
Iranian Journal of Operations Research

Vol. 5, No. 2, 2014, pp. 12-25

Capacity Inverse Minimum Cost Flow Problem under the

Weighted Hamming Distances

Massoud Aman1, Javad Tayyebi2*

Given an instance of the minimum cost flow problem, a version of the corresponding inverse

problem, called the capacity inverse problem, is to modify the upper and lower bounds on arc flows

as little as possible so that a given feasible flow 𝒙0 becomes optimal to the modified minimum cost

flow problem. The modifications can be measured by different distances. Here, we consider the

capacity inverse problem under the bottleneck-type and the sum-type weighted Hamming

distances. In the bottleneck-type case, the binary search technique is applied to present an

algorithm for solving the problem in 𝑂(𝑛𝑚 𝑙𝑜𝑔 𝑛) time. In the sum-type case, it is shown that the

inverse problem is strongly NP-hard even on bipartite networks.

Keywords: Combinatorial optimization, minimum cost flow problem, inverse problem, Hamming

distance, complexity

Manuscript was received on 15/04/2015, revised on 13/05/2015 and accepted for publication on 17/06/2015.

 1. Introduction

For a particular optimization problem, a corresponding inverse problem is to modify some

parameters of the problem as little as possible such that a given feasible solution 𝒙0 becomes optimal

to the new problem. The modifications can be measured by different distances such as 𝑙1, 𝑙2 and 𝑙∞

norms and also the weighted Hamming distances. Inverse optimization problems have many

applications in traffic modeling, seismic tomography and the design of computer networks [4, 5, 6,

9].

The concept of inverse problems was first proposed by Tarantola [14] in geophysical sciences.

Subsequently, Burton and Toint [4, 5] made use of this concept in the context of combinatorial

optimization and considered the inverse shortest path problem. Since then, inverse optimization

problems have been studied by many authors; see [7, 11], for a survey.

Here, we consider a particular type of inverse minimum cost flow problems. First, let us review

the well-known minimum cost flow problem. The problem is to minimize the cost of sending a flow 𝑥

in a given directed graph 𝐺(𝑉, 𝐴), where 𝑉 = {1, 2, … , 𝑛} is the set of nodes and 𝐴 is the set of 𝑚

arcs under some balancing constraints over the nodes and capacity constraints over the arcs. This

problem can be formulated as follows:

* Corresponding Author.
1 Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Birjand University, Birjand,

Iran, Email: mamann@birjand.ac.ir.
2 Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Birjand University, Birjand,

Iran, Email: javadtayyebi@birjand.ac.ir.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 1 / 14

http://iors.ir/journal/article-1-425-en.html

2 M. Aman and J. Tayyebi

min ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

s. t. ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

− ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

(𝑗,𝑖)∈𝐴

= 𝑏𝑖, ∀𝑖 ∈ 𝑉,

 𝑙𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴,

(1)

where 𝑐𝑖𝑗 denotes the cost of sending one unit of flow on arc (𝑖, 𝑗), 𝑙𝑖𝑗 ≥ 0 and 𝑢𝑖𝑗 ≥ 0 are the

minimum and maximum amount that can flow on arc (𝑖, 𝑗), respectively, 𝑏𝑖 indicates the supply or

the demand of each node 𝑖. We denote the network corresponding to the problem (1)

by 𝐺(𝑉, 𝐴, 𝒍, 𝒖, 𝒄). The problem (1) can be solved by several strongly polynomial-time algorithms [1].

Two versions of the inverse minimum cost flow problems are considered in the literature: the

cost inverse minimum cost flow (CoIMCF) problem and the capacity inverse minimum cost flow

(CaIMCF) problem. Suppose that 𝒙0 is a given feasible flow for (1). In the CoIMCF problem, the

cost vector 𝒄 is adjusted as little as possible to make 𝒙0 form a minimum cost flow to the problem

(1). While in the CaIMCF problem, the vectors 𝒍 and 𝒖 are modified minimally so that 𝒙0 becomes

optimal to the problem (1). The CoIMCF problem is studied by several authors [3, 12, 15, 16, 17].

Zhang and Liu [17] considered the inverse linear programming problems under the 𝑙1 norm and

proposed a method for solving the problem based on the reduced cost optimality conditions. They

showed that the method yielded a strongly polynomial-time algorithm for the CoIMCF problem.

Ahuja and Orlin [2, 3] considered the inverse linear programming problem under the 𝑙1 and 𝑙∞

norms and showed that the inverse problem of a linear programming problem was also a new

linear programming problem and analyzed the inverse minimum cost flow problem as a special

case. They showed that for the 𝑙1 norm, the CoIMCF problem reduced to a unit capacity minimum

cost flow problem and for the 𝑙∞ norm, the CoIMCF problem turned out to be solvable as a

minimum cost-to-time ratio cycle problem. In [8], the linear search and the binary search

techniques were applied to solve some special types of the CoIMCF problems such as the inverse

shortest path problem and the inverse assignment problem. Jiang et al. [12] considered the

CoIMCF problem under the sum-type and the bottleneck-type weighted Hamming distances. In

the sum-type case, they showed that the problem was APX-hard. In the bottleneck-type case, an

𝑂(𝑛𝑚2) algorithm was presented to solve the problem. In [15], Tayyebi and Aman showed that

the proposed algorithm in [12] did not solve the inverse problem in the general case. Then, they

proposed two new algorithms to solve the problem in 𝑂(𝑛𝑚2)𝑎𝑛𝑑 𝑂(𝑚𝑛log 𝑛) times [15, 16].

To the best of our knowledge, the CaIMCF problem was studied only by Güler and Hamacher

[10]. They showed that the problem was NP-hard under the 𝑙1 norm due to the minimum weighted

feedback arc set problem. Furthermore, they presented a greedy algorithm for solving the problem

under the 𝑙∞ norm in 𝑂(𝑛𝑚2) time.

Here, we study the CaIMCF problem under the weighted Hamming distances. We considered

both the bottleneck-type and the sum-type cases. In the bottleneck-type case, an 𝑂(𝑛𝑚 log 𝑛)

algorithm based on the binary search technique is proposed to solve the inverse problem. In spite

of the fact that the Hamming distance is nonconvex and discontinuous, the CaIMCF problem

under the 𝑙∞ norm has a behavior similar to the bottleneck-type case. Hence, our proposed

algorithm can also solve the CaIMCF problem under the 𝑙∞ norm with a better complexity than

the one presented in [10]. In the sum-type case, it is shown that the minimum node cover problem

is reduced to the inverse problem and consequently, the inverse problem is strongly NP-hard even

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 2 / 14

http://iors.ir/journal/article-1-425-en.html

Capacity Inverse Minimum Cost Flow Problem 3

on bipartite networks. It is remarkable that the reduction presented in [10] is also valid for the sum-

type case but it only proves that the problem is weakly NP-hard on general networks.

The rest of our work is organized as follows. Section 2 describes the CaIMCF problems in detail

and gives combinatorial formulations of the problems. Section 3 considers the CaIMCF problem

under the bottleneck-type Hamming distance and presents a strongly polynomial-time algorithm.

Section 4 analyzes the CaIMCF problem and its complexity under the sum-type Hamming distance.

Section 5 compares our results with ones obtained in [10]. Finally, our final remarks are given in

Section 6.

2. Preliminaries

In this section, we state some notions used throughout the manuscript and formulate the inverse

problems.

Let 𝒙0 be a feasible flow to problem (1) defined on the network 𝐺(𝑉, 𝐴, 𝒍, 𝒖, 𝒄). We denote the

residual network of 𝐺(𝑉, 𝐴, 𝒍, 𝒖, 𝒄) with respect to 𝒙0 by 𝐺′(𝑉, 𝐴′, 𝒖′, 𝒄′) [1]. We also denote the arc

sets 𝐴′ ∩ 𝐴 and 𝐴′\𝐴 by 𝐴𝑈
′ and 𝐴𝐿

′ , respectively.

The following lemma gives the negative cycle optimality conditions for a feasible flow 𝒙0 of

problem (1) [1].

Lemma 2.1. A feasible flow 𝒙0

 is optimal to problem (1) if and only if the corresponding residual

network does not contain any negative (cost) directed cycle.

Suppose that 𝒙0 is a feasible flow to problem (1). In the CaIMCF problem under the bottleneck-

type weighted Hamming distance, we look for vectors 𝒍̂ and 𝒖̂ such that the following conditions are

satisfied:

I. 𝒙0 is a minimum cost flow in the network 𝐺(𝑉, 𝐴, 𝒍̂, 𝒖̂, 𝒄);

II. −𝑝𝑖𝑗
𝑙 + 𝑙𝑖𝑗 ≤ 𝑙𝑖𝑗 ≤ min{𝑥𝑖𝑗

0 , 𝑞𝑖𝑗
𝑙 + 𝑙𝑖𝑗}, for every (𝑖, 𝑗) ∈ 𝐴, where 𝑝𝑖𝑗

𝑙 ≥ 0 and 𝑞𝑖𝑗
𝑙 ≥ 0 are

respectively the given bounds for decreasing and increasing 𝑙𝑖𝑗;

III. max{𝑥𝑖𝑗
0 , −𝑝𝑖𝑗

𝑢 + 𝑢𝑖𝑗} ≤ 𝑢̂𝑖𝑗 ≤ 𝑞𝑖𝑗
𝑢 + 𝑢𝑖𝑗, for every (𝑖, 𝑗) ∈ 𝐴, where 𝑝𝑖𝑗

𝑢 ≥ 0 and 𝑞𝑖𝑗
𝑢 ≥ 0 are

respectively the given bounds for decreasing and increasing 𝑢𝑖𝑗;

IV. the value

max{ max
(𝑖,𝑗)∈𝐴

𝑤𝑖𝑗
𝑙 𝐻(𝑙𝑖𝑗 , 𝑙𝑖𝑗), max

(𝑖,𝑗)∈𝐴
𝑤𝑖𝑗

𝑢𝐻(𝑢𝑖𝑗, 𝑢̂𝑖𝑗)}

is minimized where 𝑤𝑖𝑗
𝑙 ≥ 0 and 𝑤𝑖𝑗

𝑢 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, are respectively penalties for modifying 𝑙𝑖𝑗

and 𝑢𝑖𝑗. For each 𝑟, 𝑟̂ ∈ ℝ, 𝐻(𝑟, 𝑟̂) is the Hamming distance between 𝑟 and 𝑟̂, i.e., 𝐻(𝑟, 𝑟̂) = 1,

if 𝑟 ≠ 𝑟̂ and 𝐻(𝑟, 𝑟̂) = 0, otherwise.

It is notable that the constraints (II) and (III) guarantee that 𝑙𝑖𝑗 ≤ 𝑥𝑖𝑗
0 ≤ 𝑢̂𝑖𝑗 for every (𝑖, 𝑗) ∈ 𝐴.

Using Lemma 2.1, the CaIMCF problem under the bottleneck-type Hamming distance can be

formulated as follows:

min z = max { max
(𝑖,𝑗)∈𝐴

𝑤𝑖𝑗
𝑙 𝐻(𝑙𝑖𝑗 , 𝑙𝑖𝑗), max

(𝑖,𝑗)∈𝐴
𝑤𝑖𝑗

𝑢𝐻(𝑢𝑖𝑗 , 𝑢̂𝑖𝑗)}
(2a)

s.t. 𝐺′(𝑉, 𝐴′, 𝒖̂′, 𝒄′) contains no negative directed cycle, (2b)

−𝑝𝑖𝑗
𝑙 + 𝑙𝑖𝑗 ≤ 𝑙𝑖𝑗 ≤ min{𝑥𝑖𝑗

0 , 𝑞𝑖𝑗
𝑙 + 𝑙𝑖𝑗}, ∀(𝑖, 𝑗) ∈ 𝐴, (2c)

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 3 / 14

http://iors.ir/journal/article-1-425-en.html

4 M. Aman and J. Tayyebi

max{𝑥𝑖𝑗
0 , −𝑝𝑖𝑗

𝑢 + 𝑢𝑖𝑗} ≤ 𝑢̂𝑖𝑗 ≤ 𝑞𝑖𝑗
𝑢 + 𝑢𝑖𝑗, ∀(𝑖, 𝑗) ∈ 𝐴, (2d)

where 𝐺′(𝑉, 𝐴′, 𝒖̂′, 𝒄′) is the residual network of 𝐺(𝑉, 𝐴, 𝒍̂, 𝒖̂, 𝒄) with respect to 𝒙0. Here, all the

residual networks considered are with respect to 𝒙0. For this reason, henceforth we introduce a

residual network only by determining its associated network.

In the CaIMCF problem under the sum-type Hamming distance, we look for vectors 𝒍̂ and 𝒖̂

such that the constraints (I), (II) and (III) hold and

V. the value

∑ 𝑤𝑖𝑗
𝑙 𝐻(𝑙𝑖𝑗 , 𝑙𝑖𝑗)

(𝑖,𝑗)∈𝐴

+ ∑ 𝑤𝑖𝑗
𝑢𝐻(𝑢𝑖𝑗, 𝑢̂𝑖𝑗)

(𝑖,𝑗)∈𝐴

 is minimized, where 𝑤𝑖𝑗
𝑙 ≥ 0 and 𝑤𝑖𝑗

𝑢 ≥ 0 are defined as in (IV).

Therefore, the CaIMCF problem under the sum-type Hamming distance can be formulated as

follows:

min 𝑧 = ∑ 𝑤𝑖𝑗
𝑙 𝐻(𝑙𝑖𝑗 , 𝑙𝑖𝑗)

(𝑖,𝑗)∈𝐴

+ ∑ 𝑤𝑖𝑗
𝑢𝐻(𝑢𝑖𝑗, 𝑢̂𝑖𝑗)

(𝑖,𝑗)∈𝐴

 , (3a)

s.t. 𝐺′(𝑉, 𝐴′, 𝒖̂′, 𝒄′) contains no negative directed cycle, (3b)

−𝑝𝑖𝑗
𝑙 + 𝑙𝑖𝑗 ≤ 𝑙𝑖𝑗 ≤ min{𝑥𝑖𝑗

0 , 𝑞𝑖𝑗
𝑙 + 𝑙𝑖𝑗}, ∀(𝑖, 𝑗) ∈ 𝐴, (3c)

max{𝑥𝑖𝑗
0 , −𝑝𝑖𝑗

𝑢 + 𝑢𝑖𝑗} ≤ 𝑢̂𝑖𝑗 ≤ 𝑞𝑖𝑗
𝑢 + 𝑢𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, (3d)

where 𝐺′(𝑉, 𝐴′, 𝒖̂′, 𝒄′) is the residual network of 𝐺(𝑉, 𝐴, 𝒍̂, 𝒖̂, 𝒄).

3. The Bottleneck-type Case

In this section, we consider problem (2) and propose an efficient algorithm for solving it.

Lemma 3.1. If problem (2) is feasible, then it has an optimal solution.

