
Iranian Journal of Operations Research

Vol. 5, No. 1, 2014, pp. 1-14

An Incremental DC Algorithm for the Minimum Sum-of-

Squares Clustering

A. M. Bagirov1

Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using

their difference of convex representations. The proposed algorithm is based on an incremental

approach and applies the well known DC algorithm at each iteration. The proposed algorithm is

tested and compared with other clustering algorithms using large real world data sets.

Keywords: Clustering, Nonsmooth optimization, Nonconvex optimization, Incremental

algorithms.

Manuscript was received on 27/04/2015 and accepted for publication on 16/06/2015.†

1. Introduction

Clustering is an unsupervised technique dealing with problems of organizing a collection of

patterns into clusters based on similarity. Most clustering algorithms are based on hierarchical and

partitional approaches. Algorithms based on an hierarchical approach generate a dendrogram

representing the nested grouping of patterns and similarity levels at which groupings change [19].

Partitional clustering algorithms find the partition that optimizes a clustering criterion [19]. In this

paper, we develop a partitional clustering algorithm for solving the minimum sum-of-squares

clustering (MSSC) problems.

To date various heuristics such as the 𝑘-means algorithm and its variations have been developed

to solve the MSSC problem (see, for example, [20, 21] and references therein). The global 𝑘-means

algorithm and its various modifications are among the most efficient algorithms for solving the MSSC

problem [5, 10, 12, 22, 24, 25, 27].

The MSSC can be formulated as an optimization problem [8, 11, 30] and different deterministic

optimization techniques and metaheuristics have been applied to solve it. These techniques include

branch and bound [15] and interior point methods [16], nonsmooth optimization algorithms [6, 9, 11],

algorithms based on the hyperbolic smoothing technique [7, 32, 33], the variable neighborhood search

[17], simulated annealing [28], tabu search [1] and genetic algorithms [26]. Most of these algorithms

are not efficient for solving the MSSC problem with very large data sets.

The objective function of MSSC problems can be represented by a difference of convex (DC)

functions. There are several papers in which this representation is used to design algorithms. In [14],

the truncated codifferential method is applied to solve the MSSC problem using its DC representation.

The branch and bound method was modified for such problems in [31]. In [2], an algorithm based on

† Invited Paper
1 Faculty of Science and Technology, Federation University Australia, Victoria, Australia.

 Email: a.bagirov@federation.edu.au

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 1 / 14

http://iors.ir/journal/article-1-449-en.html

2 Bagirov

DC Algorithms (DCAs) was introduced. In [3], a DCA and a Gaussian kernel were applied to design

a clustering algorithm.

Here, we develop a new algorithm for solving the MSSC problem using its DC representation.

This algorithm is based on an incremental approach and applies the DCA to solve optimization

problems at each iteration of the incremental algorithm. Computational results on some real world

data sets are reported and the algorithm is compared with two other clustering algorithms. It is

demonstrated that the proposed algorithm is especially efficient for solving the MSSC problems with

very large data sets.

The rest of the paper is organized as follows. Section 2 provides some preliminaries on DC

functions and nonsmooth analysis. DC representations of cluster functions are given in Section 3.

Section 4 presents an algorithm for solving clustering problems. An incremental algorithm is

discussed in Section 5. Numerical results are reported in Section 6 and Section 7 contains the

concluding remarks.

2. Preliminaries

In this section we give some results on nonsmooth analysis and DC functions used throughout the

paper. In what follows, we denote by ℝ𝑛 the 𝑛-dimensional Euclidean space with the inner product

〈𝑢, 𝑣〉 = ∑ 𝑢𝑖𝑣𝑖
𝑛
𝑖=1 and the associated norm |𝑢| = 〈𝑢, 𝑢〉1/2, 𝑢, 𝑣 ∈ ℝ𝑛. The set 𝐵(𝑥, 𝜀) =

{𝑦 ∈ ℝ𝑛: |𝑦 − 𝑥| < 𝜀} is the open ball centered at 𝑥 with the radius 𝜀 > 0.

Let 𝑓: ℝ𝑛 → ℝ be a convex function. Its subdifferential at 𝑥 ∈ ℝ𝑛 is defined as

𝜕𝑐𝑓(𝑥) = {𝜉 ∈ ℝ𝑛: 𝑓(𝑦) − 𝑓(𝑥) ≥ 〈𝜉, 𝑦 − 𝑥〉 ∀𝑦 ∈ ℝ𝑛}.

A function 𝑓: ℝ𝑛 → ℝ is called locally Lipschitz on ℝ𝑛 if for any bounded subset 𝑋 ⊂ ℝ𝑛 there

exists 𝐿 > 0 such that

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿|𝑥 − 𝑦| ∀𝑥, 𝑦 ∈ 𝑋.

The generalized derivative of a locally Lipschitz function 𝑓 at a point 𝑥 with respect to a direction

𝑢 ∈ ℝ𝑛 is defined as [13]

𝑓0(𝑥, 𝑢) = lim sup
𝛼↓0, 𝑦→𝑥

𝑓(𝑦 + 𝛼𝑢) − 𝑓(𝑦)

𝛼
 .

The subdifferential 𝜕𝑓(𝑥) of the function 𝑓 at 𝑥 is

𝜕𝑓(𝑥) = {𝜉 ∈ ℝ𝑛: 𝑓0(𝑥, 𝑢) ≥ 〈𝜉, 𝑢〉 ∀𝑢 ∈ ℝ𝑛}.

Each vector 𝜉 ∈ 𝜕𝑓(𝑥) is called a subgradient. For a convex function 𝑓: ℝ𝑛 → ℝ, one has

𝜕𝑓(𝑥) = 𝜕𝑐𝑓(𝑥), 𝑥 ∈ ℝ𝑛. From now on, we will use the notation 𝜕𝑓 for subdifferential of convex

function.

𝑓: ℝ𝑛 → ℝ is called a DC function if there exist convex functions 𝑔, ℎ: ℝ𝑛 → ℝ such that [18]

𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥), 𝑥 ∈ ℝ𝑛.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 2 / 14

http://iors.ir/journal/article-1-449-en.html

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering 3

Here, 𝑔 − ℎ is called a DC decomposition of 𝑓 while 𝑔 and ℎ are DC components of 𝑓. Note that

a DC function has infinitely many DC decompositions.

An unconstrained DC program is an optimization problem of the form

minimize 𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥) subject to 𝑥 ∈ ℝ𝑛. (1)

One can define different types of stationary points for problem (1). Such stationary points include

critical, Clarke stationary and inf-stationary points. A point 𝑥∗ is called inf-stationary for problem (1)

if

𝜕ℎ(𝑥∗) ⊂ 𝜕𝑔(𝑥∗).
(2)

A point 𝑥∗ is called Clarke stationary for problem (1) if

0 ∈ 𝜕𝑓(𝑥∗). (3)

Finally, a point 𝑥∗ is called a critical point of problem (1) if

𝜕ℎ(𝑥∗) ∩ 𝜕𝑔(𝑥∗) ≠ ∅. (4)

In general, any inf-stationary point is also Clarke stationary and a critical point. