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Semidefinite Relaxation for the Dominating Set Problem 
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It is a well-known fact that finding a minimum dominating set and consequently finding the 

domination number of a general graph is an NP-complete problem. Here, we first model this 

problem as nonlinear binary optimization problems and then extract two closely related 

semidefinite relaxations. For each of these relaxations, different rounding algorithms are exploited 

to produce near-optimal dominating sets. Feasibility of the generated solutions and efficiency of 

the algorithms are analyzed. 
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1. Introduction 
 

Given an undirected, connected graph 𝐺 = (𝑉, 𝐸), a set 𝑆 ⊆ 𝑉 is called a dominating set of 𝐺 if 

every vertex 𝑣 ∈ 𝑉 is in 𝑆 or adjacent to a vertex in 𝑆. For a dominating set 𝑆 and a set 𝑆′ ⊆ 𝑉, the 

relation 𝑆 ⊆ 𝑆′ implies that 𝑆′ is a dominating set as well. A minimal dominating set is the one with 

no dominating set as a proper subset, and a minimum dominating set has minimum cardinality among 

all minimal dominating sets. This cardinality is of important interest and is referred to as domination 

number, denoted by 𝛾(𝐺).  

 

Dominating set problem has important applications in many practical fields (e.g. 

[1,5,7,8,10,15,16,17,18,21,23]), and its identification is of significant importance, while it is known 

as an NP-complete problem for an arbitrary graph [25]. In the literature, lower or upper bound of the 

domination number has been calculated in terms of some graph’s parameters such as size, order, 

diameter, and minimal degree. For some special graphs like grids, circuits and paths; it can be 

obtained parametrically in terms of its order [6,13]. For some others, such as trees, directed paths, 

block graphs, interval and trapezoidal ones, it can be calculated algorithmically in a polynomial time 

[9].  

 

Despite these interesting results, finding a minimum dominating set and consequently the 

domination number of an arbitrary graph still remains a challenge, and finding its sensible 

approximation in polynomial time is an appealing problem both in theory and practice. Quality of an 

approximation algorithm is measured by the approximation ratio, which refers to the ratio between 

the objective value of the algorithm and the exact optimal value of the problem, usually denoted by 

𝛼. For example, in an NP-hard minimization problem, an 𝛼-approximation algorithm means that the 

objective value provided by the algorithm is not greater than 𝛼 times of the exact value.  

 

One of the first attempts to acquire a minimum dominating set using optimization approaches has 

been carried out by proposing a binary linear integer programming model [27] as 
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min {∑ 𝑥𝑖

𝑛

𝑖=1

 | (𝐴 + 𝐼)𝑥 ≥ 𝑒 ,  𝑥𝑖 ∈ {0,1}, 𝑖 = 1, … , 𝑛}, 

where 𝐴 is the adjacency matrix, 𝐼 denotes the 𝑛 × 𝑛 identity matrix, and 𝑒 denotes the 𝑛-vector of 

all ones. It is well-known that solving an integer optimization problem is the hardest. A trivial 

approximation algorithm, and obviously the first and the easiest one coming to mind, is the linear 

relaxation of the model by considering 𝑥𝑖 ∈ [0,1]. Recall that the optimal objective value of this linear 

optimization problem is referred to as the fractional domination number.  It is also demonstrated that 

deriving a near-optimal solution of the original problem from an optimal solution of the relaxed 

problem is another hard challenge [24].  

 

In [19] it has been shown that a pair of L-reductions exists between the minimum dominating set 

problem and the set covering problem. This means that an efficient algorithm for one of these 

problems provides an efficient algorithm for the other in polynomial time. For these two problems, it 

is also proved that the approximation ratio is preserved under this reduction [19]; any polynomial-

time 𝛼-approximation algorithm for each of them presents a polynomial-time 𝛼-approximation 

algorithm for the other problem. The greedy algorithm provides a logarithmic approximation factor 

for the set covering problem and consequently for the minimum dominating set problem. It is also 

proved that no algorithm can attain an approximation factor better than the greedy algorithm unless 

P = NP [26]. 

 

In addition to linear relaxation, Semidefinite programming (SDP) relaxation proved itself as a 

powerful tool to approximate a number of graph parameters. To name some examples, one can 

mention the problems of maximum independent set [3], vertex cover [14,22], maximum cut [12], and 

vertex coloring [20]. The success of SDP relaxation on these problems tempted us to exploit it in 

finding a feasible dominating set with the associate near-optimal domination number for a general 

graph. It is noted that the first published result has no particular reported details [11]. 