Proof. Due to the fact that the objective value, 𝑧, of problem (2) belongs to the finite set

{𝑤𝑖𝑗
𝑙 : (𝑖, 𝑗) ∈ 𝐴} ∪ {𝑤𝑖𝑗

𝑢 : (𝑖, 𝑗) ∈ 𝐴} ∪ {0}, the result is immediate. 

Proposition 3.2. Problem (2) is infeasible if and only if there is a negative cycle 𝐶 in the residual

network of 𝐺(𝑉, 𝐴, 𝒍, 𝒖, 𝒄) so that the following conditions hold:

(a) 𝑢𝑖𝑗 − 𝑝𝑖𝑗
𝑢 > 𝑥𝑖𝑗

0 , for each (𝑖, 𝑗) ∈ 𝐶 ∩ 𝐴𝑈
′ .

(b) 𝑙𝑖𝑗 + 𝑞𝑖𝑗
𝑙 < 𝑥𝑖𝑗

0 , for each (𝑗, 𝑖) ∈ 𝐶 ∩ 𝐴𝐿
′ .

Proof. We first prove the necessity by contradiction. Suppose that each negative cycle 𝐶 in the

residual network does not satisfy at least one of the two conditions (a) and (b). We show that 𝐶 can

be removed from the residual network by adjusting the bound vectors. If there exists an arc (𝑖0, 𝑗0) ∈
𝐶 ∩ 𝐴𝑈

′ with 𝑢𝑖0𝑗0
− 𝑝𝑖0𝑗0

𝑢 ≤ 𝑥𝑖0𝑗0

0 , then we set 𝑢̂𝑖0𝑗0
= 𝑥𝑖0𝑗0

0 . Thus, the bound constraint

max{𝑥𝑖0𝑗0

0 , 𝑢𝑖0𝑗0
− 𝑝𝑖0𝑗0

𝑢 } ≤ 𝑢̂𝑖0𝑗0
≤ 𝑢𝑖0𝑗0

+ 𝑞𝑖0𝑗0

𝑢 holds and the negative cycle is removed from the

residual network. In the case that 𝐶 contains an arc (𝑗0, 𝑖0) ∈ 𝐶 ∩ 𝐴𝐿
′ with 𝑙𝑖0𝑗0

+ 𝑞𝑖0𝑗0

𝑙 ≥ 𝑥𝑖0𝑗0

0 , we set

𝑙𝑖0𝑗0
= 𝑥𝑖0𝑗0

0 to remove the cycle 𝐶 from the residual network while honoring the bound constraint

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 4 / 14

http://iors.ir/journal/article-1-425-en.html

Capacity Inverse Minimum Cost Flow Problem 5

−𝑝𝑖0𝑗0

𝑙 + 𝑙𝑖0𝑗0
≤ 𝑙𝑖0𝑗0

≤ min{𝑥𝑖0𝑗0

0 , 𝑞𝑖0𝑗0

𝑙 + 𝑙𝑖0𝑗0
}. By repeating this process, each negative cycle can

be removed from the residual network and consequently, a feasible solution (𝒍̂, 𝒖̂) is obtained.

We now prove the sufficiency. Suppose that there is a negative cycle 𝐶 satisfying the conditions (a)

and (b). Since 𝑢̂𝑖𝑗 ≥ 𝑢𝑖𝑗 − 𝑝𝑖𝑗
𝑢 > 𝑥𝑖𝑗

0 , for each (𝑖, 𝑗) ∈ 𝐶 ∩ 𝐴𝑈
′ and 𝑙𝑖𝑗 ≤ 𝑙𝑖𝑗 + 𝑞𝑖𝑗

𝑙 < 𝑥𝑖𝑗
0 , for each

(𝑗, 𝑖) ∈ 𝐶 ∩ 𝐴𝐿
′ , we cannot remove 𝐶 by modifying the initial bound vectors. Therefore, problem (2)

is infeasible. 

The proof of Proposition 3.2 is constructive and can be used as an algorithm for solving problem

(2). Let us describe this algorithm in more details. The algorithm first sets 𝒍̂ = 𝒍 and 𝒖̂ = 𝒖. In each

iteration, the algorithm identifies a negative cycle 𝐶 in the residual network of 𝐺(𝑉, 𝐴, 𝒍̂, 𝒖̂, 𝒄) and

either removes it from the residual network or determines that the problem is infeasible. Suppose that

the arc set 𝑆 is defined as follows:

𝑆 = 𝐶 ∩ (𝐴𝑈
′′ ∪ {(𝑖, 𝑗) ∈ 𝐴: (𝑗, 𝑖) ∈ 𝐴𝐿

′′})

where

𝐴𝑈
′′ = {(𝑖, 𝑗) ∈ 𝐴𝑈

′ : 𝑢𝑖𝑗 − 𝑝𝑖𝑗
𝑢 ≤ 𝑥𝑖𝑗

0 }, (4a)

𝐴𝐿
′′ = {(𝑗, 𝑖) ∈ 𝐴𝐿

′ : 𝑥𝑖𝑗
0 ≤ 𝑙𝑖𝑗 + 𝑞𝑖𝑗

𝑙 }.

(4b)

The set 𝑆 contains the arcs which can be modified for removing 𝐶. From Proposition 3.2, if 𝑆 = ∅,

then problem (2) is infeasible and the algorithm terminates. Otherwise, an arc (𝑖0, 𝑗0) ∈ 𝑆 is selected

with the minimum penalty,

(𝑖0, 𝑗0) = argmin{ min
(𝑖,𝑗)∈𝑆∩𝐴𝑈

′′
𝑤𝑖𝑗

𝑢 , min
(𝑖,𝑗)∈𝑆 with (j,i)∈𝐴𝐿

′′
𝑤𝑖𝑗

𝑙 }. (5)

To remove the cycle 𝐶 from the residual network, the algorithm sets 𝑢̂𝑖0𝑗0
= 𝑥𝑖0𝑗0

0 if (𝑖0, 𝑗0) ∈ 𝐴′𝑈
′

and 𝑙𝑖0𝑗0
= 𝑥𝑖0𝑗0

0 if (𝑗0, 𝑖0) ∈ 𝐴′𝐿
′ . This process repeats until one of the following cases occurs: (I) the

algorithm identifies a negative cycle 𝐶 with 𝑆 = ∅. In this case, the problem is infeasible, and (II) the

current residual network contains no negative cycle. In this case, the solution (𝒍̂, 𝒖̂) is optimal for

problem (2) due to (5).

We now discuss about the complexity of this algorithm. In each iteration, the algorithm adjusts

the lower bound or the upper bound of one arc. This observation gives a bound of 2𝑚 on the number

of iterations. In each iteration, we can use the FIFO label-correcting algorithm as a subroutine to

detect the presence of a negative cycle in 𝑂(𝑚𝑛) time [1]. Therefore, problem (2) can be solved in

𝑂(𝑚2𝑛) time. In the next subsection, we present a faster algorithm for solving problem (2).

Now, we introduce a special form of the optimal solutions and focus on finding such an optimal

solution.

Proposition 3.3. If problem (2) is feasible, then it has an optimal solution (𝒍̂, 𝒖̂) having the following

properties:

(a) If 𝑢̂𝑖𝑗 ≠ 𝑢𝑖𝑗, for some (𝑖, 𝑗) ∈ 𝐴𝑈
′′, then 𝑢̂𝑖𝑗 = 𝑥𝑖𝑗

0 .

(b) 𝑢̂𝑖𝑗 = 𝑢𝑖𝑗, for each (𝑖, 𝑗) ∈ 𝐴𝑈
′ \𝐴𝑈

′′ .

