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Problem Using Convexificators

A. Ansari Ardalit

Here, using the idea of convexificators, we study boundedness and nonemptiness of lagrange
multipliers satisfying the first order necessary conditions. We consider a class of nonsmooth
fractional programming problems with equality and inequality constraints and an arbitrary set
constraint. Within this context, we define a generalized Mangasarian-Fromovitz type constraint
qualification and show that this constraint qualification is necessary and sufficient conditions
for the Karush-Kuhn-Tucker (KKT) multipliers set to be nonempty and bounded.
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1. Introduction

We discuss bounded and nonemptiness of Lagrange multipliers satisfying the first order necessary
conditions. Bounded and nonemptiness of the Karush-Kuhn-Tucker (KKT) multipliers set for
optimization problems have been studied by several researchers in recent years. A necessary and
sufficient regularity condition for nonempty and boundedness of KKT multipliers set for a
differentiable scalar optimization problem with equality and inequality constraints were derived in
Gauvin [9]. For a nonsmooth scalar optimization problem, a necessary and sufficient condition for
the set of multiplier vectors to be nonempty and bounded were obtained ([19] and [20]). In the more
general setting of Banach spaces, Jourani [13] introduced several constraint qualifications, and
showed that the conditions guarantee the nonemptiness and the boundedness of the Lagrange
multiplier sets for general nondifferentiable programming problems. Also, Li and Zhang [15]
introduced constraint qualifications and studied existence and boundedness of the KKT multipliers
set for a nonsmooth multiobjective optimization problem with inequality constraints and an arbitrary
set constraint, where all functions were locally Lipschitz.

Convexificator is viewed as a generalization of the idea of subdifferential, in as much as many of
the well-known subdifferentials, such as those by Clarke, Michel Penot and Treiman, are
convexificators for locally Lipschitz functions. They are always closed sets, but not necessarily
convex or compact, unlike the well-known subdifferentials which are convex and compact objects.
The concept of convexificator was first introduced by Demyanov [4] in 1994 as a generalization of
the notion of upper convex and lower concave approximation. Recently, the idea of convexificators
has been employed to extend and strengthen various results in nonsmooth analysis and optimization
(see [4, 5, 7, 11, 12, 16, 23]). For a locally Lipschitz function, most known subdifferentials are
convexificators and these known subdifferentials may contain the convex hull of a convexificator;
see, for instance, [5, 12, 24]. Optimality conditions were also discussed for vector minimization
problems in terms of convexificators. For nonsmooth optimization problems, various results
concerning Fritz-John type and KKT type necessary optimality conditions that use convexificators
have been developed in [11, 16, 23, 24]. Later, Golestani et al. [10] obtained nonsmooth analogue of
the generalized Mangasarian-Fromovitz constraint qualication by using the upper semi-regular
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convexificators and for efficient solutions, thay derived strong KKT necessary optimality conditions
for a nonsmooth multiobjective optimization problem with inequality constraints and an arbitrary set
constraint. Upper semi-regular convexificator is a strengthened version of an upper convexifictor.
Babahadda and Gadhi [1] studied necessary optimality conditions with the help of an appropriate
regularity condition using convexificators for bilevel programming problems. Recently, Gadhi [8]
established necessary and sufficient optimality conditions for a multiobjective fractional
programming problem in terms of convexificators.

Our aim here is to introduce generalized Mangasarian-Fromovitz type constraint qualification for
a nonsmooth fractional programming problem with equality constraints, inequality constraints and an
arbitrary set constraint via convexificator and show that are necessary and sufficint conditions for the
KKT multipliers set to be nonempty and bounded. Since the Clarke and the Michel-Penot
subdifferentials of a locally Lipschitz function are convexificators, the results in our work are valid
with the convexificators being replaced respectively by the Clarke and the Michel-Penot
subdifferentials.

The remainder of our work is organized as follows. In the Sectionl, we introduce notations and
give the basic definitions of convexificators and derive some preliminary results to be used in the rest
of the article. In the Section2, we introduce an extended version of the Mangasarian-Fromovitz type
constraint qualification for a nonsmooth fractional programming problem with equality constraints,
inequality constraints and an arbitrary set constraint via convexificator. Furthermore, for this problem
with locally Lipschitz objective and inequality constraint functions and continuously differentiable
equality constraint functions, a necessary and sufficient condition is presented for the set of KKT
multipliers to be nonempty and bounded.