 

Here, we establish our methodology on a binary nonlinear integer programming model of [11], 

and present two further SDP relaxations, with two rounding procedures, respectively, with the aim of 

constructing an approximately minimum dominating set. In one, a randomized rounding method is 

applied to the obtained optimal solution of the associated SDP, which probabilistically leads to a 

feasible solution of the basic binary nonlinear integer programming model. For the second, we utilize 

the known hyperplane rounding algorithm [12]. In this procedure, providing a tool for reliability 

analysis of the relaxed problem requires a slight change of the objective function in the binary 

nonlinear integer programming model, which instead, produces 𝑛 − 𝛾(𝐺). By adding a reference 

variable to this model, identification of 𝑛 − 𝛾(𝐺) is transformed into a binary quadratic integer 

programming problem, and consequently its SDP relaxation is considered. Using the hyperplane 

rounding method similar to [12] on the produced optimal solution of the SDP relaxation leads to a 

potential dominating set. For both methods, we prove that the maximum probability that the generated 

set is not a dominating set, is strictly less than 1.    

    

The reminder of our work is organized as follows. Section 2 gives a short review of SDP. A 

nonlinear binary optimization model is developed to find the value of 𝛾(𝐺) in Section 3, and an 

equivalent problem is provided which is prepared for the SDP relaxation. The relaxed SDP model is 

provided in Section 4. Two rounding algorithms are presented in Section 5, where their performances 

are analyzed. Concluding remarks and some future research directions are presented in Section 6.  
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2. Short Review of SDP  
 

Let 𝕊𝑛 denote the set of symmetric 𝑛 × 𝑛 real matrices. The cone of symmetric positive 

semidefinite (definite) matrices is denoted by 𝕊+
𝑛  (𝕊++

𝑛 ). 𝐵 ≽ 𝐷 (𝐵 ≻ 𝐷) means that 𝐵 − 𝐷 is positive 

semidefinite (definite). For 𝐵 ∈ 𝕊++
𝑛 , there is a lower triangular matrix 𝑈 where 𝐵 = 𝑈𝑇𝑈 (Cholesky 

decomposition).  

 

Suppose that 𝐴1, … , 𝐴𝑚 are linearly independent matrices in 𝕊𝑛, 𝐶 ∈ 𝕊𝑛 and 𝑏 ∈ ℝ𝑚. An SDP 

problem can be expressed as  

 

min ⟨𝐶, 𝑋⟩

s. t. ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖 ,  𝑖 = 1,2, … , 𝑚

𝑋 ≽ 0,

 

 

where ⟨𝐵, 𝐷⟩ = tr(𝐵𝑇𝐷) = ∑ 𝑏𝑖𝑗𝑖,𝑗 𝑑𝑖𝑗.  

 

The SDP problem is a special case of convex programming problems and can be solved in a 

polynomial time with an interior point method [2]. The interested reader is referred to [4,29] for a 

thorough discussion and applications of SDP.  

 

3. Nonlinear Formulation of the Dominating set Problem  
 

Let 𝐺 be a graph with the vertex set 𝑉 = {𝑣1, 𝑣2, …, 𝑣𝑛} and the edge set 𝐸. The open neighborhood 

of a vertex 𝑣 consists of the set of adjacent vertices to 𝑣, that is, 𝑁(𝑣) = {𝑤 ∈ 𝑉: 𝑣𝑤 ∈ 𝐸}. The closed 

neighborhood of 𝑣 is defined as 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. The following labeling can be defined on 𝑉 with 

respect to a subset 𝑆 ⊆ 𝑉:  

 

𝑦(𝑣𝑖) = {
+1, 𝑣 ∈ 𝑆
−1, 𝑣 ∉ 𝑆.

 

 

For the sake of simplicity, we denote 𝑦(𝑣𝑖) by 𝑦𝑖 and refer to a vertex with the label 1 as (+1)-

vertex and as (-1)-vertex, otherwise. Further, 𝑁(𝑖) (𝑁[𝑖]) stands for the open (closed) neighborhood 

of the vertex 𝑣𝑖. It is important to mention that a vertex in a dominating set 𝑆 is a (+1)-vertex 

induced by 𝑆.  

 

In [11], the following valid nonconvex quadratic inequalities are proposed for 𝑆 being a 

dominating set: 

 

 
∑ (

𝑣𝑗∈𝑁(𝑖)

1 − 𝑦𝑖𝑦𝑗) ≥ 2, 𝑖 = 1,2, … , 𝑛,

𝑦𝑖 ∈ {−1, +1}, 𝑖 = 1,2, … , 𝑛,

 (1) 

 

where 𝑦 = (𝑦𝑖) is the labeling induced by 𝑆. To keep self-consistency, a brief argument is provided. 

