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Given an instance of the minimum cost flow problem, a version of the corresponding inverse
problem, called the capacity inverse problem, is to modify the upper and lower bounds on arc flows
as little as possible so that a given feasible flow x° becomes optimal to the modified minimum cost
flow problem. The modifications can be measured by different distances. Here, we consider the
capacity inverse problem under the bottleneck-type and the sum-type weighted Hamming
distances. In the bottleneck-type case, the binary search technique is applied to present an
algorithm for solving the prablem in O (nm log n) time. In the sum-type case, it is shown that the
inverse problem is strongly NP-hard even on bipartite networks.
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1. Introduction

For a particular optimization problem, a corresponding inverse problem is to modify some
parameters of the problem as little as possible such that a given feasible solution x° becomes optimal
to the new problem. The modifications can be measured by different distances such as I, [, and [,
norms and also the weighted Hamming distances. Inverse optimization problems have many
applications in traffic modeling, seismic tomography and the design of computer networks [4, 5, 6,
9].

The concept of inverse problems was first proposed by Tarantola [14] in geophysical sciences.
Subsequently, Burton and Toint [4, 5] made use of this concept in the context of combinatorial
optimization and considered the inverse shortest path problem. Since then, inverse optimization
problems have been studied by many authors; see [7, 11], for a survey.

Here, we consider a particular type of inverse minimum cost flow problems. First, let us review
the well-known minimum cost flow problem. The problem is to minimize the cost of sending a flow x
in a given directed graph G(V,A), where V. = {1, 2, ...,n} is the set of nodes and A is the set of m
arcs under some balancing constraints over the nodes and capacity constraints over the arcs. This
problem can be formulated as follows:
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min Z cijxij

(i.j)eA
s.t. Z cijxij — z cijxij = bl', VievV, (1)
(i,j)eA U,)ea

lij < xl-j < Uij; V(l,]) € A'

where ¢;; denotes the cost of sending one unit of flow on arc (i, ), [;; = 0 and u;; = 0 are the
minimum and maximum amount that can flow on arc (i, j), respectively, b; indicates the supply or
the demand of each node i. We denote the network corresponding to the problem (1)
by G(V, A, L, u,c). The problem (1) can be solved by several strongly polynomial-time algorithms [1].

Two versions of the inverse minimum cost flow problems are considered in the literature: the
cost inverse minimum cost flow (CoIMCF) problem and the capacity inverse minimum cost flow
(CalMCF) problem. Suppose that x° is a given feasible flow for (1). In the CoIMCF problem, the
cost vector c is adjusted as little as possible to make x° form a minimum cost flow to the problem
(1). While in the CaIMCF problem, the vectors I and u are modified minimally so that x° becomes
optimal to the problem (1). The ColMCF problem is studied by several authors [3, 12, 15, 16, 17].
Zhang and Liu [17] considered the inverse linear programming problems under the I, norm and
proposed a method for solving the problem based on the reduced cost optimality conditions. They
showed that the method yielded a strongly polynomial-time algorithm for the CoIMCF problem.
Ahuja and Orlin [2, 3] considered the inverse linear programming problem under the I, and [,
norms and showed that the inverse problem of a linear programming problem was also a new
linear programming problem and analyzed the inverse minimum cost flow problem as a special
case. They showed that for the I; norm, the CoIMCF problem reduced to a unit capacity minimum
cost flow problem and for the [, norm, the CoIMCF problem turned out to be solvable as a
minimum cost-to-time ratio cycle problem. In [8], the linear search and the binary search
techniques were applied to solve some special types of the CoIMCF problems such as the inverse
shortest path problem and the inverse assignment problem. Jiang et al. [12] considered the
ColMCEF problem under the sum-type and the bottleneck-type weighted Hamming distances. In
the sum-type case, they showed that the problem was APX-hard. In the bottleneck-type case, an
0(nm?) algorithm was presented to solve the problem. In [15], Tayyebi and Aman showed that
the proposed algorithm in [12] did not solve the inverse problem in the general case. Then, they
proposed two new algorithms to solve the problem in 0(nm?)and 0 (mnlogn) times [15, 16].
To the best of our knowledge, the CalMCF problem was studied only by Guler and Hamacher
[10]. They showed that the problem was NP-hard under the {; norm due to the minimum weighted
feedback arc set problem. Furthermore, they presented a greedy algorithm for solving the problem
under the I, norm in 0 (nm?) time.