2. Preliminaries

Throughout our work, R" is the usual n —dimensional Euclidean space. Let S be a nonempty
subset of R". The convex hull and closure of S are denoted by coS and cl S, respectively. The negative

and strictly negative polar cones S”and S° are defined respectively by

S :={ueR" (xu)<0 Vx €S}, SS:={u € R*| {x,u) < 0 Vx € S}.

The Clarke tangent cone T¢ (S, x) and the Clarke normal cone N¢ (S,x)to Satx €clS are
defined respectively by

TC(S,x)={deER™:Vx, €S, x, —x,Vt, L 0,3d, — d suchthat x;, + t;dj € S,Vk },
NEC(S,x)=TC(S,x)"={€ R*: (£,d) <0 VTC(S,x)}.

It is well-known that T¢ (S,x) and N¢ (S, x) are always nonempty, closed and convex. Let
f:R™ 5 R:=R U {+0o0} be an extended real valued function and,

—ra N P flx+tv)—f(x) Frm — Tim i flx+tv)—f(x)
f~(xv): ltllr(r)lmf — and fT(x;v): ltllr(r)lmf —

denote, respectively, the lower and upper Dini directional derivatives of f at x in direction v. It is
worth mentioning that if f:R™ — Ris locally Lipschitz, then both the lower and upper Dini
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derivatives exist finitely. Now, we recall the definitions of upper and lower convexificators from
[12]:
e f issaid to have an upper convexificator (respectively, upper regular convexificator) at x €
R™ if there is a closed set 3*f(x) € R™ such that for each v € R",

f@v) < supgesnE,v)  (respectively,  f*(x;v) = supgeorpa€, v) ).

o fissaid to have a lower convexificator (resp., lower regular convexificator) at x if there is a
closed set 3" f(x) < R™ such that for each v € R",

FH@v) 2 infreopfE ) (respectively,  f7(6v) = infrea poolE ) ).

A closed set 0" f(x) c R™is said to be a convexificator of f at x if and only if it is both upper
and lower convexificator of f at x.

Convexificators are not necessarily convex or compact. These relaxations allow applications to a
large class of nonsmooth functions. The upper convexificator is also known as the Jeyakumar-Luc
subdifferential of f at x [24]. We point out that if a continuous function f: R® — R admits a locally
bounded upper convexificator at x, then it is locally Lipschitz around the point (see [12]). In [11], the
notion of convexificator was extended and used to unify and strengthen various results in nonsmooth
analysis and optimization. Along the lines of [7], we now give the definition of upper semi-regular
convexificators which will be useful later:

e The function f:R™ — R is said to have an upper-semi regular convexficator at x € R" if
there is a closed set 0”f (x) © R™ such that for each v € R™, f*(x; V) < supgeq () (€, v)-

o f is said to have a lower semi-regular convexificator at x € R™ if there is a closed set
9" f(x) c R™ such that for each v € R™ , f~(x;v) = infeea (S, v)-

Obviously, an upper (lower) regular convexificator of f is also an upper (lower) semi-regular
convexificator of f and each upper (lower) semi-regular convexificator is an upper (lower)
convexificator. Moreover, convex hull of an upper semi-regular convexificator of a locally Lipschitz
function may be strictly contained in the Clarke and Michel-Penot subdifferential (see Example 2.1
of [12]).

Example 1.1. Let @ denote the set of rationals and consider f: R — R given as follows

sin 2x, if x € QN[0, +o0)
f(x) = x> =3x if x € QN(~,0]
0 otherwise.

Observe that in this case for the point x = 0 we have the upper and lower Dini derivatives given
as follows:

2v ifv=0

fo={25, ezor OW=0  (VvER).

The sets {3, 2} and [3, 2] are upper semi-regular convexificators of fatx=0.
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Since forall v € R, f~(x;v) < f*(x;v) , an upper semi-regular convexificator is also an upper
convexificator of f at x. The converse is not necessarily true.