(c) If 𝑙𝑖𝑗 ≠ 𝑙𝑖𝑗, for some (𝑗, 𝑖) ∈ 𝐴𝐿
′′, then 𝑙𝑖𝑗 = 𝑥𝑖𝑗

0 .

(d) 𝑙𝑖𝑗 = 𝑙𝑖𝑗, for each (𝑗, 𝑖) ∈ 𝐴𝐿
′ \𝐴𝐿

′′.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 5 / 14

http://iors.ir/journal/article-1-425-en.html

6 M. Aman and J. Tayyebi

Proof. First, we prove the part (a) by contradiction. Since problem (2) is feasible, based on Lemma

3.1, there exists an optimal solution. Suppose that (𝒍̅, 𝒖̅) is an optimal solution for problem (2) so that

𝑢̅𝑖0𝑗0
≠ 𝑥𝑖0𝑗0

0 and 𝑢̅𝑖0𝑗0
≠ 𝑢𝑖0𝑗0

 , for some arc (𝑖0, 𝑗0) ∈ 𝐴𝑈
′′ . Now, we define the upper bound vector

𝒖̂ as follows:

𝑢̂𝑖𝑗 = {
𝑥𝑖𝑗

0 , (𝑖, 𝑗) = (𝑖0, 𝑗0),

𝑢̅𝑖𝑗, (𝑖, 𝑗) ≠ (𝑖0, 𝑗0),
 ∀(𝑖, 𝑗) ∈ 𝐴.

It is obvious that the residual network of 𝐺(𝑉, 𝐴, 𝒍̅ , 𝒖̂, 𝒄) contains exactly the arcs of the residual

network of 𝐺(𝑉, 𝐴, 𝒍̅ , 𝒖̅, 𝒄), except the arc (𝑖0, 𝑗0). This together with the fact that the residual

network of 𝐺(𝑉, 𝐴, 𝒍̅ , 𝒖̅, 𝒄) does not contain any negative cycle implies that the residual network of

𝐺(𝑉, 𝐴, 𝒍̅ , 𝒖̂, 𝒄) also contains no negative cycle. Therefore, the solution (𝒍̅, 𝒖̂) is feasible to problem

(2). On the other hand, the objective values of both solutions are the same, because 𝑢̅𝑖𝑗 ≠ 𝑢𝑖𝑗 if and

only if 𝑢̂𝑖𝑗 ≠ 𝑢𝑖𝑗, for each (𝑖, 𝑗) ∈ 𝐴. Consequently, the solution (𝒍̅, 𝒖̂) is also optimal to problem (2).

If we repeat this process for each (𝑖, 𝑗) ∈ 𝐴𝑈
′′ with 𝑢̅𝑖𝑗 ≠ 𝑢𝑖𝑗, then we can obtain an optimal solution

that satisfies part (a).

Now, we prove part (b) by contradiction. Suppose that (𝒍̅, 𝒖̅) is an optimal solution for problem

(2) so that 𝑢̅𝑖0𝑗0
≠ 𝑢𝑖0𝑗0

, for some arc (𝑖0, 𝑗0) ∈ 𝐴𝑈
′ \𝐴𝑈

′′. Define the upper bound vector 𝒖̂ as

follows:

𝑢̂𝑖𝑗 = {
𝑢𝑖𝑗 , (𝑖, 𝑗) = (𝑖0, 𝑗0),

𝑢̅𝑖𝑗 , (𝑖, 𝑗) ≠ (𝑖0, 𝑗0),
 ∀(𝑖, 𝑗) ∈ 𝐴.

Since both the residual networks of 𝐺(𝑉, 𝐴, 𝒍̅ , 𝒖̅, 𝒄) and 𝐺(𝑉, 𝐴, 𝒍̅ , 𝒖̂, 𝒄) are the same, it is easy to

verify that (𝒍̅, 𝒖̂) is a feasible solution with the objective value less than or equal to that of (𝒍̅, 𝒖̅).

Hence, (𝒍̅, 𝒖̂) is optimal for problem (2). By repeating this process, we can obtain an optimal solution

satisfying part (b). Similarly, parts (c) and (d) can be proved. 

Using Proposition 3.3, we can reduce problem (2) to the following combinatorial optimization

problem:

min z = max { max
(𝑖,𝑗)∈𝐴𝐿

′′
𝑤𝑖𝑗

𝑙 𝐻(𝑙𝑖𝑗 , 𝑙𝑖𝑗), max
(𝑖,𝑗)∈𝐴𝑈

′′
𝑤𝑖𝑗

𝑢𝐻(𝑢𝑖𝑗, 𝑢̂𝑖𝑗)} ,

s.t. The residual network of 𝐺(𝑉, 𝐴, 𝒍̂ , 𝐮̂, 𝒄) contains no negative directed cycle, (6)

𝑙𝑖𝑗 = {
𝑙𝑖𝑗 , (𝑗, 𝑖) ∈ 𝐴𝐿

′ \𝐴𝐿
′′,

𝑙𝑖𝑗 or 𝑥𝑖𝑗
0 , (𝑗, 𝑖) ∈ 𝐴𝐿

′′,
 ∀(𝑖, 𝑗) ∈ 𝐴,

𝑢̂𝑖𝑗 = {
𝑢𝑖𝑗, (𝑖, 𝑗) ∈ 𝐴𝑈

′ \𝐴𝑈
′′ ,

𝑢𝑖𝑗 or 𝑥𝑖𝑗
0 , (𝑖, 𝑗) ∈ 𝐴𝑈

′′ ,
 ∀(𝑖, 𝑗) ∈ 𝐴.

Remark 1. In the CaIMCF problem under an arbitrary distance, we have to either increase a lower

bound from 𝑙𝑖𝑗 to 𝑥𝑖𝑗
0 or decrease an upper bound from 𝑢𝑖𝑗 to 𝑥𝑖𝑗

0 to remove negative cycles from the

residual network. For this reason, the results of propositions 3.2 and 3.3 are also valid for any other

distances, especially for 𝑙∞ norm. Therefore, the CaIMCF problem under the 𝑙∞ norm is reduced to

problem (6) with 𝑤𝑖𝑗
𝑙 = 𝑥𝑖𝑗

0 − 𝑙𝑖𝑗 and 𝑤𝑖𝑗
𝑢 = 𝑢𝑖𝑗 − 𝑥𝑖𝑗

0 , for each (𝑖, 𝑗) ∈ 𝐴.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 6 / 14

http://iors.ir/journal/article-1-425-en.html

Capacity Inverse Minimum Cost Flow Problem 7

3.1. An efficient algorithm

Here, we propose an algorithm based on binary search technique to solve problem (6). Assume

that 𝐹 is the set of objective functions of problem (6), i.e., 𝐹 = {0} ∪ {(𝑤𝑖𝑗
𝑢 : (𝑖, 𝑗) ∈ 𝐴} ∪

{𝑤𝑖𝑗
𝑙 : (𝑖, 𝑗) ∈ 𝐴}. Suppose that we have sorted the elements of 𝐹 in nondecreasing order: let

0 = 𝑤0 ≤ 𝑤1 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝑓 be the sorted list where 𝑓 = |𝐹|. For each fixed index 𝑘 ∈ {0,1, … , 𝑓},

the solution (𝒍̂(𝑘), 𝒖̂(𝑘)) of problem (6) is defined as follows:

𝑙𝑖𝑗
(𝑘)

= {
𝑥𝑖𝑗

0 , (𝑗, 𝑖) ∈ 𝐴𝐿
′′ with 𝑤𝑖𝑗

𝑙 ≤ 𝑤𝑘 ,

𝑙𝑖𝑗 , otherwise,
 ∀(𝑖, 𝑗) ∈ 𝐴,

(7a)

𝑢̂𝑖𝑗
(𝑘)

= {
𝑥𝑖𝑗

0 , (𝑖, 𝑗) ∈ 𝐴𝑈
′′ with 𝑤𝑖𝑗

𝑈 ≤ 𝑤𝑘,

𝑢𝑖𝑗, otherwise,
 ∀(𝑖, 𝑗) ∈ 𝐴,

(7b)

where 𝐴𝐿
′′ and 𝐴𝑈

′′ are defined by (4). The following result is on the feasibility of such solutions.