Here, we study the CalMCF problem under the weighted Hamming distances. We considered
both the bottleneck-type and the sum-type cases. In the bottleneck-type case, an O(nmlogn)
algorithm based on the binary search technique is proposed to solve the inverse problem. In spite
of the fact that the Hamming distance is nonconvex and discontinuous, the CaIMCF problem
under the I, norm has a behavior similar to the bottleneck-type case. Hence, our proposed
algorithm can also solve the CaIMCF problem under the [, norm with a better complexity than
the one presented in [10]. In the sum-type case, it is shown that the minimum node cover problem
is reduced to the inverse problem and consequently, the inverse problem is strongly NP-hard even
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on bipartite networks. It is remarkable that the reduction presented in [10] is also valid for the sum-
type case but it only proves that the problem is weakly NP-hard on general networks.

The rest of our work is organized as follows. Section 2 describes the CalMCF problems in detail
and gives combinatorial formulations of the problems. Section 3 considers the CalMCF problem
under the bottleneck-type Hamming distance and presents a strongly polynomial-time algorithm.
Section 4 analyzes the CaIMCF problem and its complexity under the sum-type Hamming distance.
Section 5 compares our results with ones obtained in [10]. Finally, our final remarks are given in
Section 6.

2. Preliminaries

In this section, we state some notions used throughout the manuscript and formulate the inverse
problems.

Let x° be a feasible flow to problem (1) defined on the network G (V, 4, L, u, c). We denote the
residual network of G(V, 4, L, u, ¢) with respect to x° by G'(V, A", u’, ¢") [1]. We also denote the arc
sets A’ n A and A"\A by A}, and A}, respectively.

The following lemma gives the negative cycle optimality conditions for a feasible flow x° of
problem (1) [1].

Lemma 2.1. A feasible flow x° is optimal to problem (1) if and only if the corresponding residual
network does not contain any negative (cost) directed cycle.

Suppose that x° is a feasible flow to problem (1). In the CaIMCF problem under the bottleneck-
type weighted Hamming distance, we look for vectors I and @ such that the following conditions are
satisfied:

I. x%isaminimum cost flow in the network G (V, 4, L1, c);
. —pl; + 1 < l;; < min{x}}, q; + l;;}, for every (i,j) € A, where p}; > 0and q}; >0 are
respectively the given bounds for decreasing and increasing [;;;
. max{x{’j, —pij + u} <4 < qij + u;j, for every (i,j) € A, where pj; > 0and q;; > 0 are
respectively the given bounds for decreasing and increasing w;;;
IV. the value
max{(?}?éq wi;H (i, i), [max, witH (ug;, ;)3
is minimized where wil]- > 0and w;; > 0, (i,) € A, are respectively penalties for modifying [;;
and u;;. For eachr,7 € R, H(r,7) is the Hamming distance between r and 7, i.e., H(r, ) = 1,

if r # # and H(r,#) = 0, otherwise.

It is notable that the constraints (1) and (I11) guarantee that iij < x?j < 1;; for every (i,)) € A.

Using Lemma 2.1, the CalMCF problem under the bottleneck-type Hamming distance can be
formulated as follows:

. _ 1 B ~ (26.)
min z = max {({,r}?éq Wl-jH(ll-j, ll-j), &r}?é(A wl-”jH(ul-j, ul-j)}
st. G'(V,A’,d’', c") contains no negative directed cycle, (2b)
—pl!j + lij < lij < min{x?j, qllj + lij}' V(i j) €A, (2c)
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maX{xin, —pllj + uij} < ﬁij < C[llj + Uij, V(l,]) €A, (Zd)
where G'(V, A", @', c") is the residual network of G(V, A, 1, c) with respect to x°. Here, all the
residual networks considered are with respect to x°. For this reason, henceforth we introduce a
residual network only by determining its associated network.

