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Solving Infinite Horizon Optimal Control Problems of
Nonlinear Interconnected Large-Scale Dynamic Systems via a
Haar Wavelet Collocation Scheme
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We consider an approximation scheme using Haar wavelets for solving a class of infinite
horizon optimal control problems of nonlinear interconnected large-scale dynamical
systems. A computational method based on Haar wavelets in the time-domain is proposed
for solving the optimal control problem. Haar wavelets integral operational matrix and
direct collocation method are utilized to find an approximate optimal trajectory of the
original problem. Numerical results are given to demonstrate the applicability and the
effectiveness of the proposed method.
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1. Introduction

In general, a large-scale system can be considered a dynamical system composed of some lower
order interconnected subsystems. These systems are found in many practical applications, such as
power systems and physical plants (Sahba [37]; Holland and Diamond [14]). Nevertheless, control of
such a system is still challenging, because of the dimensionality problem and high complexity in
calculations.

An efficient control strategy for large-scale systems is decentralized control (Huang et al. [16]),
which is easier to implement than centralized control. Designing a decentralized controller, however,
is more difficult than that of a centralized controller, owing to the interconnections among
subsystems. To overcome the difficulties arising from the control of large-scale systems, neural
networks have been recognized as a powerful tool, due to their collective computing and parallel
processing capabilities (Chen and Li [9]; Padhi and Balakrishnan [29]). Nevertheless, the main
drawback of the neural network model is that it can often be trapped at a local minimum.

Recently, some new control strategies have been introduced for large-scale systems. In Chen and
Li [8], a decentralized adaptive backstepping neural network control approach was developed for a
class of large-scale nonlinear output feedback systems. In this approach, neural networks were
employed to approximate the interconnections and a backstepping technique was used to remove the
matching condition requirement on interconnections. In Li et al. [23], the decentralized adaptive
neural network output feedback stabilization problem was investigated for a class of large-scale
stochastic nonlinear strict-feedback systems. In that work, the nonlinear interconnections were
assumed to be bounded by some unknown nonlinear functions of the system outputs. Then, in each
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subsystem, only one neural network was employed to compensate for all unknown upper bounding
functions, which depended only on the output of the respective subsystem. Using only one neural
network, however, may cause loss of precision.

A growing interest has appeared in the field of optimal control. Nevertheless, conventional
methods of optimal control are generally impractical for many nonlinear large-scale systems because
of the dimensionality problem and high complexity in calculations. One example is the state-
dependent Riccati equation (SDRE) method (Chang et al. [4]). Although this scheme has been widely
used in many applications, its major limitation is that it needs to solve a sequence of matrix Riccati
algebraic equations at each sample state along the trajectory. This may take a long computing time
and extensive memory space. Therefore, developing new methods is necessary for solving nonlinear
large-scale optimal control problems (OCPs).

A popular trend in handling nonlinear large-scale OCPs is decomposition and coordination,
where a large problem is decomposed into small subproblems, based on the problem structure. Then,
a proper coordination scheme is carried out to join the subproblems and insure the optimality of the
overall solution (Jamshidi [18]). Based on this strategy, hierarchical methods have been proposed
(Jamshidi [18]); nevertheless, these methods may take considerable computing time and memory
space.

To solve nonlinear large-scale OCPs, in recent years, good results have been gained. For instance,
a new successive approximation approach (SAA) was proposed by Tang and Sun [38]. In this
approach, instead of directly solving the nonlinear large-scale two-point boundary value problem
(TPBVP), derived from the maximum principle, a sequence of nonhomogeneous linear time-varying
TPBVPs is solved iteratively. This method has been used in different applications (Tang and Zhang
[39]; Zhang et al. [44]). Nevertheless, solving time-varying equations is much more difficult than
solving time-invariant ones. Recently, a practical technique, called the extended modal series method,
has also been proposed for solving the infinite horizon OCP of nonlinear interconnected large-scale
dynamical systems (Jajarmi et al. [17]). This is an indirect method, where the optimal control law and
the optimal trajectory are determined in the form of a uniformly convergent series. But, its
shortcoming is the high computing complexity due to calculating the coefficients of series in each
step where in theory, infinite iterations are required.