Remark 1.2. It is clear that every differentiable function has an upper regular convexificator given
by 9*f(x) = {Vf(x)}. Since a locally Lipschitz function is differentiable almost everywhere, it admits
upper regular convexificator over a dense set. If f: R™ — R is locally Lipschitz, then the Clarke
subdifferential d:f(x) [3], the Michel-Penot subdifferential 9°f(x) [17], the Mordukhovich
subdifferential dyf(x) [18] and the Treiman subdifferential d+f(x) [22] are examples of upper semi-
regular convexificators for f.

Let us now examine some calculus rules for upper semi-regular convexificators under appropriate
conditions. The proofs for the following two lemmas are based on the technique used in [12, Rules
4.1 and 4.2].

Lemma 1.3. Let 3*f(x) be an upper semi-regular convexificator and 9*f(x) be a lower semi-regular
convexificator of fat x. Then, A 9*f(x) is an upper semi-regular convexifi cator for Af at x for every
A>0and A 9*f(x) is an upper semi-regular convexificator for Af at x for every A <0.

Lemma 1.4. Assume that the functions f,g: R" — R admit upper semi-regular convexificators

0*f(x) and 0*g(x) at x, respectively. Then, *f(x) + 0*g(x) is an upper semi-regular convexificator
of f+g at x.

3 Main Results

The present section will be devoted to developing nonempty and boundedness of the KKT
multipliers set for a fractional optimization problem with equality and inequality constraints and an
arbitrary set constraint in terms of lower and upper semi-regular convexificators.

Consider the following nonsmooth fractional programming problem:

(P) min @
g(x)
s.t. ki(x) <0, i€el={1,..,m}
hj(X) =0, ] E] = {1, ...,q},
X ES,

where f, g, k; and h; (forall i € I and j € J ) are function from R™ to R with f(x) = 0and g(x) >
0. The active constraint indices at the feasible point X is denoted by I(x). Here, we assume that all
the functions f, g, k;,i € 1(x) are locally Lipschitz around x and all the functions k;,i & I(x), are
continuous at x. Suppose, in addition, that all the functions h;,j € J are continuously differentiable

and S is an arbitrary subset of R™. Also, for the vector function h := (hy,..., hy), we define
H:= {x € R": h(x) = 0}.
Let x be a feasible point for problem (P). Denote the set of all KKT multiplier vectors associated

with the inequality and equality constraints by A(X), i.e., (u,A) € R™ x R4, belong to A(x) if and
only if
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m q
0 € cod"f(%) — p(% )co 8. g(X) + z w; c0d k(%) + Z 2, Vhy(%) + N (5, %),
i=1 =1
Hi > 0, ylkl(f ) = 0, Vi € I,

where (¥ ) = %

In the rest of our work, using the idea of upper semi-regular convexificators, we introduce a
constraint qualification of Mangasarian-Fromovitz type for the fractional optimization problem (P)
and show that this constraint qualification is necessary and suffcint for the KKT multiplier set to be
nonempty and bounded.

Let us first consider the following nonsmooth optimization problem:

P min F(x)
s.t. Gi(x)<0, i€l, x€C,

where F: R® — R and G; : R® — R are real-valued functions (for i € I) and C is a subset of
RR™. The active constraint indices at the feasible point x is denoted by I (x).

Let x be a feasible point for problem ( T?). We say that the (CQ1) is satisfied at x if GS N T¢(C, x)
is nonempty, where

G:= U c00” G;(X).
i€l (%)

In order to establish our main theorem, we present the following auxiliary result without proof,
since it follows along the lines of the proof given for [10, Theorem 1].

Lemma 2.1. Let X be a local optimal solution for ( P). Suppose that F and G are locally Lipschitz
functions at X which admit bounded upper semi-regular convexificators 8*F(X) and 9*G;(X) for all
i € L If (CQ1) holds at X, then there exists a vector p € R™ such that

m
0 € cod*F (%) + Z W c0d*G; (%) + N¢ (C, %),
i=1
,Ul'ZO, ‘UlGl(f )=0, Vi el

Using the idea of upper semi-regular convexificators, we introduce the following nonsmooth
analogue of the generalized Mangasaria-Fromovitz constraint qualification which is called (CQ2).