In the CalMCF problem under the sum-type Hamming distance, we look for vectors I and
such that the constraints (1), (11) and (111) hold and

V. the value
(i,j)eA (i,))eA
is minimized, where wilj > 0and wi’j- > 0 are defined as in (V).

Therefore, the CaIMCF problem under the sum-type Hamming distance can be formulated as
follows:

minz = Z Wile(lij;Zij)-l' Z Wilj'H(uij'ﬁij)' (32

(i,j)eA (i.j)ea
st. G'(V,A’, 4, c") contains no negative directed cycle, (3b)
—p%j + lij < Zij < min{x?j, qll] + lij}’ V(l,]) € A, (3C)
max{xJ, —p¥ +w;} < Uy < g +wy, V() €4, (3d)

where G'(V, A", W', ¢') is the residual network of G(V, 4, 1,1, c).

3. The Bottleneck-type Case
In this section, we consider problem (2) and propose an efficient algorithm for solving it.
Lemma 3.1. If problem (2) is feasible, then it has an optimal solution.

Proof. Due to the fact that the objective value, z, of problem (2) belongs to the finite set
{wij: () € A}u{wl: (i,)) € A} U {0}, the result is immediate. O

Proposition 3.2. Problem (2) is infeasible if and only if there is a negative cycle C in the residual
network of G(V, 4, L, u, ¢) so that the following conditions hold:

@) w;; —pf; > x); , foreach (i,j) € C N Ay
(b) L +qf; <, foreach (j,i) € C N Aj.

Proof. We first prove the necessity by contradiction. Suppose that each negative cycle C in the
residual network does not satisfy at least one of the two conditions (a) and (b). We show that C can
be removed from the residual network by adjusting the bound vectors. If there exists an arc (iy, j;) €

i H u 0 0 — 4.0 H
CNnAy with v ; —pij, <xj,,» then we set @; ; =x; ;.Thus, the bound constraint

max{x{ ;w0 — it } < iy jy Suiyj, + 4, holds and the negative cycle is removed from the
. - P 1 : l 0
residual network. In the case that C contains anarc (jo,ig) € C N Ay with l; ; + q; j, = x; j,, We set

iio jo = xl% j, to remove the cycle C from the residual network while honoring the bound constraint
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—pt o+ ligjo < liyj, < minfx? i ,qf ; +1;;,}. By repeating this process, each negative cycle can
be removed from the residual network and consequently, a feasible solution (I, &) is obtained.

We now prove the sufficiency. Suppose that there is a negative cycle C satisfying the conditions (a)
and (b). Since #;; = w;; — p}% > xf}, for each (i,j) € C N Ay and I;; < ;; + q{; < xJ}, for each
(j,i) € C n A}, we cannot remove C by modifying the initial bound vectors. Therefore, problem (2)
is infeasible. O

The proof of Proposition 3.2 is constructive and can be used as an algorithm for solving problem
(2). Let us describe this algorithm in more details. The algorithm first sets I = I and @ = u. In each

iteration, the algorithm identifies a negative cycle C in the residual network of G(V, A4, 114, c) and
either removes it from the residual network or determines that the problem is infeasible. Suppose that
the arc set S is defined as follows:

S=Cn(Ay Vv {@,j) €eA:(,i) €A}

where
v ={G)) € Ay — vl < x}, (4a)
A ={G, D) € Ap:xy < li; + ql)): (4b)

The set S contains the arcs which can be modified for removing C. From Proposition 3.2, if S = @,
then problem (2) is infeasible and the algorithm terminates. Otherwise, an arc (iy, jo) € S is selected
with the minimum penalty,

. . . . u . l
(ig,jo) = argmin{ min w# min w! . (5)
0-Jo & {(i,j)esmy Y7 i, j)es with Geay Y }

To remove the cycle C from the residual network, the algorithm sets @; ; = xl%jo if (ig,jo) €AY

and iiojo = xl-‘:)jo if (jo,ip) € A';. This process repeats until one of the following cases occurs: (1) the
algorithm identifies a negative cycle C with S = @. In this case, the problem is infeasible, and (I1) the
current residual network contains no negative cycle. In this case, the solution (I,) is optimal for

problem (2) due to (5).