Orthogonal functions such as Haar wavelets (Hsiao and Wang [13]; Karimi et al. [19]), Walsh
functions (Chen and Hsiao [6]; Razzaghi and Nazarzadeh [32]), block pulse functions (Marzban and
Razzaghi [24]; Mashayekhi et al. [27]; Rao [30]), Laguerre polynomials (Wang and Shin [42]),
Legendre polynomials (Chang and Wang [5]), Chebyshev functions (Horng and Chou [15]) and
Fourier series (Razzaghi [31]), which are often used to represent arbitrary time functions, have
frequently been used to deal with various problems of dynamical systems. The main characteristic of
this approach is that it reduces the difficulties involved in solving problems described by differential
equations, such as in the analysis of linear time-invariant, time-varying systems, model reduction,
optimal control, and system identification, to the solution of a system of algebraic equations. Thus,
the solution, identification, and optimization procedures are either greatly reduced or much
simplified. The available sets of orthogonal functions can be divided into three classes: piecewise
constant basis functions such as Haar wavelets, Walsh functions, and block pulse functions;
orthogonal polynomials such as Laguerre, Legendre, and Chebyshev polynomials; and sine-cosine
functions in Fourier series (Marzban and Razzaghi [25]). Among them, wavelet theory is a relatively
new area in mathematical research (Burrus et al. [3]). It has been applied to a wide range of
engineering disciplines such as signal processing, pattern recognition, industrial chemical reactors,
and computer graphics. Recently, attempts have been made to use wavelet theory to solve surface
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integral equations, improve the finite-difference time-domain method, solve linear differential
equations and nonlinear partial differential equations, optimal control problems, and model nonlinear
semiconductor devices (Banks [1]; Banks and Burns [2]; Chen and Hsiao [7]; Dai and Cochran [10];
Gallmann et al. [12]; Hsiao and Wang [13]; Karimi et al. [19]; Karimi et al. [20]; Karimi et al. [21];
Karimi [22]; Marzban and Razaghi [26]; Ohkita and Kobayashi [28]; Razzaghi and Ordokhani [33];
Razzaghi and Ordokhani [35]; Teo et al. [40]; Wong et al.[43]).

Motivated by the above discussions, here we consider a particular approximation scheme based
on Haar wavelets to be used to solve a class of infinite horizon OCPs of nonlinear interconnected
large-scale dynamical systems, where the cost function is assumed to be quadratic and decoupled.
First, we transform the infinite horizon problem to a finite horizon one, that is, from the interval [0,o0)
to [0, 1). Then, we will assume that the control variables and derivatives of the state variables in the
optimal control problems may be expressed in the form of Haar wavelets and unknown coefficients.
The state variables can be calculated by using the Haar operational integration matrix. Therefore, all
variables in the nonlinear system of equations are expressed as series of the Haar family and its
operational matrix. Finally, the task of finding the unknown parameters that optimize the designated
performance while satisfying all the constraints is performed the nonlinear programming. The
effectiveness of the proposed approach is verified by solving the optimal attitude control problem.

2. Problem Statement and Transformation

Consider a nonlinear interconnected large-scale dynamical system which can be decomposed
into N interconnected subsystems. The ith subsystem, for i = 1,2, ..., N, is described by

{J'Ci(t) = Aix;(t) + Biw; () + Fi(x(¢)),t > 0, (1)
x;(0) = x;,,

where x; € R™ and u; € R™ are the state vector and the control vector of the ith subsystem,
respectively, x = (xT,xI, ..., x})7, ¥V n; =n, F:R® > R%,i = 1,2,..., N, isanonlinear analytic
vector function with F;(0) = 0, and x;, € R™ is the initial state vector. Also, 4; and B; are constant

matrices of appropriate dimensions such that the pair (4;, B;) is completely controllable. Furthermore,
the infinite horizon quadratic cost function to be minimized is given by

N
1 (oo}
/= 5; { fo (f (DQixi(8) + ulT(t)Riul-(t))dt}, @)

where Q; € R™*™ and R; € R™*™: are respectively positive semi-definite and positive definite
matrices. Note that the quadratic cost function (2) is assumed to be decoupled as a superposition of
the cost functions of the subsystems.