Observe that when 𝑆 is a minimal dominating set and 𝑣𝑖 ∈ 𝑆, there must be at least a vertex 𝑣𝑗 ∈

𝑁(𝑖), where 𝑦𝑖𝑦𝑗 = −1. Otherwise, one can drop 𝑣𝑖 from 𝑆 and reduce its cardinality, which 

contradicts the minimality assumption of 𝑆. The following lemma summarizes this fact.  
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Lemma 3.1.  Suppose that 𝑆 ⊆ 𝑉 is a dominating set of 𝐺. Then, for each 𝑣𝑖 ∈ 𝑉, there exists 𝑣𝑗 ∈

𝑁(𝑖) such that 𝑦𝑖𝑦𝑗 = −1.  

 

Observe that when 𝑣𝑖 and 𝑣𝑗 are of the same sign, 𝑦𝑖𝑦𝑗 = 1, and 𝑦𝑖𝑦𝑗 = −1, otherwise. Therefore, 

Lemma 3.1 justifies the validity of (1).  

 

Let us denote the set of 𝑛-vectors 𝑦 satisfying (1) by 𝑌. Observe that this set is not empty because 

every graph admits a dominating set. Moreover, it includes many finitely feasible vectors and 

consequently any optimization problem over this set is not unbounded. Since the number of (+1)-

vertices in any 𝑦 ∈ 𝑌 is 
1

2
∑ (𝑛

𝑖=1 1 + 𝑦𝑖), minimizing this function over 𝑌 provides a minimum 

dominating set, and consequently 𝛾(𝐺) is the optimal objective value. On the other hand, note that 
1

2
∑ (𝑛

𝑖=1 1 − 𝑦𝑖) stands for the number of (-1)-vertices in any 𝑦 ∈ 𝑌, and the optimal value of 

maximizing 
1

2
∑ (𝑛

𝑖=1 1 − 𝑦𝑖) over 𝑌 produces 𝑛 − 𝛾(𝐺). Further, the optimal solution of this problem 

naturally corresponds to a minimum dominating set. Therefore, there are two closely related binary 

problems as 

 

 min {
1

2
∑(

𝑛

𝑖=1

1 + 𝑦𝑖) | 𝑦 ∈ 𝑌}, (2) 

and  

 max {
1

2
∑(

𝑛

𝑖=1

1 − 𝑦𝑖) | 𝑦 ∈ 𝑌}. (3) 

 

The next lemma outlines the equivalency of these two problems.  

 

Lemma 3.2. A vector 𝑦∗ ∈ 𝑌 is an optimal solution of (2) if and only if it is optimal for  (3).  

 

Proof.  Let 𝑦∗ be an optimal solution of (2) and 𝑦̂ be a feasible solution of (3) such that ∑ (𝑛
𝑖=1 1 −

𝑦̂𝑖) > ∑ (𝑛
𝑖=1 1 − 𝑦𝑖

∗). This results in the number of (-1)-vertices in 𝑦̂ being greater than those in 𝑦∗. 

Therefore, ∑ (𝑛
𝑖=1 1 + 𝑦̂𝑖) < ∑ (𝑛

𝑖=1 1 + 𝑦𝑖
∗), which is in contradiction with the optimality of 𝑦∗. This 

means that 𝑦∗ is an optimal solution of (3) as well. An analogous argument implies the opposite 

direction.                        

 

Observe that the objective functions (2) and (3) are linear, while for analyzing our algorithms, we 

need a quadratic objective function. To convert these linear functions to quadratic ones, a reference 

variable 𝑦0 ∈ {−1,1} is introduced and problems (2) and (3) are rephrased as follows:  

 

 

(𝐼𝑃1) min 
1

2
∑(

𝑛

𝑖=1

1 + 𝑦0𝑦𝑖)

s. t. ∑ (

𝑛

𝑣𝑗∈𝑁(𝑖)

𝑦0
2 − 𝑦𝑖𝑦𝑗) ≥ 2, 𝑖 = 1,2, … , 𝑛

𝑦𝑖 ∈ {−1, +1}, 𝑖 = 0,1,2, … , 𝑛,

  

 

and  
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(𝐼𝑃2) max 
1

2
∑(

𝑛

𝑖=1

1 − 𝑦0𝑦𝑖)

s. t. ∑ (

𝑛

𝑣𝑗∈𝑁(𝑖)

𝑦0
2 − 𝑦𝑖𝑦𝑗) ≥ 2, 𝑖 = 1,2, … , 𝑛

𝑦𝑖 ∈ {−1, +1}, 𝑖 = 0,1,2, … , 𝑛.

  

 

The following theorem provides an informative straightforward connection between the optimal 

solutions of problems (2),(3) and (𝐼𝑃1), (𝐼𝑃2), respectively.  

