𝑣, 𝑑 〉 > 0,        ∀𝑑 ∈ 𝑖𝑛𝑡𝑇𝐶(𝑆, 𝑥̅), 
 

and 

 

〈  𝑣, 𝑑 〉 ≤ 0,        ∀𝑑 ∈ 𝑇𝐶(𝐻, 𝑥̅). 
 

Thus, 𝑣 ≠  0 and 𝑣 ∈  𝑁𝐶(𝐻, 𝑥̅). So, by (1), there exist 𝜌1, . . . , 𝜌𝑞 not all being zero such that 

 

𝑣 = ∑ 𝜌𝑗

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅). (9) 

 

Let 𝜌𝑘 ≠  0 for some 𝑘 ∈  𝐽. Nonemtiness of Λ(𝑥̅) allows us to select (𝜇, 𝜆)  ∈  𝛬(𝑥̅). Thus, there 

exist 𝜉 ∈  𝑐𝑜𝜕∗𝑓(𝑥̅), 𝜌 ∈ 𝑐𝑜𝜕∗𝑔(𝑥̅) and 𝜁𝑖 ∈  𝑐𝑜𝜕∗𝑘𝑖(𝑥̅), 𝑖 ∈  𝐼, such that for all 𝑑 ∈  𝑇𝐶(𝑆, 𝑥̅), 
 

〈𝜉 − 𝜑(𝑥̅)𝜌 , 𝑑 〉 + ∑ 𝜇𝑖

𝑚

𝑖=1

〈𝜉𝑖  , 𝑑 〉 + ∑ 𝜆𝑗

𝑞

𝑗=1

〈∇ℎ𝑗(𝑥̅), 𝑑〉 ≥ 0. (10) 

 

On the other hand, by the boundedness of the set Λ(𝑥̅), there exists 𝑀 >  0 such that 

 

|𝜆𝑗| < 𝑀,                ∀𝑗 ∈ 𝐽. 

 

Let for all 𝑗 ∈  𝐽, 𝛾𝑗 ∶=  𝐴𝜌𝑗 +  𝜆𝑗 , where 𝐴 =  
2𝑀

|𝜌𝑘|
 . Since |𝛾𝑘|  >  𝑀, the vector (𝜇, 𝛾) does not 

belong  to 𝛬(𝑥̅), and so 

 0 ∉ 𝑐𝑜𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝑐𝑜𝜕∗𝑔(𝑥̅) + ∑ 𝜇𝑖

𝑚

𝑖=1

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + ∑ 𝜆𝑖

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) +  ∑ 𝛾

𝑞

𝑗=1

 ∇ℎ𝑗(𝑥̅) + 𝑁𝐶(𝑆, 𝑥̅), 

 

and, by a separation theorem, there exists 𝑑̅  ∈  𝑇𝐶(𝑆, 𝑥̅) such that for all 𝜉 ∈  𝑐𝑜𝜕∗𝑓(𝑥̅), 𝜌 ∈
𝑐𝑜𝜕∗𝑔(𝑥̅)  and 𝜁𝑖 ∈  𝑐𝑜𝜕∗𝑘𝑖(𝑥̅), 𝑖 ∈  𝐼, we have 

 

〈𝜉 − 𝜑(𝑥̅)𝜌 , 𝑑̅ 〉 + ∑ 𝜇𝑖

𝑚

𝑖=1

〈𝜉𝑖   , 𝑑 ̅〉 + ∑ 𝛾𝑗

𝑞

𝑗=1

〈∇ℎ𝑗(𝑥̅), 𝑑̅〉 < 0. (11) 

 

Without loss of generality, we may choose  𝑑̅ ∈  𝑖𝑛𝑡𝑇𝐶(𝑆, 𝑥̅) . From (10) and (11) we have 

 

𝐴 ∑ 𝜌𝑗

𝑞

𝑗=1

〈∇ℎ𝑗(𝑥̅), 𝑑̅〉 < 0. 

Therefore, since 𝐴 >  0, by (9) we have ⟨𝑣, 𝑑̅⟩  <  0, which is a contradiction. Then, 

𝑖𝑛𝑡𝑇𝐶(𝑆, 𝑥̅) ∩  𝑇𝐶(𝐻, 𝑥̅) is nonempty. 
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Finally, we show that there exist 𝑑 ∈   𝑖𝑛𝑡𝑇𝐶(𝑆, 𝑥̅) ∩  𝑇𝐶(𝐻, 𝑥̅) and numbers 𝑏𝑖  >  0, 𝑖 ∈  𝐼(𝑥̅), 
such that 

 

〈𝜉𝑖   , 𝑑〉 ≤ −𝑏𝑖,        ∀𝜉𝑖 ∈ 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅), 
 

For this, we assert that 

 

0 ∉ 𝑐𝑜 ⋃ 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) 

𝑖 ∈ 𝐼(𝑥̅)

+ 𝑁𝐶(𝐻, 𝑥̅) +  𝑁𝐶(𝑆, 𝑥̅). (12) 

 

Indeed, if the assertion (12) is not true, then there exist 𝑡𝑖  ≥  0 and (𝜆1, . . . , 𝜆𝑞) with ∑ 𝑡𝑖𝑖 ∈ 𝐼(𝑥̅) =

1 such that 

 

0 ∈ ∑ 𝑡𝑖

𝑖 ∈ 𝐼(𝑥̅)

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + ∑ 𝜆𝑗

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) + 𝑁𝐶(𝑆, 𝑥̅). (13) 

 

Since 𝛬(𝑥̅) is nonempty, by the hypothesis, there exists (𝜇1, … 𝜇𝑚, 𝛾1, … , 𝛾𝑞) with 𝜇𝑖  ≥  0, for  

𝑖 ∈  𝐼(𝑥̅) such that 

 

0 ∈ 𝑐𝑜𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝑐𝑜𝜕∗𝑔(𝑥̅) + ∑ 𝜇𝑖

𝑖 ∈ 𝐼(𝑥̅)

𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + ∑ 𝜆𝑖

𝑞

𝑗=1

∇ℎ𝑗(𝑥̅) + 𝑁𝐶(𝑆, 𝑥̅). (14) 

 

From relations (13) and (14) we know that, for any 𝛽 >  0, 
 

0 ∈ 𝑐𝑜𝜕∗𝑓(𝑥̅) − 𝜑(𝑥̅)𝑐𝑜𝜕∗𝑔(𝑥̅) + ∑ (𝜇𝑖

𝑖 ∈ 𝐼(𝑥̅)

+ 𝛽𝑡𝑖) 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅) + ∑(𝛾𝑗

𝑞

𝑗=1

+ 𝛽 𝜆𝑗)∇ℎ𝑗(𝑥̅)

+ 𝑁𝐶(𝑆, 𝑥̅). 

(15) 

 

From the relation (15), we obtain 

 

(𝜇1 + 𝛽 𝑡1, …, 𝜇𝑚 + 𝛽 𝑡𝑚, 𝛾1 + 𝛽𝜆1, … , 𝛾𝑞 + 𝛽𝜆𝑞) ∈  𝛬(𝑥̅),                 ∀𝛽 > 0. 
 

Since 𝑡𝑘  >  0, for some 𝑘 ∈  𝐼(𝑥̅), 𝜇𝑘  +  𝛽 𝑡𝑘  →  +∞ as 𝛽 →  +∞, we contradict the 

hypothesis that 𝛬(𝑥̅) is bounded. Then, the assertion (12) is true. Therefore, by a strict separation 

theorem, there exist 𝑑̂ ∈ ℝ𝑛 and 𝑏 >  0 such that 

 

〈𝜃  , 𝑑̂〉 ≤ −𝑏,        ∀𝜃 ∈ ⋃ 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅)

 𝑖 ∈ 𝐼(𝑥̅)

, (16) 

〈 𝜂, 𝑑̂ 〉 ≤ 0,               ∀ 𝜂 ∈ 𝑁𝐶(𝑆, 𝑥̅). (17) 

〈 𝜎, 𝑑̂   〉 ≤ 0,               ∀ 𝜎 ∈ 𝑁𝐶(𝐻, 𝑥̅).   (18) 

                   

 

From (17) and (18), we have 𝑑̂  ∈  𝑇𝐶(𝑆, 𝑥̅)  ∩ 𝑇𝐶(𝐻, 𝑥̅). Furthermore, (16) implies that for each 

𝑖 ∈  𝐼(𝑥̅), 
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〈𝜃𝑖  , 𝑑̂ 〉 ≤ −𝑏,        ∀𝜃𝑖 ∈ 𝑐𝑜𝜕∗𝑘𝑖(𝑥̅). 
 