The following time transformation is introduced:

— 0 3
t—:,te[,m). 3)

The above problem is transformed into the following finite horizon nonlinear optimal control
problem:
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minimize | =

T
i=

T_ - dt
{f[m) e )+ R ) )

s.t.
1
G = oy A ) + B ) + R T € [0),
xi(O) = xio.
Now, assume
yi(T) = Xi(lT), i=12,..,N,
Ui('[) = ui(lT), L= 1,2, . ,N

Thus, the problem of nonlinear system (1) with the performance index (2) is replaced by
N
o 1 T - ks
minimize ] =53 1 (T @@ + ] @Rwi(D) -
i=1 ’
s.t.
. 1 .
v;(1) = —(1 ey (A;y;(x) + Bjvi(v) + F;(y()),i =1,2,..,N,t € [0,1),

yl(o) =yi0'i = 1,2,---,N,

(4)

(5)

(6)

(7)

(8)

(9)

where y(t) = (I (1), yI (), ..., yL(1))T. In the next section, we will discuss the properties of a
direct collocation method based on Haar functions and will use it for solving the finite time horizon

problem (7) — (9).
3. Haar Wavelets

3.1. Rationalized Haar Functions

The rationalized Haar (RH) functions RH(r, t),r = 1,2,..., can be defined on the interval [0,1)

(e.g., see Marzban and Razzaghi [24]) as
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1 Jist<]1,
RH(r,1)=<4-1 J1 <7 <]i, (10)
0 otzherwise,
where
j—u 1
Ju = 5 ,u=0,§,1.

The value of r is defined by two parameters i and j via

r=2'+j-1,i=01.23,...,j =1,2,3,..., 2%
RH(O0, 1) is defined for i = j = 0 and is given by

RH(O,7)=1, 0<7<1.
The orthogonality property is given by
! 278 r=v
RH RH = ’ - 11

| RHGORHO DA =3 T2 (1)

where

v=2"+m-1,n=0123,....m=1,23,...,2"

It should be noted that the set of RH functions is a complete orthogonal set in Hilbert space
L?[0,1]. Thus, we can expand any function in this space in terms of RH functions.

3.2.  Function Approximation

A function F(z) € L?[0,1] may be expanded as an infinite series of RH functions as

[oe]

F(o) = Z a,RH(r,7), (12)

r=0

where a, is given by
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1
a, = 2! f F(T)RH(r,7)dr, r=012,... (13)
0
with r=21+j-1,i=0,1,2,3,...,j =1,2,3,...,2,, and =0 for i=j=0. If we let i =

0,1,2,..., a, then the infinite series in (12) is truncated up to its first K terms as

K—-1

Fr) ~ Z a,RH(r,7) = ATO(D), (14)
r=0
where
K =2%1¢=0,123,..,
A and ®(7) are defined by
A= [aO'al""'aK—l]T' (15)
D(1) = [¢o(1), 1 (D), ..., -1 (D], (16)
and

¢-(t) =RH(r,7), v=012,...,K—1.

If we set all the collocation points t; at the middle of each respective wavelet, then 7, is defined by

[-05
T = K B

1=12,... K. (17)

With these collocation points, the function is discretized over a series of equally spaced nodes. The
vector &(7) can also be determined at these collocation points. Let the Haar matrix @y be the
combination of ®(t) at all the collocation points. Thus, we get

EISI(XI( = [®(11), P(72),..., P(TK)]- (18)

For example, if each waveform is divided into eight intervals, the magnitude of the waveform (see
Ohkita and Kobayashi [28]) can be represented by
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rl 1 1 1 1
1 1 1 1 -1
11 -1 -10
A 0 0 0 0 1
<I>8><8=[¢(T1)'¢(TZ)""'¢(T3)]: 1 =1 0 0 0
0 0 1 -1 0
0 0 0 0 1
0 0 0 0 0

Using (14) and (18), we have

[F(t1), F(z2),..., F(rg)] = ATEISKXK'

From (20), we get

AT = [T(Tl);T(TZ)'""?(TK)]&)I?}(K'

where

- 1.
dxlye = (E)qa,T(XKdiag(LLz,z,22,...,22,23,...,23,... —

22 23

Therefore, the function F (t) is approximated by

T(Tl)zAr{xKasKXK, l=1,2,...,K.

1 1
—1 -1
0 0
1 -1
0 0
0 0
1 0
0 1
K K

)

K
2

25

(19)

(20)

(21)

(22)

(23)

It is also expected to approximate the function F(t) with minimum mean integral square error,

g, defined by

1
&= f (F(1) — ATd(1))2dr.
0

Obviously, & decreases when the level K gets larger and it should converge to zero when K approaches

infinity.

3.3.  Operational Matrix for Integration

In the solution of optimal control problems, we always need to deal with equations involving
differentiation and integration. If the system function is expressed in Haar wavelets, the integration
or differentiation operation of Haar series cannot be avoided. The differentiation of step waves will
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generate pulse signals which are difficult to handle, while the integration of step waves will result in
constant slope functions which can be calculated by

fTCI)(T')dT’ ~ PO(1), (24)
0

where P = Py« IS @ K X K operational matrix for integration and is given by in Razzaghi and
Ordokhani [34] as

2KPx ¥k —®
_ 1 z

=X

Pisk === |~_1°
X ~_

2K |Pxk

2%z

K
2

) 25
: (25)

with @, = [1], Pixq = E ®x_x and &)gii are respectively obtained from (18) and (22). The
2 2 272

integration of the cross product of the two RH vector is

1
f &(1)®T(r)dt = D, (26)
0
where
D = diaa(11 111 1 1 1
= lag( , ,E:E,?,...,ﬁ,...,Z—a,...,z—a). (27)

22 2a
4. Direct Collocation

4.1. Haar Discretization Method

In the discussion of Haar wavelets, we have already addressed how to approximate a function via
Haar wavelets and its corresponding operational integration matrix. We are going to apply this
methodology in optimal control problems so that Haar discretization is used in direct collocation (Dai
and Cochran [10]). Thus, a continuous solution to a problem will be represented by state and control
variables in terms of Haar series and its operational matrix to satisfy the differential equations. The
standard interval considered here is denoted by 7 € [0,1) with the collocation points

_ [—0.5
=—
where K is the number of nodes used in the discretization and also the maximum wavelet index

number. Note that the magnitude of K is a power of 2, so that the number of collocation points is also
increasing by the same power. All the collocation points are equally distributed over the entire time

interval [0,1), with % as the time distance between adjacent nodes. We assume that the derivative of

the state variables y;(t) and control variables v;(t), fori = 1,2, ..., N, can be approximated by Haar
wavelets with K collocation points, i.e.,

1=12,...,K, (28)

Ty
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yi(1) = Cj, ®(7), (29)
v;(1) = Cp, P (1), (30)

where
Cy, = [Cy1,Cyi2r-- - Cy)”s Cp, = [Co1, Cipzrevr Cu]”, i =12, ..., N. (31)

Using the operational integration matrix P, as defined by (25), the state variables y;(t) can be
expressed as
T

T
yi (1) = j yi(r)dt' +y;, = j Cy ®(t)dt' +y;, = €. PO(1) +y;,,i = 1,2, ..., N. (32)
0 0
As stated in (18), the expansion of the matrix ®(t) at the K collocation points will yield the K x K
Haar matrix ®. It follows that

yi(r) = 5, @(r), vi(r) = Co,@(r), yi(r) = Cy, (1) + yy, (33)
l=1,...,K, i=1,...,N.

From the above expression, we can evaluate the variables at any collocation point using the product
of its coefficient vectors and the corresponding column vector in the Haar matrix.