 

Theorem 3.3. A vector 𝑦∗ ∈ 𝑌 is an optimal solution of (2) and (3) if and only if (1, 𝑦∗)𝑇 (and 

obviously (−1, −𝑦∗)𝑇) is an optimal solution of (𝐼𝑃1) and (𝐼𝑃2).  

 

Proof. We establish the result for problems (2) and (𝐼𝑃1). The proof for the other ones goes similarly. 

It can be immediately observed from the definition of these two problems that 𝑦 is a feasible solution 

of (2) if and only if (𝑦0, 𝑦)𝑇 and(𝑦0, −𝑦)𝑇 are feasible for (𝐼𝑃1), where 𝑦0 ∈ {−1, +1}. Now, let 𝑦∗ 

be an optimal solution of (2). Further, let (𝑦0, 𝑦̃)𝑇 be an optimal solution of (𝐼𝑃1) such that  

 ∑(

𝑛

𝑖=1

1 + 𝑦0𝑦̃𝑖) < ∑(

𝑛

𝑖=1

1 + 𝑦𝑖
∗). (4) 

There are two possibilities for 𝑦0. When 𝑦0 = 1, from (4), we get ∑ (𝑛
𝑖=1 1 + 𝑦̃𝑖) < ∑ (𝑛

𝑖=1 1 + 𝑦𝑖
∗). 

This clearly means that the number of (+1)-vertices in 𝑦̃ is less than of 𝑦∗, which contradicts the 

optimality of 𝑦∗ for (2). On the other hand, 𝑦0 = −1 leads to ∑ (𝑛
𝑖=1 1 − 𝑦̃𝑖) < ∑ (𝑛

𝑖=1 1 + 𝑦𝑖
∗). This 

also means that the number of (−1)-vertices in 𝑦̃ (or (+1)-vertices in −𝑦̃) is less than the (+1)-vertices 

in 𝑦∗. This is a contradiction again. This completes the proof.                                                                

 

The following result can be deduced immediately.  

 

Corollary 3.4. Let (𝑦0, 𝑦∗)𝑇 be an optimal solution of (𝐼𝑃1) or (𝐼𝑃2). Then, 𝑆 = {𝑣𝑖|𝑦𝑖
∗ = 𝑦0} is a 

minimum dominating set.  

 

4. Semidefinite Programming Relaxation  
 

Here, we establish an SDP relaxation of (𝐼𝑃1). First, for 𝑖 = 0, … , 𝑛, the variable 𝑦𝑖 is substituted 

by an (𝑛 + 1)-dimensional vector 𝑢𝑖 ∈ 𝒰, where 𝒰 = {(−1,0, … ,0), (+1,0, … ,0)}. Accordingly, the 

restriction 𝑦𝑖 ∈ {−1, +1} is replaced by 𝑢𝑖 ∈ 𝒰 and then problem (𝐼𝑃1) is adapted to be  

 

min 
1

2
∑(

𝑛

𝑖=1

1 + 𝑢0
𝑇𝑢𝑖)

s. t. ∑ (

𝑣𝑗∈𝑁(𝑖)

𝑢0
𝑇𝑢0 − 𝑢𝑖

𝑇𝑢𝑗) ≥ 2, 𝑖 = 1,2, … , 𝑛

𝑢𝑖 ∈ 𝒰, 𝑖 = 0,1,2, … , 𝑛.

 

 

Recall that ||𝑢𝑖|| = 1, for 𝑢𝑖 ∈ 𝒰, and this motivates us to expand 𝑈 to the standard (𝑛 + 1)-

dimensional unit sphere 𝕊𝑛+1 = {𝑢 ∈ ℝ𝑛+1|  ||𝑢|| = 1}, at the second step of the relaxation procedure. 

Thus, the following problem is obtained: 
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min 
1

2
∑(

𝑛

𝑖=1

1 + 𝑢0
𝑇𝑢𝑖)

s. t. ∑ (

𝑣𝑗∈𝑁(𝑖)

𝑢0
𝑇𝑢0 − 𝑢𝑖

𝑇𝑢𝑗) ≥ 2, 𝑖 = 1,2, … , 𝑛

𝑢𝑖
𝑇𝑢𝑖 = 1,  𝑢𝑖 ∈ 𝕊𝑛+1, 𝑖 = 0,1,2, … , 𝑛.

 (5) 

 

Some further notations are needed to complete the SDP relaxation procedure. Define 𝑋𝑖𝑗 = 𝑢𝑖
𝑇𝑢𝑗 and 

𝐸𝑖𝑗 = 𝑒𝑖𝑒𝑗
𝑇 with 𝑒𝑖 as the 𝑖th standard unit vector of ℝ𝑛+1, where 𝑖, 𝑗 ∈ {0,1, … , 𝑛}. Further, let 𝐴𝑖 =

∑
1

2𝑣𝑗∈𝑁(𝑖) (2𝐸00 − 𝐸𝑖𝑗 − 𝐸𝑗𝑖), where 𝑖 = 1,2, … , 𝑛. Now, (5) can be presented as  

 

 

min 
𝑛

2
+ ⟨𝐶, 𝑋⟩

s. t. ⟨𝐴𝑖, 𝑋⟩  ≥ 2, 𝑖 = 1,2, … , 𝑛

𝑋𝑖𝑖 = 1, 𝑖 = 0,1,2, … , 𝑛

rank(𝑋) = 1

𝑋 ≽ 0,

 (6) 

 

where 𝐶 = (𝑐𝑖𝑗), with 𝑐𝑖0 = 𝑐0𝑖 =
1

4
 for 𝑖 ∈ {1,2, … , 𝑛}, and 𝑐𝑖𝑗 = 0 otherwise.  

 

At the final step of the relaxation procedure, the nonconvex constraint, rank(𝑋) = 1, is dropped 

and the relaxed SDP of (𝐼𝑃1) is formulated as 

 

 

(𝑆𝐷𝑃1) min 
𝑛

2
+ ⟨𝐶, 𝑋⟩

s. t. ⟨𝐴𝑖, 𝑋⟩  ≥ 2, 𝑖 = 1,2, … , 𝑛

𝑋𝑖𝑖 = 1, 𝑖 = 0,1,2, … , 𝑛

𝑋 ≽ 0.

  

 

With an analogous procedure, an SDP relaxation model is derived for (𝐼𝑃2) as follows:  

 

 

(𝑆𝐷𝑃2) max 
𝑛

2
− ⟨𝐶, 𝑋⟩

s. t. ⟨𝐴𝑖 , 𝑋⟩ ≥ 2 𝑗 = 1,2, … , 𝑛

𝑋𝑖𝑖 = 1, 𝑖 = 0,1,2, … , 𝑛

𝑋 ≽ 0.

  

 

The optimal solution of these problems can be approximated by a feasible interior point algorithm 

(e.g., see [28]) using a solver such as CVX. Recall that the iterative sequences provided by these 

algorithms converge to maximally complementary optimal solutions of the problem. Since any such 

algorithm practically starts with a strictly positive definite solution, this property is kept during each 

iteration, and stops at a solution with duality gap less than an accuracy parameter 𝜖 > 0; thefinal 

provided solution is a positive definite matrix, which may be referred to as an 𝜖-approximate optimal 

solution. This property of the provided solution from the algorithm is essential for our rounding methods 

(see Section 5).  
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5. Rounding Methods 
 

Here, we explain two rounding methods to extract a potentially dominating set from an optimal 

solution of SDP relaxation model, 𝑋∗. We further prove that the extracted set would be dominating 

with nonzero probability. The terminology feasibility probability refers to this fact. Therefore, 

infeasibility probability is the probability that the set might not be dominating.  

 

5.1. A New Randomized Rounding Method 

 

It is worth mentioning that the objective value of (𝑆𝐷𝑃1) is a lower bound for 𝛾(𝐺), and an 

optimal solution of this problem does not indicate any dominating set. Let 𝑋∗ be a positive definite 

optimal solution of (𝑆𝐷𝑃1). To potentially produce a dominating set from 𝑋∗, we propose a new 

randomized rounding algorithm. First, matrix 𝑋∗ is decomposed by the Cholesky decomposition 

procedure as 𝑋∗ = 𝑈𝑇𝑈, where 𝑈 = [𝑢0, 𝑢1, … , 𝑢𝑛]. The following procedure runs 𝑙 times (𝑙 will be 

specified through analysis of the algorithm). In iteration 𝑘, with probability (1 + 𝑢0
𝑇𝑢𝑖)/2, the vertex 

𝑣𝑖 is selected as a member of a probable dominating set 𝑆𝑘. Therefore, Pr[𝑦𝑖 = 1] = (1 + 𝑢0
𝑇𝑢𝑖)/2 

and Pr[𝑦𝑖 = −1] = (1 − 𝑢0
𝑇𝑢𝑖)/2. At the end, a randomly generated candidate set is constructed as 

𝑆 = ⋃ 𝑆𝑘
𝑙
𝑘=1 , which is just a candidate for the dominating set. For the sake of brevity, this randomly 

generated dominating set is denoted by RGDS in the sequel. In the following, first we show that this 

procedure generates a dominating set with positive probability. Further, the integrality gap of the 

solution is investigated.  

 

Let us first calculate the probability of RGDS feasibility to problem (2). The next lemma provides 

an elementary result.  

 

Lemma 5.1.  Let 𝛽 = max
1≤𝑖≤𝑛

| 𝑢0
𝑇𝑢𝑖|. Then, 0 ≤ 𝛽 < 1.  

 

Proof. Since 𝑋∗ is a positive definite matrix and 𝑋𝑖𝑖
∗ = 1 for 𝑖 = 1, … , 𝑛, ||𝑢𝑖|| = 1. On the other 

hand,  

 0 < det ( 𝑋∗) = det ( 𝑈𝑇) det ( 𝑈) = det ( 𝑈)2).  

Hence, 𝑈 is invertible and none of the 𝑢𝑖 is a scaler multiplication of 𝑢0. Let 𝜃𝑖0 be the acute angel 

between 𝑢0 and 𝑢𝑖. Thus, 𝑢0
𝑇𝑢𝑖 = ||𝑢0|| ||𝑢𝑖|| cos 𝜃𝑖0 = cos 𝜃𝑖0 < 1. It follows that 𝛽 < 1.                

 

The following lemma states that a vertex 𝑣𝑖 is not dominated by an RGDS with at most a constant 

probability strictly less than 1.  

 

Lemma 5.2. The probability that a vertex 𝑣𝑖 is not dominated in each iteration of the randomized 

rounding is at most (
1+𝛽2

2
)𝛿, where 𝛿 is the smallest degree of the vertices.  

 

Proof. A vertex 𝑣𝑖 is not dominated when none of the vertices in 𝑁[𝑖] is in RGDS, i.e., for each 𝑣𝑗 ∈

𝑁(𝑖), 𝑦𝑖𝑦𝑗 = 1. An upper bound of Pr[𝑦𝑖𝑦𝑗 = 1] is calculated for a fix 𝑣𝑗 ∈ 𝑁(𝑖) as follows:  
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Pr[𝑦𝑖𝑦𝑗 = 1] = Pr[𝑦𝑖 = 1, 𝑦𝑗 = 1] + Pr[𝑦𝑖 = −1, 𝑦𝑗 = −1]

= Pr[𝑦𝑖 = 1] Pr[𝑦𝑗 = 1] + Pr[𝑦𝑖 = −1] Pr[𝑦𝑗 = −1]

=
1 + 𝑢0

𝑇𝑢𝑖

2

1 + 𝑢0
𝑇𝑢𝑗

2
+

1 − 𝑢0
𝑇𝑢𝑖

2

1 − 𝑢0
𝑇𝑢𝑗

2

=
1

2
(1 + 𝑢0

𝑇𝑢𝑖𝑢0
𝑇𝑢𝑗)

≤
1 + 𝛽2

2
< 1,

 (7) 

 

Where the last inequality follows from Lemma 5.1 Observe that all 𝑦𝑖 are independently chosen from 

{−1,1}, and for distinct vertices 𝑣𝑗 , 𝑣𝑘 ∈ 𝑁(𝑖), the values of 𝑦𝑖𝑦𝑗 and 𝑦𝑖𝑦𝑘 are independent. 

Therefore, 𝑣𝑖 is not dominated with probability ∏ P𝑣𝑗∈𝑁(𝑖) r[𝑦𝑖𝑦𝑗 = 1]. Now, an upper bound to 

infeasibility of the candidate set derived from the above-mentioned rounding algorithm follows 

immediately: 

  

 

Pr[𝑣𝑖 is not dominated] = ∏ P

vj∈N(i)

r[yiyj = 1]

≤ (
1 + 𝛽2

2
)|N(i)| ≤ (

1 + 𝛽2

2
)𝛿 < 1.

 (8) 

                                                                                                                                                              

 

When the previous randomized rounding algorithm is repeated ln 𝑛 times, the probability that a 

vertex 𝑣𝑖 is not dominated in any round is at most (
1+𝛽2

2
)𝛿 ln 𝑛 < 1, provided that the candidate set in 

each round is chosen independently from the others. This means that this algorithm generates a 

dominating set with positive probability.  

 

Now, the performance of the algorithm is analyzed. The expected cost of our approach is derived 

as follows:  

 

E[RGDS] = ∑(

𝑛

𝑖=1

Pr[𝑦𝑖 = 1]Pr[𝑦0 = 1] + Pr[𝑦𝑖 = −1]Pr[𝑦0 = −1]) 

 = ∑ P

𝑛

𝑖=1

r[𝑦𝑖 = 1] = ∑
1 + 𝑢0

𝑇𝑢𝑖

2

𝑛

𝑖=1

= opt(𝑆𝐷𝑃1). (9) 

 

When the algorithm is repeated ln 𝑛 times, an RGDS is obtained, the expected value of the cost for 

deriving this solution is (ln 𝑛)opt(𝑆𝐷𝑃1), and  

 