Definition 2.2. Let X be a feasible point of problem (P). We say that the generalized Mangasaria-
Fromovitz constraint qualification (CQ2) is satisfied at X if {Vh;(X)};¢; is a linearly independent set

and there exists d € intT®(S,X) satisfying

(&, d) < —by, V& € cod'k;(X),
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And
(Vhj(x),d) =0, vj €]
foralli € I(X) and some b; > 0.

Using the following lemma we can find a necessary and suffcient condition for nonempty and
boundedness of A(X).

Lemma 2.3. [14]. Let X be a feasible point of fractional programming problem (P). Then X is a local
solution of (P) iff X be a local solution of the following scalar optimization problem:

(SP) min fx) — @(X) g(x)
s.t ki) <0, i€l, hj(x)=0, Vj€], x€S.

Now, we are ready to prove our main result which establish the equivalence of (CQ2) with the
nonempty and boundedness of the KKT multiplier set at a local optimal solution of (P).

Theorem 2.4. Let X be a local optimal solution for (P). Suppose that f, gand k; s are locally Lipschitz
functions at x. Assume that g admit bounded lower semi-regular convexificator d,.g(X) and fand k; s
admit bounded upper semi-regular convexificators 0*f(x) and 0*k;(x) for all i € I. Also, suppose
that h;s are continuously differentiable and that intT¢(S,%) # @. Then the following conditions are
equivalent.

(i) (CQ2) is satisfied at X,
(ii) A(X) is a nonempty bounded subset of R™*4,

Proof. (i) = (ii). Let us first show that (CQ2) ensures the nonemptiness of A(x). Since all h;s is
continuously differentiable and the set {V'h;(x )} ;¢; are linearly independent, it can be shown that

NC(H,x%) = span{Vh;(x) : j €]},
TC(H,%) ={ve R™: (Vhy(x),v)=0, j€J} )

Since (€Q2) holds, intT¢(S,x) N T (H, x) is nonempty, thus using of [21, Theorem 5] we get

TC(H,¥)NTC(S,%x) ST (HNS, %),
NE(HNS, %) S NC(H, %) + NE(S,%). (2)

Since 9" f(x) is an upper semi-regular convexificator of f(-) at x and d,g(x) is a lower semi-
regular convexificator of g(-) at X, using Lemma 1.3 and Lemma 1.4, we have that 0" f(x) —
@ (x)d,g(x) is an upper semi-regular convexifactor of f(-) — @ (x)g(:) at x. On the other hand, CQ2
together with (2) implies that CQ1 is satisfied for ( P). Thus, by Lemma 2.1 and Lemma2.3 there
exist nonnegative numbers y, . . ., Uy, Such that

0 € co(3*f(®) — p().g(®)) + Z u; 00"k (X) + NC(H N S, %)

=1
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C 00" f (%) — ¢(¥)c0d,g (%) + z 1 c00"ky(X) + NC(H N S, %),
i=1
yiki(f ) = 0, Viel
Therefore, from (1) and (2) there exists a vector A € R? such that
m
0 € c0d*f (%) — p(%)c0d,g(x) + Z i cod*k; (%) + Z 2, Vhi(®) + NE(S, %),
i=1 j=1
‘Lll'ki(f ) =0, Viel
Thus A(X) is a nonempty set.

Now, we show that (CQ2) ensures the boundedness of A(x). Since {Vh;(x) : j € J}isalinearly
independent set, for each subset /] < J, by Gordan's theorem, there exists d € R™ such that

(Vhij(x),d) <0, Vje€],
(Vhj(®),d)>0, Vje]\J. 3)

Letd, € intT“(S,x) be a vector which is satisfied in (CQ2). Thus, forall i € I(X),

X (§i ,do) < —b;, V& €cod"k;(x).
Then, there existsa 6 > 0 suchthat é € (0,1) may be chosen so small that for every i € I(x),

(1 — é)(fl ,do) + é(fl ,d) < —8 < 0, Vfl S Coa*ki(f), (4)
andsuchthatd = (1 — é)d, + éd € TC(S,x). Since by (€Q2), we have

(Vhi(%),do ) =0, Vje€],
from (3), we have

(Vh; (%), d)—e(Vh(x)d <—€p <P, Vj €],
(Vhj(x),d)=é(Vhj(x),d)=€ép =B, Vje]\ ] ®)
and from (4), for all i € (%),
(§; ,dy< -6 <-p <0, V¢, € c0d k(%) (6)

where p = mei]n|(th(f),ci)| and B =min{8, € p} > 0. Now, suppose that (,1) € R™ x R is
J

an arbitrary multiplier vector in A(X) and J = {j € J: Aj > 0}. Therefore, there exist €
cod*f(x), p €0*g(x), & € cod*k;(x),i € Iandn € N€(S,x) such that

0=¢— w(x)p+2ul€l+zf1 Vh;(x) +n,
(l) VI E]I(x)
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Since d €TC(S, ), we have
m q
€= o@p,d)+ ) il d)+ ) X(Wh(©,d) =0,
i=1 =1

which combined with (5), (6) and the definition of ] gives

m q
€ —o@p. 2B D+ ) |4 )
i=1 =1

Since cod*f(x) — @(x)cod*g(x) is bounded and there are only a finite number of possible

subsets J, there is a finite upper bound on $-e@pd) independent of J, which is also an upper bound

for

m q
Z#i + Z|/11| :
i=1 =1

Therefore, since (u, A) is arbitrary, A(x) is bounded.

(ii) = (i). We now establish that the nonempty and boundedness of the set A(x) ensures that
(€CQ2) holds at x. First, we show that {V'h; (X )} ¢, is linearly independent. Suppose, on the contrary,

that this is not true. Then, there exist numbers 4,..., Aq not all being zero such that

q
> L@ =0, Ul
j=1

Now, since the KKT multiplier set A(x) is nonempty, there exists a multiplier vector
(u, 1) € R™ x RYsuch that

m q
0 € cod*f(x) — p(x)cod,.g(x) + Z u; cod*k;(x) + Z A Vhi(x) + NE(S, %), (8)
i=1 j=1
/.ll'ki(f ) =0, Viel
From relations (7) and (8), we know that, for any y > 0, we have
m q q
0 € c0d*f(X) — ¢(%)c0d.g(x) + Z 1 00"k (%) + zzi Vhi(%) + Z y Lh;(®) + NE(S, %),
i=1 j=1 =1
‘Llikl'(f ) =0, Viel
Thus,

(1) o iy Ay + VA1, o, Ag + YA E AR, Vy>0.
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which, by noting that 4, # 0, for at least one j € J, contradicts the hypothesis that A(%) is bounded.

Now, we assert that intT¢(S,%) N T ¢(H,x) is nonempty. Indeed, if the assertion is not true,
then by a strict separation theorem, there exists a v € R™ such that

(v,d)>0, VdEe€intT¢(S, ),
and
(v,d)<0, VdeTC H,x).

Thus,v # 0Oandv € NC(H,x). So, by (1), there exist p, . .., pg ot all being zero such that

q
v = 2 pj Vh;(%). )
=1

Let p, # 0 forsome k € J. Nonemtiness of A(x) allows us to select (u,4) € A(X). Thus, there
exist§ € cod*f(x),p € cod,g(¥)and i € cod*k;(x),i € I,suchthatforalld € T¢(S,x),

m q
€= p@p,d)+ ) w6, d)+ Y 1 (Th(),d) 2 0. (10
i=1 j=1

On the other hand, by the boundedness of the set A(%), there exists M > 0 such that
|2 < M, vj €J.

Letforallj € J,y; := Apj+ A;,where A = %. Since |yx| > M, the vector (u,y) does not
k
belong to A(x), and so

m q q
0 ¢ cod”f(x)— (x)cod,g(x) + Z,ul- cod*ki(x) + ) A;Vh;(x) + Yy Vh;(x) + NC(S, %),
i=1 =1 =1

J

J

and, by a separation theorem, there exists d € T¢(S,%) such that for all £ € cod*f(¥%),p €
c0d,g(x) and i € cod*k;(x),i € I, we have

m q
(€= 0@p,d)+ Y & D)+ )y (W@, d) <0, (12)
i=1 =1

j
Without loss of generality, we may choose d € intT¢(S, %) . From (10) and (11) we have

q
AY p (W@, d) < 0.
j=1 .

Therefore, since A > 0, by (9) we have (v,d) < 0, which is a contradiction. Then,
intT¢(S,x) N T¢(H,x) is nonempty.
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Finally, we show that there exist d € intT¢(S,x)n T¢(H,%) and numbers b; > 0, i € I(x),

such that
(& ,d) < —b;, V¢ €cod’ki(x),
For this, we assert that
0¢ co U 00"k (%) + NC(H, %) + NE(S,%).
i €1(%)

Indeed, if the assertion (12) is not true, then there exist t; > 0 and (4,4,
1 such that

q
0€ ) tcod k(D) + ) 2 Vhy(E) + N°(S, D).
i€I(x) j=1

Since A(x) is nonempty, by the hypothesis, there exists (uq, ... m, Y1,
i € I(x) such that

q
0 €cod*f(x) — p(x)cod,g(x) + Z U; cod k;(x) + z/li Vh;(x

ieI(x) j=1

From relations (13) and (14) we know that, forany § > 0,

q
0 € c0d" f (%) — @ (%)c0d,g(x) + z (4 + Bt;) c0d*k; (%) + Z(yj
=1

i€I(x)
+ N€(S, ).
From the relation (15), we obtain

(nul + ﬂ tll o Um + B tm' Y1 + ﬁ/lli ---;Vq + B/’lq) € A()Z)'

Since t;, > 0, for some k € I(X), up, + Bty » +o as f -

(12)

oA With Y eyt =

(13)

v ¥q) With ;= 0, for

)+ NE(S, %). (14)

FBATED g

Vg > 0.

+o0, we contradict the

hypothesis that A(x) is bounded. Then, the assertion (12) is true. Therefore, by a strict separation

theorem, there exist d € R™ and b > 0 such that

(0 ,dy<—-b, VOE c0d*k;(%),
ieI(x)
(n,d)<0, v 1n € NE(S, ).
(o,d )<0, Vo € NC(H,%).

(16)

(17)
(18)

From (17) and (18), we have d € T°(S,%) n T¢(H,x). Furthermore, (16) implies that for each

i € 1(%),
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<9i pd ) < —b, V9l (S coa*ki(f).
Now, suppose that d, € T¢(S, %) NT¢(H,x). We put b; = b, forall i € I(X),and d =
edy + (1 —¢)dwithe € (0,1) and sufficiently small. We see that (CQ2) is satisfied and the proof
is complete.

It is worth noting that Theorem 2.4 is not valid if in the definition of A(x) the convex hull is
removed. Let us illustrate this with the following example.

Example 2.5. Consider the problem:

f(,y,2)
g(x,y,2)

(PD) min
s.t. hj (x,y,z) =0, x€(x,y,2),
where f,g, hj: R® - R,j = 1,2 are defined by
foy.z)=x+yl+1, 9(x,y,2) =2 — |z,
hi(x,y,2z) = x+ 2y + z, hi(x,y,z) = 2x+y— 2z,
S=[-11] x [-1,1] x [-1,1].
Then, X = (0,0,0) is the global minimizer for (P;). We have
£*(00,0,0),V) = |vy + v, g*((0,0,0),V) = —vs
Vh4(0,0,0) = (1,2,1), Vh,(0,0,0) = (2,1, —1).

Observe that 3*f(X) = {(1,1,0),(—1,—1,0)} is an upper semi-regular convexificator of f ax
and d.g(x) = {(0,0,2),(0,0,—2)}is a lower semi-regular convexificator of f at x.

Obviously, T¢(S,X) =R x R x R. So,
KerVh(x) N intT(S, %) # @.

Thus, thereisno A = (14,4,) € R? such that
1
(0,0,0) € 0*f (%) — > 9,9(%) + A, VR, (%) + A, VR, (X)+NE(S, ).

Remark 2.6. Since the Clarke subdifferential and the Michel-Penot subdifferential of a locally
Lipschitz function are upper semi-regular convexificators. Then, the Theorem 2.4 ture is valid with
the convexificators being replaced respectively by the Clarke and the Michel-Penot subdifferential.
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