We now discuss about the complexity of this algorithm. In each iteration, the algorithm adjusts
the lower bound or the upper bound of one arc. This observation gives a bound of 2m on the number
of iterations. In each iteration, we can use the FIFO label-correcting algorithm as a subroutine to
detect the presence of a negative cycle in 0(mn) time [1]. Therefore, problem (2) can be solved in
0(m?n) time. In the next subsection, we present a faster algorithm for solving problem (2).

Now, we introduce a special form of the optimal solutions and focus on finding such an optimal
solution.

Proposition 3.3. If problem (2) is feasible, then it has an optimal solution (I, ) having the following
properties:
(@) If @;; # uy;, for some (i, j) € Ay, then @;; = xJ).
(b) 11;; = uyj, for each (i,j) € Ay\Ay.
(©) If I; # 1;;, for some (j, i) € A7, then [;; = x.
(d) I;; = L, for each (j, i) € A}\A].
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Proof. First, we prove the part (a) by contradiction. Since problem (2) is feasible, based on Lemma
3.1, there exists an optimal solution. Suppose that (1, ) is an optimal solution for problem (2) so that
Ujyj, # x%jo and u;;, # u;,j, , for some arc (i, jo) € Ay. Now, we define the upper bound vector
u as follows:
0 L oaN s
= {f“” )=o)y e
Uij, (l,]) i (lOJJO)'

It is obvious that the residual network of G(V,4,1,1,c) contains exactly the arcs of the residual
network of G(V,4,1,4,c), except the arc (iy, jo). This together with the fact that the residual
network of G(V, 4,1, %, ¢) does not contain any negative cycle implies that the residual network of
G(V,A,1,1, c) also contains no negative cycle. Therefore, the solution (I, %) is feasible to problem
(2). On the other hand, the objective values of both solutions are the same, because u;; # u;; if and
only if @;; # w;;, for each (i, j) € A. Consequently, the solution (i, ﬁ) is also optimal to problem (2).
If we repeat this process for each (i, j) € Ay with #;; # u;;, then we can obtain an optimal solution
that satisfies part (a).

Now, we prove part (b) by contradiction. Suppose that (I, ) is an optimal solution for problem
(2) so that @; ;, # w,j,, for some arc (i, jo) € Ay\Ay. Define the upper bound vector & as
follows:

B {uij , (l,]) = (iO'jO)' V(l,]) € A.

Ui =9 - .. ..
N Uij» (l;]) * (lO'JO)f
Since both the residual networks of G(V,4,1,%,c) and G(V,A,1,1, c) are the same, it is easy to
verify that (I, %) is a feasible solution with the objective value less than or equal to that of (1,u).

Hence, (i, ﬁ) is optimal for problem (2). By repeating this process, we can obtain an optimal solution
satisfying part (b). Similarly, parts (c) and (d) can be proved. O

Using Proposition 3.3, we can reduce problem (2) to the following combinatorial optimization
problem:

: _ l 7 u R
minz = max{ max wi;H (1, [;;), max”WL-jH(uU,uU)} ,

(i,j)eA) (i,))eAy
s.t. The residual network of G(V, A1, c) contains no negative directed cycle, (6)
Z.. _ {lij' (j' l) € Al\AZ' V(l ) €A
b lij or xlpj, (,i) € A7, ] ’
LA} A n
;= {u”’ o (@) .E.AU\ b v(i,j) € A.
U;j OT Xjj, (i,)) € Ay,

Remark 1. In the CaIMCF problem under an arbitrary distance, we have to either increase a lower
bound from [;; to x?j or decrease an upper bound from w;; to xioj to remove negative cycles from the
residual network. For this reason, the results of propositions 3.2 and 3.3 are also valid for any other
distances, especially for I, norm. Therefore, the CaIMCF problem under the [, norm is reduced to
problem (6) with w/; = x; — I;; and wi = u;; — xJ}, for each (i, ) € A.
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3.1. An efficient algorithm