4.2. Nonlinear Programming
When the Haar collocation method is applied to optimal control problems, the nonlinear

programming variables can be set as the unknown coefficient vectors of the derivatives of the state
variables and control variables

Vi = [Cyil’ Cin""'CyiK' Cvill CUiZ""'CUiK]T'i = 1,2, ,N (34)

The performance index (7) is then restated by

N
1
1=3> { ((CLPO) +y3))" Qi(CLPOE) + v,
=1 oD (35)

d
+ (CL o) R(CE (1)) ﬁ}

Since the Haar wavelets are expected to be constant steps at each time interval, the above equation
can be simplified as
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N K
1
J =520 > (5P + i) Q(ChPO@) + 1) (36)
i=1 1=1

1
+ (€L (@)) Ri(CF, @ (7)) a=qz)2

Substituting y;, v; and y;, for i = 1,2, ..., N, in (8) with the Haar wavelet expressions in (33), we get

() = - (Ai(cyTiPcb(rl) +y1,) + By (Ch(@) + Fy(CT P (xy) + y0)>, a7

1
aQ-1)
l=1,..,K.

The system equation constraints are all treated as nonlinear constraints in a nonlinear programming
solver. The boundary constraints need more attention. Since the first and last collocation points are
not set as the initial and final time, respectively, the initial and final state variables are calculated
according to

AGY) Yi(tg) ,
Vio =¥i(m) o vy =n@) + T, =120, (38)

This way, the optimal control problems are transformed into nonlinear programming problems in a
structured form which is solved by GAMS software (Rosenthal and Brooke [36]).

5. An lllustrative Example

The development of control laws to regulate the attitude of spacecraft and aircraft has been the
focus of many research projects (Chang et al. [4] and Tsiotras [41]). From among this class of
problems, the optimal attitude control problem has proven to be challenging due to its cascade nature.
In this section, the effectiveness and high accuracy of our proposed approach are verified by solving
the optimal attitude control problem. To this end, consider the Euler dynamics and kinematics of a
rigid body as follows (Tsiotras [41]):

{ﬁ(t) = H(p(t))w(t), (39)
@ (t) =] S(w@)w(®) + 7 u(®),

where | = diag(10,6.3,8.5),p = (p1,p2, p3)T € R3 is the vector of Rodrigues parameters, w =
(w1, w,, w3)T € R3 is the angular velocity, and u = (uq,u,,u3)T € R? is the control torque. The

0 w3 —wW,
symbol S(-) is a skew symmetric matrix of the form S(w) = [—w3 0 wll, and the matrix
[y —wq 0

valued function H(p) is given by H(p) = %(1 —5S(p) + pp"). In addition, the initial conditions are
p(0) = (0.3735,0.4115,0.2521)7 and w(0) = (0,0,0)".

Let us define the state vector x;(t) 2 (p;(t), w;(t))T, for i = 1,2, 3. Therefore, the 6th-order
nonlinear interconnected dynamical system (39) is decomposed into three interconnected subsystems
as (1), where
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1 0 0 0
A1=A2=A3:[0 2| Blzi]r BZ=E' B3=[£]:

_ 0 0 10 63 17l

5 (x1,2x12,1 — X22X31 + X22X11X21 + X32X21 + X32%1,1X3,1)
Fl (x(t)) = 11 )

- %xazxz,z

5 (x1,2X31 + X12X11X21 + x2,2x22,1 — X32%1,1 + X32X21X3,1)
BEo) =|? ,

|~ ﬁx3,2x1,2

1 2

> (—X12%21 + X1 2X11X31 + X22X11 + X22X21X31 + X32X3 1)
F3(x(t)) = 37 ’

gxz,le,z

x1(0) = (0.3735,0)7, x,(0) = (0.4115,0)7, x5 (0) = (0.2521,0)7,
with x; ; being the jth element of vector x;. The infinite horizon quadratic cost function to be

minimized is given by (2), where N = 3,Q; = I,«,, and R; = 1 for i = 1, 2, 3. Now, by change of
variable (3), the above problem is transformed into the following problem:

3
minimize | = %; {.];0'1) (v Qv (@) + v/ WRi (7)) 1= iTT)—z}

S.t.
) 1 )
yi(r) = m(“li%(f) + Bivi(7) + Fi(y(7))), T € [0,1),i = 1,23,
1(0) = (0.3735,0)7, y,(0) = (0.4115,0)7, y(0) = (0.2521,0)7,
where
1 , )
> V12911 — Y2,2Y31 + Y22Y11Y21 T V32Y21 + Y3.2Y1,1Y3,1)
F (y(T)) = 11 ’
|~ %3’3,23’2,2
—1 -
> (V1,2Y31 t Y12Y11Y21 + )’2,23’22,1 = Y32Y11 + V32Y2,1Y3,1)
F, (Y(T)) = 5 ’
[~ ﬁ}/3,2}/1,2
1
5 (—YV12%21 + V12X11Y31 + V2,2%11 + V2,2Y21Y31 + V3,2Y51)
Fy() = 37 )
g)’z,z)ﬁ,z

with y; ; being the jth element of vector y;. In order to obtain an accurate enough suboptimal

trajectory-control pair, we applied the proposed method for K = 1024. The results are depicted in
Figures 1-6.
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Figure 2. Approximate optimal trajectory obtained of y, (7).
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L L L
o7 0.8 (aR=) 1

L L L L L L L L L
u] (INy} 0.2 0.3 0.4 0.5 06 o7 0.8 (aR=) 1
T

Figure 3. Approximate optimal trajectory obtained of y; (7).

L L L L L L L L L
u] (INy} 0.2 0.3 0.4 0.5 06 o7 0.8 (aR=) 1
T

Figure 4. Approximate optimal control obtained of v, (7).

L L L L L L L L L
u] (INy} 0.2 0.3 0.4 0.5 06 o7 0.8 (aR=) 1
T

Figure 5. Approximate optimal control obtained of v, (7).

31
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T

Figure 6. Approximate optimal control obtained of v; (7).

Finally, a natural question arises: are there advantages of the proposed collocation method as
compared to the existing ones? To answer this, we summarize what we have observed from numerical
experiments and theoretical results as follows.

« A main advantage of using Haar wavelets is that the matrices @y, PxLx and D introduced
in (18), (22) and (27), have large numbers of zero elements, i.e., they are sparse; hence, the proposed
method is very attractive to reduce the CPU time and computer memory while preserving the accuracy
of the solution.

» The simple implementation of Haar wavelet-based optimal control in real applications is
interesting.

« Haar functions are also noted for their rapid convergence of the expansion of functions.

» The proposed method also produces results similar to other collocation methods for continuous
optimal control problems and shows advantages in discrete optimal control problems when the
switching time is unknown.

» The proposed orthogonal collocation method leads to rapid convergence as the number of
collocation points increases.

e With 1; = % + 1,1l =1,2,...,K, there is no numerical difficulties. In fact, we do not apply
numerical integration methods such as Simpson’s rule for calculation of the integral (7), since it leads
to some problems at the right end-point. We use the formula (36) to calculate the integral in (7) which
does not require T = 1. Thus, the integration on the finite-time interval will be convergent.

« As real-time applications of the developed control, three example problems can be solved to
illustrate various elements of the main points of the proposed ideas: first is a standard linear—quadratic
regulator problem. The second example is a nonlinear control problem of stabilizing NPSATL1, an
experimental spacecraft designed. The inverted pendulum problem, with all its nonlinearities and
saturation constraints, can be considered as the third real-time application of the infinite-horizon
control (see Fahroo and Ross [11]).

6. Conclusion

Some nonlinear large-scale optimal control problems (OCPs), were approximately solved by a
combined parameter and function optimization algorithm. To this end and on the basis of the
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approximation of dynamical systems and performance index into Haar series, an efficient and
accurate method was then applied to solve a class of infinite horizon OCPs of nonlinear
interconnected large-scale dynamical systems. An illustrative example was worked through to
demonstrate the validity and applicability of the proposed method.

References

[1] Banks, H.T. (1979), Approximation of nonlinear functional differential equation control
systems, Journal of Optimization Theory and Applications, 29(3), 383-408.

[2] Banks, H.T.and Burns, J. A. (1978), Hereditary control problem: numerical methods based
on averaging approximations, SIAM Journal on Control and Optimization, 16(2), 169-208.

[3] Burrus, C.S., Gopinath, R.A. and Guo, H. (1988), Introduction to Wavelets and Wavelet
Transforms, Prentice Hall: Upper Saddle River, New Jersey.

[4] Chang, I., Park, S.Y. and Choi, K.H. (2009), Decentralized coordinated attitude control for
satellite formation flying via the state-dependent riccati equation technique, International
Journal of Non-Linear Mechanics, 44(8), 891-904.

[5] Chang, R.Y. and Wang, M.L. (1984), Legendre polynomials approximation to dynamical
linear state-space equations with initial and boundary value conditions, International
Journal of Control, 40(2), 215-232.

[6] Chen, C.F.and Hsiao, C.H. (1965), A state-space approach to Walsh series solution of linear
systems, International Journal of Systems Science, 6(9), 833-858.

[7] Chen, C.F. and Hsiao, C.H. (1997), Haar wavelet method for solving lumped and
distributed-parameter systems, IEE Proceedings of Control Theory and Applications,
144(1), 87-94.

[8] Chen, W. and Li, J. (2008), Decentralized outputfeedback neural control for systems with
unknown interconnections, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 38(1), 258-266.

[9] Chen, W. and Li, J. (2010), Globally decentralized adaptive backstepping neural network
tracking control for unknown nonlinear interconnected systems, Asian Journal of Control,
12(1), 96-102.

[10] Dai, R. and Cochran Jr, J.E. (2009), Wavelet collocation method for optimal control
problems, Journal of Optimization Theory and Applications, 143(2), 265-278.

[11] Fahroo, F. and Ross, I.M. (2008), Pseudospectral methods for infinite—horizon optimal
control problems, Journal of Guidance, Control, and Dynamics, 31(4), 927-936.

[12] Géllmann, L., Kern, D. and Maurer, H. (2009), Optimal control problems with delays in
state and control variables subject to mixed control-state constraints, Optimal Control
Applications and Methods, 30(4), 341-365.

[13] Hsiao, C.H. and Wang, W.J. (2000), State analysis and parameter estimation of bilinear
systems via Haarwavelets, IEEE Transactions on Circuits and Systems |: Fundamental
Theory and Applications, 47(2), 246-250.

[14] Holland, C. and Diamond, P.H. (2005), On the dynamics of large-scale structures in electron
temperature gradient turbulence, Physics Letters A, 344(5), 369-382.

[15] Horng, I.R. and Chou, J.H. (1985), Analysis, parameter estimation and optimal control of
time-delay systems via Chebyshev series, International Journal of Control, 41(5), 1221-
1234,

[16] Huang, S.N., Tan, K.K. and Lee, T.H. (2005), Decentralized control of a class of largescale
nonlinear systems using neural networks, Automatica, 41(9), 1645-1649.


http://iors.ir/journal/article-1-432-en.html

[ Downloaded from iors.ir on 2025-10-26 ]

34

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

Mortezaee and Nazemi

Jajarmi, A., Pariz, N., Effati, S. and Vahidian Kamyad, A. (2013), Infinite horizon optimal
control for nonlinear interconnected large-scale dynamical systems with an application to
optimal attitide control, Asian Journal of Control, 15(6), 1-12.

Jamshidi, M. (1983), Large-scale Systems: Modeling and Control, North-Holland, New
York.

Karimi, H.R., Lohmann, B., Jabehdar Maralani, P. and Moshiri, B. (2004), A computational
method for solving optimal control and parameter estimation of linear systems using Haar
wavelets, International Journal of Computer Mathematics, 81(9), 1121-1132.

Karimi, H.R., Jabehdar Maralani, P., Moshiri, B. and Lohmann, B. (2005), Numerically
efficient approximations to the optimal control of linear singularly perturbed systems based
on Haar wavelets, International Journal of Computer Mathematics, 82(4), 495-507.
Karimi, H.R., Moshiri, B., Lohmann, B. and Jabehdar Maralani, P. (2005), Haar wavelet-
based approach for optimal control of second-order linear systems in time domain, Journal
of Dynamical and Control Systems, 11(2), 237-252.

Karimi, H.R. (2006), A computational method of time-varying state-delayed systems by
Haar wavelets, International Journal of Computer Mathematics, 83(2), 235-246.

Li, J., Chen, W. and Li, J. (2010), Adaptive NN output feedback decentralized stabilization
for a class of large-scale stochastic nonlinear strictfeedback systems, International Journal
of Robust and Nonlinear Control, 21(4), 452-472.