Theorem 3.4. For 𝑘 ∈ {0,1, … , 𝑓}, let the solution (𝒍̂(𝑘), 𝒖̂(𝑘)) be defined by (7). The residual

network of 𝐺(𝑉, 𝐴, 𝒍̂(𝑘), 𝒖̂(𝑘), 𝒄), denoted by 𝐺′(𝑉, 𝐴′, 𝒖̂′, 𝒄′), satisfies the following two properties:

(a) If 𝐺′(𝑉, 𝐴′, 𝒖̂′, 𝒄′) contains no negative cycle, then the solution (𝒍̂(𝑘), 𝒖̂(𝑘)) is feasible for

problem (6) with an objective value less than or equal to 𝑤𝑘.

(b) If 𝐺′(𝑉, 𝐴′, 𝒖̂, 𝒄′) contains a negative cycle, then problem (6) has no feasible solution with an

objective value less than or equal to 𝑤𝑘.

Proof. The proof of the part (a) is obvious. We only prove part (b) by contradiction. Assume that

problem (6) has a feasible solution (𝒍̅, 𝒖̅), whose objective value is less than or equal to 𝑤𝑘. Let the

residual network of 𝐺(𝑉, 𝐴, 𝑙,̅ 𝒖̅, 𝒄) be denoted by 𝐺(𝑉, 𝐴̅′, 𝒖̅′, 𝒄′). Suppose 𝐴̂𝑈
′ = 𝐴′ ∩ 𝐴 and 𝐴̂𝐿

′ =
𝐴′\𝐴. Let 𝐴̂𝐿

′′ and 𝐴̂𝑈
′′ be defined by (4) corresponding to 𝐴̂𝐿

′ and 𝐴̂𝑈
′ , respectively. Similarly, suppose

𝐴̅𝑈
′ = 𝐴̅′ ∩ 𝐴 and 𝐴̅𝐿

′ = 𝐴̅′\𝐴 and also, 𝐴̅𝐿
′′ and 𝐴̅𝑈

′′ are defined by (4) corresponding to 𝐴̅𝐿
′ and 𝐴̅𝑈

′ ,

respectively.

Let (𝑖, 𝑗) be an arbitrary element of 𝐴̂𝑈
′ . Then, 𝑢̂𝑖𝑗

(𝑘)
≠ 𝑥𝑖𝑗

0 . Consequently, either 𝑤𝑖𝑗
𝑢 > 𝑤𝑘 or 𝑢𝑖𝑗 −

𝑝𝑖𝑗
𝑢 > 𝑥𝑖𝑗

0 . If 𝑤𝑖𝑗
𝑢 > 𝑤𝑘, then 𝑢̅𝑖𝑗 = 𝑢𝑖𝑗 ≠ 𝑥𝑖𝑗

0 , because (𝒍̅, 𝒖̅) is a feasible solution with objective

value less than or equal to 𝑤𝑘. If 𝑢𝑖𝑗 − 𝑝𝑖𝑗
𝑢 > 𝑥𝑖𝑗

0 , then 𝑢̅𝑖𝑗 ≠ 𝑥𝑖𝑗
0 , because of honoring the bound

constraint max{𝑥𝑖𝑗
0 , −𝑝𝑖𝑗

𝑢 + 𝑢𝑖𝑗} ≤ 𝑢̅𝑖𝑗 . Hence, (𝑖, 𝑗) belongs to 𝐴̅𝑈
′ in both cases. This shows that

𝐴̂𝑈
′ ⊆ 𝐴̅𝑈

′ . Similarly, it can be verified that 𝐴̂𝐿
′ ⊆ 𝐴̅𝐿

′ . Obviously, these relations imply

𝐴̂𝐿
′′ ⊆ 𝐴̅𝐿

′′, 𝐴̂𝑈
′′ ⊆ 𝐴̅𝑈

′′ . (8)

Due to the fact that the residual network of 𝐺(𝑉, 𝐴, 𝒍̅, 𝒖̅, 𝒄) does not contains any negative cycle, the

relations (8) imply that 𝐺′(𝑉, 𝐴′, 𝒖̂′, 𝒄′) also contains no negative cycle, which is a contradiction. 

Using Theorem 3.4, the following results are immediate.

Corollary 3.5. Problem (6) is infeasible if and only if the residual network of 𝐺(𝑉, 𝐴, 𝒍̂(𝑓), 𝒖̂(𝑓), 𝒄)

contains at least one negative cycle, where (𝒍̂(𝑓), 𝒖̂(𝑓)) is defined by (7) for 𝑘 = 𝑓.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 7 / 14

http://iors.ir/journal/article-1-425-en.html

8 M. Aman and J. Tayyebi

Corollary 3.6. If 𝑘 ∈ {0,1, … , 𝑓} be the least index for which the residual network of

𝐺(𝑉, 𝐴, 𝒍̂(𝑘), 𝒖̂(𝑘), 𝒄) contains no negative cycle, then the solution of (𝒍̂(𝑘), 𝒖̂(𝑘)) defined by (7) is

optimal for problem (6).

Based on Corollary 3.6, solving problem (6) reduces to finding the least index 𝑘 for which the

residual network of 𝐺(𝑉, 𝐴, 𝒍̂(𝑘), 𝒖̂(𝑘), 𝒄) does not contain any negative cycle. We use the binary

search technique to find such an index 𝑘 ∈ {0,1, … , 𝑓}.

Our proposed algorithm for solving the problem (6) contains two phases. The first phase

determines whether or not the problem (6) is feasible by checking whether the residual network

of 𝐺(𝑉, 𝐴, 𝒍̂(𝑓), 𝒖̂(𝑓), 𝒄) contains at least a negative cycle (see Corollary 3.5). If the residual

network contains no negative cycle, then problem (6) has the feasible solution (𝒍̂(𝑓), 𝒖̂(𝑓)) and the

second phase starts. Otherwise, problem (6) is infeasible and the algorithm terminates. The second

phase has a repetitive process based on the binary search technique. At each iteration of the second

phase, the algorithm looks for feasible solutions whose objective value is better than those of

feasible solutions found in previous iterations.

Suppose that the second phase has started. The goal in the second phase is to find the least

index 𝑘 ∈ {0,1, … , 𝑓} by using the binary search technique so that (𝒍̂(𝑘), 𝒖̂(𝑘)) is a feasible

solution for problem (6). Since the algorithm has determined that (𝒍̂(𝑘), 𝒖̂(𝑘)) is feasible for 𝑘 =
𝑓 in the first phase, the algorithm checks whether or not the residual network of

𝐺(𝑉, 𝐴, 𝒍̂(𝑘), 𝒖̂(𝑘), 𝒄) has a negative cycle for 𝑘 = [
𝑓

2
] and 𝑠 = [

𝑓

4
] in the first iteration of the

second phase. Note that 𝑠 is a half-step of 𝑘 to decrease or to increase 𝑘 in each iteration. If the

residual network does not contain any negative cycle, then (𝒍̂(𝑘), 𝒖̂(𝑘)) is feasible for problem (6)

with the objective value 𝑤𝑘 and the algorithm decreases the value of 𝑘 by 𝑠 units for finding a

feasible solution with the objective value less than 𝑤𝑘. Otherwise, the value of 𝑘 increases by 𝑠

units, because problem (1) has no feasible solution with the objective value less than or equal to

𝑤𝑘 (see Theorem 3.4). The algorithm repeats this process and updates 𝑠 = [
𝑠

2
] at each iteration

until 𝑠 = 0.