Here, we propose an algorithm based on binary search technique to solve problem (6). Assume
that F is the set of objective functions of problem (6), i.e., F ={0}u {(w;;:(i,j) € A}U
{wi‘j:(i,j) EA}. Suppose that we have sorted the elements of F in nondecreasing order: let
0 =wy < w; <w, < - < wy bethe sorted list where f = |F|. For each fixed index k € {0,1, ..., f},
the solution ( 1), () of problem (6) is defined as follows:

0 ..
N xp,  (j,i) € A with W < wg,
i — 1 v(i,j) € 4,
L Lij, otherWISe, @) (7a)
0 2. " . U
~t) _ [(xijp (L)) € Ay withwi; < wy, .
) = v(i,j) € 4,
Ui {ui i otherwise, (@) (7b)

where A}’ and Aj; are defined by (4). The following result is on the feasibility of such solutions.

Theorem 3.4. For k € {0,1, ..., f}, let the solution (1), @w®)) be defined by (7). The residual
network of G(V, 4, 1®,a®), ¢), denoted by G'(V, A’, &', ¢"), satisfies the following two properties:

(@) If G'(V,A", @', c") contains no negative cycle, then the solution (1), w®)) is feasible for
problem (6) with an objective value less than or equal to wy,.

(b) If G'(V,A’, 4, c") contains a negative cycle, then problem (6) has no feasible solution with an
objective value less than or equal to wy,.

Proof. The proof of the part (a) is obvious. We only prove part (b) by contradiction. Assume that
problem (6) has a feasible solution (I,1), whose objective value is less than or equal to wy. Let the
residual network of G(V, A, 1,4, c) be denoted by G(V,A",u’,c"). Suppose A, = A'n A and 4] =
A \A Let A} and A} be defined by (4) correspondlng to A} and Ay, respectively. Similarly, suppose

=A'nAand A = A'\A and also, A} and Aj; are defined by (4) corresponding to A} and Aj;,
respectlvely

Let (i,j) be an arbitrary element of A;. Then, i Consequently, either wj; > wy oru;; —
pi; > x Afwi > wy, then @;; = * x0

ij i because (l u) is a feasible solution with objective
value Iess than or equal to wy. If u;; —pj; > xloj, then u;; # xu' because of honoring the bound
constraint max{xl-oj, —pi; +u;j} < @;; . Hence, (i, ) belongs to Aj; in both cases. This shows that

c Aj,. Similarly, it can be verified that A} € A} . Obviously, these relations imply

A(k)

Al c Ay, Ay c A )
Due to the fact that the residual network of G(V, 4, 1,1, ¢) does not contains any negative cycle, the

relations (8) imply that G'(V, A", 1, ¢") also contains no negative cycle, which is a contradiction. O

Using Theorem 3.4, the following results are immediate.

Corollary 3.5. Problem (6) is infeasible if and only if the residual network of G(V, 4, IV, a"), ¢)
contains at least one negative cycle, where (1), () is defined by (7) for k = f.
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Corollary 3.6. If k€{0,,...,f} be the least index for which the residual network of
GV, A, 19,a%, ¢) contains no negative cycle, then the solution of (1%, w®)) defined by (7) is
optimal for problem (6).

Based on Corollary 3.6, solving problem (6) reduces to finding the least index k for which the
residual network of G(V, A, 19,1, ¢) does not contain any negative cycle. We use the binary
search technique to find such an index k € {0,1, ..., f}.

Our proposed algorithm for solving the problem (6) contains two phases. The first phase
determines whether or not the problem (6) is feasible by checking whether the residual network
of GV, 4, 1D, a0, ¢) contains at least a negative cycle (see Corollary 3.5). If the residual
network contains no negative cycle, then problem (6) has the feasible solution ( 17,2V and the
second phase starts. Otherwise, problem (6) is infeasible and the algorithm terminates. The second
phase has a repetitive process based on the binary search technique. At each iteration of the second
phase, the algorithm looks for feasible solutions whose objective value is better than those of
feasible solutions found in previous iterations.

Suppose that the second phase has started. The goal in the second phase is to find the least
index k € {0,1, ..., f} by using the binary search technique so that (1%, @#(®)) is a feasible
solution for problem (6). Since the algorithm has determined that (1%, @(®)) is feasible for k =
f in the first phase, the algorithm checks whether or not the residual network of

GV, A, 15,45 ¢) has a negative cycle for k = [g] and s = [i—c] in the first iteration of the
second phase. Note that s is a half-step of k to decrease or to increase k in each iteration. If the
residual network does not contain any negative cycle, then (1(9, () is feasible for problem (6)
with the objective value wy, and the algorithm decreases the value of k by s units for finding a
feasible solution with the objective value less than wy,. Otherwise, the value of k increases by s
units, because problem (1) has no feasible solution with the objective value less than or equal to
wy (see Theorem 3.4). The algorithm repeats this process and updates s = [%] at each iteration

until s = 0.

Now, we are ready to state the proposed algorithm formally.

Algorithm 1.

Input: A network G(V, 4,1, u, ¢), a feasible solution x°, penalty vectors w' and w* and bound
vectors pt, q', p* and q*“.

Step 1: Sort the objective values of problem (6). Suppose that 0 = wy < wy < -+ < wy is the
sorted list of these values.

Step 2: Using (7), obtain the vectors 17 and ). Construct the residual network of

GV, A 1D, a0, ¢) with respect to x°. If the residual network contains at least one
negative cycle, then stop because problem (6) is infeasible; otherwise, go to Step 3 (see
Corollary 3.5).

Step 3: Set's = [£], k = [£], z* = wy and (1", u") = AV, a).
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Step 4: Using (7), set the vectors 1% and t®) and construct the residual network of
GV, A, 19, 2%, ¢) with respect to x°. If the residual network contains no negative cycle,
then set z* = wy, (I*,u*) = (A%, u®) and k = k — s; otherwise, set k = k + s (see
Corollary 3.6).

Step 5: If s = 0 then go to Step 6, otherwise update s = [%] and go to Step 3.

Step 6 (output): Stop. (I*,u*) is an optimal solution to problem (6) with the objective value
z".

In Algorithm 1, (I*, u*) maintains the last feasible solution found by the algorithm and z* is its
objective value.

Proposition 3.7. Algorithm 1 solves problem (6) in O(mnlogn) time.

Proof. Since the number of iterations is O (log f) = 0(logn) and a negative cycle can be identified
in O (mn) time by using the FIFO label-correcting algorithm [1], the result is immediate. O

Remark 2. Based on Remark 1, Algorithm 1 can solve the CalMCF problem under the [, norm if
we initialize w{; = x; — I;; and w}j = u;; — x7}, for each (i, ) € A.

Remark 3. As the vectors p* and g* are not being used in definition (4), we can remove them from
the inputs of Algorithm 1.

4. The Sum-type Case

In this section, we consider problem (3) and show that it is strongly NP-hard even on bipartite
networks by a reduction from the minimum node cover problem. Since the feasible sets of both
problems (2) and (3) are the same, Proposition 3.3 is also valid for problem (3). Hence, we can reduce
problem (3) to the following problem:

minz = Z wiH (L, L) + 2 wijH (wij, )

U.DHeAay (Lj)eAy
s.t. the residual network of G(V, 4,1,1, c¢) contains no negative directed cycle,
- Lij (,i) € AL\AL, . 9)
lij = {l 0 : s " V(l,]) € A;
ij OF X, (j,i) e A7,
. Uij (i,)) € Ay\Ay, o
i = V(i,j) €A,
uU {uij or xlpj, (l,]) € A”, (l ])

where A}’ and Ay are defined as in (4).

The minimum node cover problem: Given an undirected graph G (V, A), the minimum node cover
problem is to find a set of nodes such that each arc of the graph is incident to at least one node of the
set. This problem can be formulated as follows:


http://iors.ir/journal/article-1-425-en.html

[ Downloaded from iors.ir on 2026-02-02 ]

10 M. Aman and J. Tayyebi

minz = in

iev
st.x;+x =1, V(ij) €A (10)
x; €{0,1}, Vi€eV.