 
E[RGDS] = (ln 𝑛) opt(𝑆𝐷𝑃1) ≤ (ln 𝑛) opt(𝐼𝑃1), 

 
 

where opt(⋅) denotes the optimal function value of the corresponding optimization problem. This 

relationship shows that the algorithm produces a dominating set with positive probability and its 

expected cost does not exceed (ln 𝑛) opt(𝐼𝑃1). In other words, the algorithm is an (ln 𝑛)-

approximation algorithm.  
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5.2.  Hyperplane Rounding Method 

 

The hyperplane rounding method has been applied to the SDP relaxation of MaxCut problem to 

get a binary solution for its nonlinear integer programming model [12]. The success in practice as 

well as its elegant analysis encourages us to utilize and implement the algorithm for the minimum 

dominating set problem. For this purpose, 𝑛 − 𝛾(𝐺) is approximated instead of 𝛾(𝐺) itself and 

problem (3) is relaxed to an SDP model. Suppose that 𝑋∗ is an optimal solution of the problem 

(𝑆𝐷𝑃2). The following rounding strategy is implemented to develop this solution into a feasible 

solution for problem (3).  

 

Let 𝑋∗ = 𝑈𝑇𝑈 be the Cholesky decomposition of 𝑋∗, where 𝑈 = [𝑢0, 𝑢1, … , 𝑢𝑛]. A vector 𝑎 ∈
𝕊𝑛+1 is selected randomly, and one may fix 𝑦𝑖 = 1 for each vertex 𝑣𝑖 when 𝑎𝑇𝑢𝑖 ≥ 0, and 𝑦𝑖 = −1, 

otherwise. Consequently, a potential minimum dominating set might be 𝑆 = {𝑣𝑖|𝑦𝑖 = 𝑦0}. Recall that 

this solution might not be feasible for the problem (3). Based on the following observation [12], we 

prove that the probability of infeasibility of the generated set to be dominating is strictly less than 1. 

Let 𝑦𝑖 and 𝑦𝑗, corresponding to vectors 𝑢𝑖 and 𝑢𝑗, be produced from the hyperplane rounding 

algorithm. Then  

 

 Pr[𝑦𝑖𝑦𝑗 = −1] =
𝑎𝑟𝑐𝑐𝑜𝑠 ( 𝑢𝑖

𝑇𝑢𝑗)

𝜋
, (10) 

 Pr[𝑦𝑖𝑦𝑗 = 1] = 1 −
𝑎𝑟𝑐𝑐𝑜𝑠 ( 𝑢𝑖

𝑇𝑢𝑗)

𝜋
. (11) 

 

Moreover, for 0 ≤ 𝜃 ≤ 𝜋, the following inequality holds:  

 

 
𝜃

𝜋
≥ 𝛼.

1 − 𝑐𝑜𝑠 𝜃

2
, (12) 

 

where 𝛼 ≈ 0.878567. Suppose that 𝑦 is generated by the hyperplane rounding algorithm. To 

complete the result, the next lemma is useful.  

 

Lemma 5.3.  Let 𝛽 = max
𝑖<𝑗

| 𝑢𝑖
𝑇𝑢𝑗|,1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then, 0 ≤ 𝛽 < 1, and 0 ≤ 1 −

𝑎𝑟𝑐𝑐𝑜𝑠 (𝛽)

𝜋
< 1.  

 

Proof. In Lemma 5.1, it was proved that the matrix 𝑈 is invertible. Then none of the 𝑢𝑖 is a scalar 

multiplication of the others. Since for 𝑖, 𝑗 ∈ {1,2, ⋯ , 𝑛}, the acute angel between 𝑢𝑖 and 𝑢𝑗, shown by 

𝜃𝑖𝑗, satisfies the relation 𝑢𝑖
𝑇𝑢𝑗 = ||𝑢𝑖|| ||𝑢𝑗|| cos 𝜃𝑖𝑗 = cos 𝜃𝑖𝑗, therefore  

 

−1 < 𝑢𝑖
𝑇𝑢𝑗 = cos 𝜃𝑖𝑗 < 1. 