Now, we are ready to state the proposed algorithm formally.

Algorithm 1.

Input: A network 𝐺(𝑉, 𝐴, 𝒍, 𝒖, 𝒄), a feasible solution 𝒙0, penalty vectors 𝒘𝑙 and 𝒘𝑢 and bound

vectors 𝒑𝑙 , 𝒒𝑙 , 𝒑𝑢 and 𝒒𝑢.

Step 1: Sort the objective values of problem (6). Suppose that 0 = 𝑤0 ≤ 𝑤1 ≤ ⋯ ≤ 𝑤𝑓 is the

sorted list of these values.

Step 2: Using (7), obtain the vectors 𝒍̂(𝑓) and 𝒖̂(𝑓). Construct the residual network of

𝐺(𝑉, 𝐴, 𝒍̂(𝑓), 𝒖̂(𝑓), 𝒄) with respect to 𝒙0. If the residual network contains at least one

negative cycle, then stop because problem (6) is infeasible; otherwise, go to Step 3 (see

Corollary 3.5).

Step 3: Set 𝑠 = [
𝑓

4
], 𝑘 = [

𝑓

2
], 𝑧∗ = 𝑤𝑓 and (𝒍∗, 𝒖∗) = (𝒍̂(𝑓), 𝒖̂(𝑓)).

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 8 / 14

http://iors.ir/journal/article-1-425-en.html

Capacity Inverse Minimum Cost Flow Problem 9

Step 4: Using (7), set the vectors 𝒍̂(𝑘) and 𝒖̂(𝑘) and construct the residual network of

𝐺(𝑉, 𝐴, 𝒍̂(𝑘), 𝒖̂(𝑘), 𝒄) with respect to 𝒙0. If the residual network contains no negative cycle,

then set 𝑧∗ = 𝑤𝑘, (𝒍∗, 𝒖∗) = (𝒍̂(𝑘), 𝒖̂(𝑘)) and 𝑘 = 𝑘 − 𝑠; otherwise, set 𝑘 = 𝑘 + 𝑠 (see

Corollary 3.6).

Step 5: If 𝑠 = 0 then go to Step 6, otherwise update 𝑠 = [
𝑠

2
] and go to Step 3.

Step 6 (output): Stop. (𝒍∗, 𝒖∗) is an optimal solution to problem (6) with the objective value

𝑧∗.

In Algorithm 1, (𝒍∗, 𝒖∗) maintains the last feasible solution found by the algorithm and 𝑧∗ is its

objective value.

Proposition 3.7. Algorithm 1 solves problem (6) in 𝑂(𝑚𝑛 log 𝑛) time.

Proof. Since the number of iterations is 𝑂(log 𝑓) = 𝑂(log 𝑛) and a negative cycle can be identified

in 𝑂(𝑚𝑛) time by using the FIFO label-correcting algorithm [1], the result is immediate. 

Remark 2. Based on Remark 1, Algorithm 1 can solve the CaIMCF problem under the 𝑙∞ norm if

we initialize 𝑤𝑖𝑗
𝑙 = 𝑥𝑖𝑗

0 − 𝑙𝑖𝑗 and 𝑤𝑖𝑗
𝑢 = 𝑢𝑖𝑗 − 𝑥𝑖𝑗

0 , for each (𝑖, 𝑗) ∈ 𝐴.

Remark 3. As the vectors 𝒑𝑙 and 𝒒𝑢 are not being used in definition (4), we can remove them from

the inputs of Algorithm 1.

4. The Sum-type Case

In this section, we consider problem (3) and show that it is strongly NP-hard even on bipartite

networks by a reduction from the minimum node cover problem. Since the feasible sets of both

problems (2) and (3) are the same, Proposition 3.3 is also valid for problem (3). Hence, we can reduce

problem (3) to the following problem:

min 𝑧 = ∑ 𝑤𝑖𝑗
𝑙 𝐻(𝑙𝑖𝑗 , 𝑙𝑖𝑗)

(𝑗,𝑖)∈𝐴𝐿
′′

+ ∑ 𝑤𝑖𝑗
𝑢𝐻(𝑢𝑖𝑗 , 𝑢̂𝑖𝑗)

(𝑖,𝑗)∈𝐴𝑈
′′

s.t. the residual network of 𝐺(𝑉, 𝐴, 𝒍̂ , 𝐮̂, 𝒄) contains no negative directed cycle,

𝑙𝑖𝑗 = {
𝑙𝑖𝑗, (𝑗, 𝑖) ∈ 𝐴𝐿

′ \𝐴𝐿
′′,

𝑙𝑖𝑗 or 𝑥𝑖𝑗
0 , (𝑗, 𝑖) ∈ 𝐴𝐿

′′,
 ∀(𝑖, 𝑗) ∈ 𝐴,

(9)

𝑢̂𝑖𝑗 = {
𝑢𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴𝑈

′ \𝐴𝑈
′′ ,

𝑢𝑖𝑗 or 𝑥𝑖𝑗
0 , (𝑖, 𝑗) ∈ 𝐴𝑈

′′ ,
 ∀(𝑖, 𝑗) ∈ 𝐴,

where 𝐴𝐿
′′ and 𝐴𝑈

′′ are defined as in (4).

The minimum node cover problem: Given an undirected graph 𝐺̅(𝑉̅, 𝐴̅), the minimum node cover

problem is to find a set of nodes such that each arc of the graph is incident to at least one node of the

set. This problem can be formulated as follows:

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 9 / 14

http://iors.ir/journal/article-1-425-en.html

10 M. Aman and J. Tayyebi

min 𝑧 = ∑ 𝑥𝑖

𝑖∈𝑉̅

s.t. 𝑥𝑖 + 𝑥𝑗 ≥ 1, ∀(𝑖, 𝑗) ∈ 𝐴̅, (10)

 𝑥𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝑉̅.

The decision version of problem (10) is one of the 21 NP-complete problems introduced by

Karp [13]. Let us state formally the decision versions of problems (9) and (10).

The Minimum Node Cover Decision (MNCD) problem:

Instance: An undirected graph 𝐺̅(𝑉̅, 𝐴̅) and a positive number 𝑘.

Question: Is there a set 𝑆 ⊆ 𝑉̅ so that |𝑆| ≤ 𝑘 and each arc of the graph is incident to at least one

node of 𝑆?

The Capacity Inverse Minimum Cost Flow Decision (CIMCFD) problem:

Instance: An instance of problem (1) defined on the directed network 𝐺(𝑉, 𝐴, 𝒍, 𝒖, 𝒄), a feasible

solution 𝒙0 for problem (1), penalty vectors 𝒘𝑙 and 𝒘𝑢, bound vectors 𝒑𝑙 , 𝒒𝑙 , 𝒑𝑢 and 𝒒𝑢 and a

number 𝑘′ > 0.

𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛: Is there a feasible solution (𝒍̂, 𝒖̂) to problem (9) so that

 ∑ 𝑤𝑖𝑗
𝑙 𝐻(𝑙𝑖𝑗 , 𝑙𝑖𝑗)

(𝑗,𝑖)∈𝐴𝐿
′′

+ ∑ 𝑤𝑖𝑗
𝑢𝐻(𝑢𝑖𝑗 , 𝑢̂𝑖𝑗)

(𝑖,𝑗)∈𝐴𝑈
′′

≤ 𝑘′?
(11)

Theorem 4.1. Problem (9) is strongly NP-hard even for bipartite networks.

Proof. The result is proved by a polynomial-time many-one reduction from the MNCD problem to

the CIMCFD problem. Suppose that an instance of the MNCD problem defined on an undirected

graph 𝐺̅(𝑉̅, 𝐴̅) is given, where 𝑉 = {1,2, … , 𝑛} is the node set and 𝐴̅ is the arc set. We introduce a

bipartite directed network 𝐺(𝑉, 𝐴, 𝒍, 𝒖, 𝒄) as follows:

 The node set 𝑉 contains two nodes 𝑖 and 𝑖′, for each 𝑖 ∈ 𝑉̅. Using the notation 𝑉̅′ =
{1′, 2′, … , 𝑛′}, 𝑉 = 𝑉̅ ∪ 𝑉̅′.

 For each (𝑖, 𝑗) ∈ 𝐴̅, we add two arcs (𝑖, 𝑗′) and (𝑗, 𝑖′) to 𝐺 which are called the natural arcs.

We associate with each 𝑖 ∈ 𝑉̅, one arc (𝑖, 𝑖′) ∈ 𝐴. Such arcs are referred to as the artificial

arcs. Thus, 𝐴 is the union of the artificial arc set {(𝑖, 𝑖′): 𝑖 ∈ 𝑉̅} and the natural arc

set {(𝑖, 𝑗′), (𝑗, 𝑖′): (𝑖, 𝑗) ∈ 𝐴̅}. Note that the network 𝐺 is bipartite and all its arcs are oriented

from 𝑉̅ to 𝑉̅′.

 The cost of each artificial arc (𝑖, 𝑖′) is equal to 1 and the cost of each natural arc is equal to

zero.

 The lower and the upper bounds of all arcs are respectively zero and one.

 Each node 𝑖 ∈ 𝑉̅ has a supply equal to 1 and each node 𝑖′ ∈ 𝑉̅′ has a demand equal to −1.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 10 / 14

http://iors.ir/journal/article-1-425-en.html

Capacity Inverse Minimum Cost Flow Problem 11

Figure 1: (a) An undirected graph 𝐺̅(𝑉̅, 𝐴̅), (b) the bipartite network 𝐺 constructed from 𝐺̅,

(c) the residual network of 𝐺 with respect to 𝒙0

Consider the feasible solution 𝒙0 defined as follows: 𝑥𝑖𝑖′
0 = 1 for each artificial arc (𝑖, 𝑖′), and 𝑥𝑖𝑗′

0 =

0, for each natural arc (𝑖, 𝑗′). The residual network of 𝐺 with respect to 𝒙0 has the same nodes of 𝐺

and the same arcs of 𝐺 except that the artificial arcs are oriented from 𝑉̅′ to 𝑉̅. Then, 𝐴𝑈
′ is the same

natural arc set and 𝐴𝐿
′ = {(𝑖′, 𝑖): 𝑖 ∈ 𝑉̅}. It is obvious that 𝑐𝑖′𝑖

′ = −1, for each (𝑖′, 𝑖) ∈ 𝐴𝐿
′ , and 𝑐𝑖𝑗′

′ =

0, for each (𝑖, 𝑗′) ∈ 𝐴𝑈
′ . Hence, each directed cycle of the residual network has a negative cost because

it contains at least two arcs belonging to 𝐴𝐿
′ . A simple example is presented in Fig. 1 to illustrate how

to construct the bipartite network 𝐺 from 𝐺̅.

Now, we introduce the parameters of the CIMCFD problem defined on 𝐺 with respect to the initial

feasible solution 𝒙0. All the penalties are equal to 1, i.e., 𝑤𝑖𝑗′
𝑙 = 𝑤𝑖𝑗′

𝑢 = 1, for each (𝑖, 𝑗′) ∈ 𝐴. We set

𝑝𝑖𝑗′
𝑢 = 𝑞𝑖𝑗′

𝑢 = 𝑝𝑖𝑗′
𝑙 = 0 and 𝑞𝑖𝑗′

𝑙 = 1, for each (𝑖, 𝑗′) ∈ 𝐴 and also, 𝑘′ = 𝑘. Therefore, 𝐴𝐿
′′ = 𝐴𝐿

′ and

𝐴𝑈
′′ = ∅.

To establish the result, it is sufficient to prove the following claim, because the introduced instance

of the CIMCFD problem satisfies the similarity assumption, i.e., the data of the instance are

polynomially bounded with respect to the problem size [1].

Claim. An instance of the MNCD problem is a yes instance if and only if the corresponding instance

of the CIMCFD problem is a yes instance.

Necessity: Suppose that 𝑆 is a solution to a given yes instance of the MNCD problem. Consider the

following solution (𝒍̂, 𝒖̂) to the corresponding instance of the CIMCFD problem:

𝑢̂𝑖𝑗′ = 1 (= 𝑢𝑖𝑗′), for each arc (𝑖, 𝑗′) ∈ 𝐴,

𝑙𝑖𝑗′ = 0 (= 𝑙𝑖𝑗′), for each natural arc (𝑖, 𝑗′),

𝑙𝑖𝑖′ = 0 (= 𝑙𝑖𝑖′), for each artificial arc (𝑖, 𝑖′) with 𝑖 ∉ 𝑆,

𝑙𝑖𝑖′ = 1 (≠ 𝑙𝑖𝑖′), for each artificial arc (𝑖, 𝑖′) with 𝑖 ∈ 𝑆.

We prove that the residual network of 𝐺(𝑉, 𝐴, 𝒍̂, 𝒖̂, 𝒄) with respect to 𝒙0 contains no (negative)

directed cycle and also, the relation (11) is satisfied. By contradiction, assume that 𝐶 is a directed

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 11 / 14

http://iors.ir/journal/article-1-425-en.html

12 M. Aman and J. Tayyebi

cycle of the corresponding residual network. 𝐶 contains at least one natural arc (𝑖, 𝑗′) together with

two artificial arcs (𝑖′, 𝑖) and (𝑗′, 𝑗). Since 𝑆 is a node cover and the arc (𝑖, 𝑗′) corresponds to the arc

(𝑖, 𝑗) ∈ 𝐴̅, it follows that either 𝑖 ∈ 𝑆 or 𝑗 ∈ 𝑆. Without loss of generality, we assume that 𝑖 ∈ 𝑆.

Consequently, 𝑙𝑖𝑖′ = 1(= 𝑥𝑖𝑖′
0) and the arc (𝑖, 𝑖′) cannot belong to the residual network which leads

to a contradiction. On the other hand, we have

 ∑ 𝑤𝑖𝑗
𝑙 𝐻(𝑙𝑖𝑗, 𝑙𝑖𝑗)

(𝑗,𝑖)∈𝐴𝐿
′′

+ ∑ 𝑤𝑖𝑗
𝑢𝐻(𝑢𝑖𝑗, 𝑢̂𝑖𝑗)

(𝑖,𝑗)∈𝐴𝑈
′′

=

 ∑ 𝐻(0, 𝑙𝑖𝑗)

(𝑗,𝑖)∈𝐴𝐿
′′

+ ∑ 𝐻(1,1)

(𝑖,𝑗)∈𝐴𝑈
′′

=
(12)

∑ 𝐻(0,1) = |𝑆|,

(𝑖′,𝑖)∈𝐴𝐿
′ 𝑤𝑖𝑡ℎ 𝑖∈𝑆

which guarantees (11). This completes the proof for necessity.