Marzban, H.R. and Razzaghi, M. (2004a), Optimal control of linear delay systems via
hybrid of block-pulse and Legendre polynomials, Journal of the Franklin Institute, 341(3),
279-293.

Marzban, H.R, and Razzaghi, M. (2004b), Solution of time-varying delay systems by hybrid
functions, Mathematics and Computers in Simulation, 64(6), 597-607.

Marzban, H.R. and Razzaghi, M. (2010), Rationalized Haar approach for nonlinear
constrained optimal control problems, Applied Mathematical Modelling, 34(1), 174-183.
Mashayekhi, S., Ordokhani, Y. and Razzaghi, M. (2012), Hybrid functions approach for
nonlinear constrained optimal control problems, Communications in Nonlinear Science and
Numerical Simulatios, 17(4), 1831-1843.

Ohkita, M. and Kobayashi, Y. (1986), An application of rationalized Haar functions to
solution of linear differential equations, IEEE Transactions on Circuits and Systems, 33(9),
853-862.

Padhi, R. and Balakrishnan, S. M. (2003), Optimal process control using neural networks,
Asian Journal of Control, 5(2), 217-229.

Rao, G.P. (1983), Piecewise Constant Orthogonal Functions and Their Application to
Systems and Control, Springer-Verlag, Berlin.

Razzaghi, M. (1988), Fourier series direct method for variational problems, International
Journal of Control, 48(3), 887-895.

Razzaghi, M. and Nazarzadeh, J. (1999), Walsh functions, Wiley Encyclopedia of Electrical
and Electronics Engineering, 23, 429-440.

Razzaghi, M. and Ordokhani, Y. (2001a), Solution of nonlinear Volterra Hammerstein
integral equation via rationalized Haar functions, Mathematical Problems in Engineering,
7(2), 205-219.

Razzaghi, M. and Ordokhani, Y. (2001b), Solution of differential equations via rationalized
Haar functions, Mathematics and Computers in Simulation, 56(3), 235-246.

Razzaghi, M. and Ordokhani, Y. (2002), A rationalized Haar functions method for nonlinear
Fredholm, Hammerstein integral equations, International Journal of Computer
Mathematics, 79(3), 333-343.

Rosenthal, R.E. and Brooke, A. (2004), GAMS: A User’s Guide, GAMS Development
Corporation, http://www.GAMS.com.



http://www.gams.com/
http://iors.ir/journal/article-1-432-en.html

[ Downloaded from iors.ir on 2025-10-26 ]

Solving Infinite Horizon Optimal Control Problems ...

[37]
[38]
[39]

[40]

[41]
[42]

[43]

[44]

Sahba, M. (1983), Optimal control of power system generators incorporating nonlinear state
feedback, IEE Proceedings D-Control Theory and Applications, 130(6), 345-349.

Tang, G.Y. and Sun, L. (2005), Optimal control for nonlinear interconnected large-scale
systems: a successive approximation approach, Acta Automatica Sinica, 31(2), 248-254.
Tang, G.Y. and Zhang, S.M. (2006), Optimal rejection with zero steady-state error of
sinusoidal disturbances for time-delay systems, Asian Journal of Control, 8(2), 117-123.
Teo, K.L., Wong, K.H. and Clements, D.J. (1984), Optimal control computation for linear
time-lag systems with linear terminal constraints, Journal of Optimization Theory and
Applications, 44(3), 509-526.

Tsiotras, P. (1996), Stabilization and optimality results for the attitude control problem,
Journal of Guidance, Control, and Dynamics, 19(4), 772-779.

Wang, C. and Shin, Y.P. (1981), Laguerre operational matrices for fractional calculus and
applications, International Journal of Control, 34(3), 557-584.

Wong, K.H., Clements, D.J. and Teo, K.L. (1985), Optimal control computation for
nonlinear time-lag systems, Journal of Optimization Theory and Applications, 47(1), 91-
107.

Zhang, B.L., Tang, G.Y. and Yue, D. (2009), Optimal disturbance rejection control for
singularly perturbed composite systems with time-delay, Asian Journal of Control, 11(3),
327-335.

35


http://iors.ir/journal/article-1-432-en.html
http://www.tcpdf.org