The decision version of problem (10) is one of the 21 NP-complete problems introduced by
Karp [13]. Let us state formally the decision versions of problems (9) and (10).

The Minimum Node Cover Decision (MNCD) problem:
Instance: An undirected graph G(V, A) and a positive number k.

Question: Is there aset S € ¥ so that |S| < k and each arc of the graph is incident to at least one
node of §?

The Capacity Inverse Minimum Cost Flow Decision (CIMCFD) problem:

Instance: An instance of problem (1) defined on the directed network G (V, 4,1, u, ¢), a feasible
solution x° for problem (1), penalty vectors w! and w*, bound vectors p', q*, p* and g% and a
number k' > 0.

Question: Is there a feasible solution (I, i) to problem (9) so that

Z wiiH (L, ly) + Z wiiH (ugj, i) < k'? (1)

(j,Deal (i,)eAy

Theorem 4.1. Problem (9) is strongly NP-hard even for bipartite networks.

Proof. The result is proved by a polynomial-time many-one reduction from the MNCD problem to
the CIMCFD problem. Suppose that an instance of the MNCD problem defined on an undirected
graph G(V,A) is given, where V = {1,2,...,n} is the node set and A is the arc set. We introduce a
bipartite directed network G(V, 4, L, u, c¢) as follows:

e The node set V contains two nodes i and i’, for eachi € V. Using the notation V' =
(1,2',..,n",V="vuv.

e Foreach (i,j) € A, we add two arcs (i, j") and (j,i") to G which are called the natural arcs.
We associate with each i € V7, one arc (i,i") € A. Such arcs are referred to as the artificial
arcs. Thus, A is the union of the artificial arc set {(i,i"):i € V} and the natural arc
set{(i,j"), (j,i"): (i,j) € A}. Note that the network G is bipartite and all its arcs are oriented
fromV to V'

e The cost of each artificial arc (i, i") is equal to 1 and the cost of each natural arc is equal to
zero.

e The lower and the upper bounds of all arcs are respectively zero and one.
e Eachnode i € V has a supply equal to 1 and each node i’ € V' has a demand equal to —1.
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An artificial arc: ——p- An artificial arc: ——p
A natural arc: =g A natural arc: s

(a) (b) ()

Figure 1: (a) An undirected graph G (V, 4), (b) the bipartite network G constructed from G,
(c) the residual network of G with respect to x°

Consider the feasible solution x° defined as follows: xJ), = 1 for each artificial arc (i, "), and x?j, =

0, for each natural arc (i, j"). The residual network of G with respect to x° has the same nodes of G
and the same arcs of G except that the artificial arcs are oriented from V' to V7. Then, A}, is the same
natural arc set and A;, = {(i’,i): i € V}. Itis obvious that c;,; = —1, for each (i',i) € A}, and ¢{;, =
0, foreach (i,j") € Ay. Hence, each directed cycle of the residual network has a negative cost because
it contains at least two arcs belonging to A; . A simple example is presented in Fig. 1 to illustrate how

to construct the bipartite network G from G.

Now, we introduce the parameters of the CIMCFD problem defined on G with respect to the initial
feasible solution x°. All the penalties are equal to 1, i.e., wi’j, = w}j-, = 1,foreach (i,j') € A. We set
P = q, =pl, =0and gf;, = 1,foreach (i,j') € A and also, k' = k. Therefore, A} = A} and

;=0

To establish the result, it is sufficient to prove the following claim, because the introduced instance
of the CIMCFD problem satisfies the similarity assumption, i.e., the data of the instance are
polynomially bounded with respect to the problem size [1].

Claim. An instance of the MNCD problem is a yes instance if and only if the corresponding instance
of the CIMCFD problem is a yes instance.