Sufficiency: Suppose that (𝒍̂, 𝒖̂) is a solution to a given yes instance of the CIMCFD problem. The

relation 𝐴𝑈
′′ = ∅ implies that 𝒖̂ = 𝒖. Assume that 𝑆 is a set of nodes so that 𝑖 ∈ 𝑆 if and only if 𝑙𝑖𝑖′ =

 1, for each (𝑖′, 𝑖) ∈ 𝐴𝐿
′′. We show that 𝑆 is a node cover of 𝐺̅. Each arc (𝑖, 𝑗) ∈ 𝐴̅ corresponds to the

cycle 𝑖 − 𝑗′ − 𝑗 − 𝑖′ − 𝑖 of 𝐺. The fact that the residual network of 𝐺(𝑉, 𝐴, 𝒍̂, 𝒖̂, 𝒄) with respect to 𝒙0

contains no cycle implies that either 𝑙𝑖𝑖′ = 1 or 𝑙𝑗𝑗′ = 1. Equivalently, either 𝑖 ∈ 𝑆 or 𝑗 ∈ 𝑆. This

shows that 𝑆 is a node cover of 𝐺̅. By the definition of 𝑆, (12) holds. Thus, |𝑆| ≤ 𝑘. This completes

the proof of sufficiency. 

5. Comparison of results

Güler and Hamacher [10] studied the capacity inverse minimum cost flow problem. Here, we

compare our considered problems and our results with the ones in [10].

The main difference between our studied problems and the ones in [10] is in the objective

functions. In [10], authors have used the 𝑙1 and 𝑙∞ norms, while we apply the Hamming distances.

The Hamming distances, unlike to the 𝑙1 and 𝑙∞ norms, are nonconvex and discontinuous.

Therefore, the known methods for the 𝑙1 and 𝑙∞ norms cannot usually apply to solve the inverse

problems under the Hamming distance. For example, the inverse minimum cost flow problem

under the 𝑙1 or 𝑙∞ norms is pollynomially solvable while problem under the sum-type hamming

distance is APX-hard [3,12]. The second difference is that modifying the lower bound vector is

not allowed in [10] while it is allowed for our problems.

In spite of these differences, it is remarkable that Algorithm 1 can solve the inverse problem

under the 𝑙∞ norm (see remarks 1 and 2). This improves the running time of the algorithm

presented in [10] from 𝑂(𝑛𝑚2) to 𝑂(𝑛𝑚 log 𝑛). The main difference between these algorithms is

that ours is based on the binary search technique but the one in [10] uses a greedy algorithm.

In the sum-type case, we showed that the problem is NP-hard due to the minimum node cover

problem. In [10], the authors showed that the problem under the 𝑙1 norm is also NP-hard using a

reduction from the weighted feedback arc set problem. It is remarkable that their reduction is also

valid for the problem under the sum-type Hamming distance and it proves that the problem is

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 12 / 14

http://iors.ir/journal/article-1-425-en.html

Capacity Inverse Minimum Cost Flow Problem 13

weakly NP-hard in a general network, while our presented reduction shows that the problem is

strongly NP-hard even on bipartite networks.

6. Conclusion and Future Research

We studied the capacity inverse minimum cost flow problem under the weighted Hamming

distances. Both the bottleneck-type and the sum-type cases were considered. In the bottleneck-type

case, an algorithm based on the binary search technique was proposed to solve the problem in

𝑂(𝑚𝑛 log 𝑛) time. This algorithm can be applied to solve the capacity inverse minimum cost flow

problem under the 𝑙∞ norm. Furthermore, it has a better complexity than one presented in [10]. In the

sum-type case, we showed that the problem is strongly NP-hard even on bipartite networks. As the

capacity inverse minimum cost flow problem under the sum-type Hamming distance is NP hard, it is

worthwhile to design efficient algorithms for some special cases of the problem and propose heuristic

(approximation) algorithms for obtaining satisfactory solutions of the problem.

Acknowledgements

The authors thank the anonymous referees whose valuable comments lead to an improved

presentation of our work.

References

[1] Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993), Network Flows: Theory, Algorithms,

and Applications, Englewood Cliffs, Prentice-Hall International, New Jersey.

[2] Ahuja, R.K. and Orlin, J.B. (2001), Inverse optimization, Operation Research, 92, 771-783.

[3] Ahuja, R.K. and Orlin J.B. (2002), Combinatorial algorithms for inverse network flow

problems, Networks, 40, 181-187.

[4] Burton, D. and Toint, Ph.L. (1992), On an instance of the inverse shortest paths problem,

Mathematical Programming, 53, 45-61.

[5] Burton, D. and Toint, Ph.L. (1994), On the use of an inverse shortest paths algorithm for

recovering linearly correlated costs, Mathematical Programming, 63, 1-22.

[6] Call, M. (2010), Inverse Shortest Path Routing Problems in the Design of IP Networks,

Ph.D. Thesis, Linkping University, Sweden.

[7] Demange, M. and Monnot, J. (2010), An introduction to inverse combinatorial problems,

In: Paschos V. Paradigms of Combinatorial Optimization (Problems and New Approaches),

London-Hoboken (UK-USA), Wiley, pp. 547-586.

[8] Duin, C.W. and Volgenant, A. (2006), Some inverse optimization problems under the

Hamming distance, European Journal of Operational Research, 170, 887-899.

[9] Gódor, I., Harmatos, J. and Jüttner, A. (2005), Inverse shortest path algorithms in protected

UMTS access networks, Computer Communications, 28, 765-772.

[10] Güler, C. and Hamacher, H.W. (2010), Capacity inverse minimum cost flow problem,

Journal of Combinatorial Optimization, 19, 43-59.

[11] Heuberger, C. (2004), Inverse optimization: a survey on problems, methods, and results,

Journal of Combinatorial Optimization, 8, 329-361.

[12] Jiang, Y., Liu, L., Wuc, B. and Yao, E. (2010), Inverse minimum cost flow problems under

the weighted Hamming distance, European Journal of Operational Research, 207, 50-54.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

 13 / 14

http://iors.ir/journal/article-1-425-en.html

14 M. Aman and J. Tayyebi

[13] Karp, R.M. (1972), Reducibility Among Combinatorial Problems, Complexity of Computer

Computations, New York, Plenum Press, 85-103.

[14] Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Model

Parameter Estimation, Amsterdam, Elsevier.

[15] Tayyebi, J. and Aman, M. (2014), Note on Inverse minimum cost flow problems under the

weighted Hamming distance, European Journal of Operational Research, 234, 916-920.

[16] Tayyebi, J. and Aman, M. (2015), On inverse linear programming problems under the

bottleneck-type weighted Hamming distance, Discrete Applied Mathematics,

doi:10.1016/j.dam.2015.12.017.

[17] Zhang, J. and Liu, Z. (1996), Calculating some inverse linear programming problems,

Journal of Computational and Applied Mathematics, 72, 261-273.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
25

-1
0-

23
]

Powered by TCPDF (www.tcpdf.org)

 14 / 14

http://dx.doi.org/10.1016/j.dam.2015.12.017
http://iors.ir/journal/article-1-425-en.html
http://www.tcpdf.org