Now, suppose that  𝑑0 ∈  𝑇𝐶(𝑆, 𝑥̅)  ∩ 𝑇𝐶(𝐻, 𝑥̅).  We put  𝑏𝑖  =  𝑏, for all  𝑖 ∈  𝐼(𝑥̅), and  𝑑 =
𝜀 𝑑0  + (1 − 𝜀) 𝑑 ̂with 𝜀 ∈  (0, 1) and sufficiently small. We see that (𝐶𝑄2) is satisfied and the proof  

is complete. 

 

It is worth noting that Theorem 2.4 is not valid if in the definition of 𝛬(𝑥̅) the convex hull is 

removed. Let us illustrate this with the following example. 

 
Example 2.5. Consider the problem: 
 

(P1)           min           
𝑓(𝑥, 𝑦, 𝑧)

𝑔(𝑥, 𝑦, 𝑧)
                                       

 

                             𝑠. 𝑡.         ℎ𝑗 (𝑥, 𝑦, 𝑧) = 0,        𝑥 ∈ (𝑥, 𝑦, 𝑧),           
 
where f, g, hj ∶  ℝ3

 → ℝ, j =  1, 2 are defined by 

 

𝑓(𝑥, 𝑦, 𝑧) = |𝑥 + 𝑦| + 1,                    𝑔(𝑥, 𝑦, 𝑧) = 2 − |𝑧|,          
 

ℎ1(𝑥, 𝑦, 𝑧) = 𝑥 + 2𝑦 + 𝑧,                      ℎ1(𝑥, 𝑦, 𝑧) =  2𝑥 + 𝑦 − 𝑧, 
 

𝑆 = [−1,1] × [−1,1] × [−1,1]. 
 

Then, x̅  =  (0, 0, 0) is the global minimizer for (P1). We have 

 

𝑓+((0,0,0), 𝑉) = |𝑣1 + 𝑣2|,                         𝑔+((0,0,0), 𝑉) = −|𝑣3|  
 

∇ℎ1(0,0,0) = (1,2,1),                                   ∇ℎ2(0,0,0) = (2,1, −1).      
 

Observe that ∂∗f(x̅)  =  {(1, 1, 0), (−1, −1, 0)} is an upper semi-regular convexificator of  f  a x̅ 

and  ∂∗g(x̅)  =  {(0, 0, 2), (0, 0, −2)} is a lower semi-regular convexificator of  f  at x̅.  

 

Obviously, TC(S, x̅)  = ℝ ×  ℝ ×  ℝ. So, 

 

𝐾𝑒𝑟𝛻ℎ(𝑥̅) ∩ 𝑖𝑛𝑡𝑇𝐶(𝑆, 𝑥̅) ≠ ∅. 
 

Thus, there is no 𝜆 =  (𝜆1, 𝜆2)  ∈  ℝ2 such that 

 

(0, 0, 0) ∈  𝜕∗𝑓(𝑥̅) −
1

2
 𝜕∗𝑔(𝑥̅) + 𝜆1 ∇ℎ1(𝑥̅) + 𝜆2 ∇ℎ1(𝑥̅)+𝑁𝐶(𝑆, 𝑥̅). 

 

Remark 2.6. Since the Clarke subdifferential and the Michel-Penot subdifferential of a locally 

Lipschitz function are upper semi-regular convexificators. Then, the Theorem 2.4 ture is valid with 

the convexificators being replaced respectively by the Clarke and the Michel-Penot subdifferential. 
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