Necessity: Suppose that S is a solution to a given yes instance of the MNCD problem. Consider the
following solution (1, @) to the corresponding instance of the CIMCFD problem:

=1 (: ul.j,), foreacharc (i,j") € 4,

il.j, =0 (: lij’)’ for each natural arc (i, "),

Z”, =0 (= L), for each artificial arc (i,i") withi ¢ S,
Zl.l., =1(# ), for each artificial arc (i,i") withi € S.

We prove that the residual network of G(V,A,1 1, c) with respect to x° contains no (negative)
directed cycle and also, the relation (11) is satisfied. By contradiction, assume that C is a directed
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cycle of the corresponding residual network. C contains at least one natural arc (i, j") together with
two artificial arcs (i’,i) and (j', ). Since S is a node cover and the arc (i,j") corresponds to the arc
(i,j) € 4, it follows that either i € S or j € S. Without loss of generality, we assume that i € S.
Consequently, [;;, = 1(= x?,) and the arc (i, i") cannot belong to the residual network which leads
to a contradiction. On the other hand, we have

U.DeAy (iL.)eAy
H(0,1;;) + z H(1,1) = (12)
(U.eay (L,)eAy
H(0,1) = |S],

(i',D)EA] withieS
which guarantees (11). This completes the proof for necessity.

Sufficiency: Suppose that (1, %) is a solution to a given yes instance of the CIMCFD problem. The
relation A} = @ implies that i = u. Assume that S is a set of nodes so thati € S ifand only if ;;, =
1, for each (i’,i) € A}’. We show that S is a node cover of G. Each arc (i, j) € A corresponds to the
cyclei —j" —j—i" —iof G. The fact that the residual network of G (V, 4, L4, ¢) with respect to x°
contains no cycle implies that either [;, = 1 or [;;, = 1. Equivalently, either i € S or j € S. This
shows that S is a node cover of G. By the definition of S, (12) holds. Thus, |S| < k. This completes
the proof of sufficiency. O

5. Comparison of results

Guler and Hamacher [10] studied the capacity inverse minimum cost flow problem. Here, we
compare our considered problems and our results with the ones in [10].

The main difference between our studied problems and the ones in [10] is in the objective
functions. In [10], authors have used the [, and [, norms, while we apply the Hamming distances.
The Hamming distances, unlike to the [, and [, norms, are nonconvex and discontinuous.
Therefore, the known methods for the /; and I, norms cannot usually apply to solve the inverse
problems under the Hamming distance. For example, the inverse minimum cost flow problem
under the I, or I, norms is pollynomially solvable while problem under the sum-type hamming
distance is APX-hard [3,12]. The second difference is that modifying the lower bound vector is
not allowed in [10] while it is allowed for our problems.

In spite of these differences, it is remarkable that Algorithm 1 can solve the inverse problem
under the I, norm (see remarks 1 and 2). This improves the running time of the algorithm
presented in [10] from 0 (nm?) to 0(nmlogn). The main difference between these algorithms is
that ours is based on the binary search technique but the one in [10] uses a greedy algorithm.

In the sum-type case, we showed that the problem is NP-hard due to the minimum node cover
problem. In [10], the authors showed that the problem under the I; norm is also NP-hard using a
reduction from the weighted feedback arc set problem. It is remarkable that their reduction is also
valid for the problem under the sum-type Hamming distance and it proves that the problem is
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weakly NP-hard in a general network, while our presented reduction shows that the problem is
strongly NP-hard even on bipartite networks.

6. Conclusion and Future Research

We studied the capacity inverse minimum cost flow problem under the weighted Hamming
distances. Both the bottleneck-type and the sum-type cases were considered. In the bottleneck-type
case, an algorithm based on the binary search technique was proposed to solve the problem in
O(mnlogn) time. This algorithm can be applied to solve the capacity inverse minimum cost flow
problem under the I, norm. Furthermore, it has a better complexity than one presented in [10]. In the
sum-type case, we showed that the problem is strongly NP-hard even on bipartite networks. As the
capacity inverse minimum cost flow problem under the sum-type Hamming distance is NP hard, it is
worthwhile to design efficient algorithms for some special cases of the problem and propose heuristic
(approximation) algorithms for obtaining satisfactory solutions of the problem.
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