 

The first part of the lemma is now proved. The second part of the proof is based on the fact that 

arccos 𝜃 is a strict descending function.                                                                                                 

 

This lemma induces an upper bound to infeasibility probability of 𝑦. The solution is infeasible 

when at least one of the 𝑣𝑖 is not dominated. For such a 𝑣𝑖, its sign must be the same as the sign of all 

of its neighbours, i.e., 𝑦𝑖𝑦𝑗 = 1, for all 𝑣𝑗 ∈ 𝑁(𝑖). Since the signs of 𝑦𝑖 and 𝑦𝑗 are based on selecting 

the random vector 𝑎, they are independently selected as +1 or −1. Consequently,  
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Pr[𝑣𝑖 is not dominated] = ∏ P

vj∈N(i)

r[yiyj = 1]

= ∏ (

vj∈N(i)

1 −
𝑎𝑟𝑐𝑐𝑜𝑠 ( 𝑢𝑖

𝑇𝑢𝑗)

𝜋
)

≤ (1 −
𝑎𝑟𝑐𝑐𝑜𝑠 ( 𝛽)

𝜋
)|N(i)|

≤ (1 −
𝑎𝑟𝑐𝑐𝑜𝑠 ( 𝛽)

𝜋
)𝛿 < 1,

 (13) 

 

where 𝛿 is the smallest degree of vertices, and 𝛽̄ is as defined in Lemma 5.3. This means that the 

solution generated by the hyperplane rounding method has a positive feasibility probability.  

 

Considering the well-known facts (11) and (12), the following performance ratio for the 

hyperplane rounding algorithm can be derived. Let us denote the random variable 𝑊 as the number 

of (-1)-vertices in a solution generated by the hyperplane rounding algorithm. The following lemma 

provides an elementary result.  

 

Lemma 5.4. Suppose 𝑦 is generated by the hyperplane rounding algorithm. Then, 

 

E[𝑊] ≥ 𝛼 × opt(𝑆𝐷𝑃2), 
 

where 𝛼 ≈ 0.878567.  

 

Proof. For the generated 𝑦 = (𝑦0, 𝑦1, … , 𝑦𝑛), it holds  

E[𝑊] = E [
1

2
∑(

𝑛

𝑖=1

1 − 𝑦0𝑦𝑖)] =
1

2
∑ E

𝑛

𝑖=1

[(1 − 𝑦0𝑦𝑖)]

=
1

𝜋
∑ arccos (

𝑛

𝑖=1

𝑢0
𝑇𝑢𝑖) ≥

𝛼

2
∑(

𝑛

𝑖=1

1 − 𝑢0
𝑇𝑢𝑖) ≥ 𝛼 × (𝑛 − 𝛾(𝐺)).

 

 

 

This lemma says that the hyperplane rounding algorithm generates a solution with the expected 

value of 𝑛 − 𝛾(𝐺), at least 0.878 times of its exact value, and therefore, it is a sensible approximation 

of 𝑛 − 𝛾(𝐺). Let the random variable 𝑊 denote the number of (+1)-vertices in a generated solution 

by the hyperplane rounding algorithm. The next theorem provides an upper bound for E[𝑊].  
 

 

Theorem 5.5.  Suppose that 𝑦 is generated by the hyperplane rounding algorithm. Then, for any graph 

𝐺 we have  

 

 E[𝑊] ≤ (1 + (1 − 𝛼)Δ)𝛾(𝐺).  

   

Proof. It is clear that 𝑊 + 𝑊 = 𝑛. Consequently, E[𝑊] + E[𝑊] = 𝑛. First, recall that for a given 

graph 𝐺, we have that 𝑛 ≤ (1 + Δ)𝛾(𝐺) [16], where Δ is the largest degree of the vertices. Thus, 
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E[𝑊] = 𝑛 − E[𝑊] ≤ 𝑛 − 𝛼 × 𝑧∗

= 𝑛 − 𝛼(𝑛 − 𝛾(𝐺)) = 𝑛(1 − 𝛼) + 𝛾(𝐺)𝛼

≤ (1 + Δ)(1 − 𝛼)𝛾(𝐺) + 𝛾(𝐺)𝛼 = (1 + (1 − 𝛼)Δ)𝛾(𝐺).

 

 

 

It can be immediately concluded from Theorem 5.5 that the hyperplane rounding algorithm is a 

2-approximation algorithm for sparse graphs.  

 

Corollary 5.6. For a graph 𝐺 with Δ ≤ 7, we have  E[𝑊] ≤ 𝛽. 𝛾(𝐺), where 𝛽 < 2.  

 

6. Concluding remarks 
 

We addressed a famous NP-complete problem in graph theory, the dominating set problem, and 

proposed an SDP relaxation model. This problem has a main difference with the well-investigated 

MaxCut problem. The MaxCut problem is a binary unconstrained problem, while the dominating set 

problem includes some additional constraints. We analyzed the reliability of the proposed method. 

Two rounding methods were presented to elicit a possible dominating set from the optimal solution 

of the SDP relaxation. The practical efficiency of the approach was also investigated. Finding sharper 

bounds for the expected objective function value could be very useful. Additionally, classification of 

graphs to find out a rounding method for a classes is also useful. Moreover, the method might be 

extended to other kinds of constrained combinatorial problems including some other variants of 

dominating set problems.   
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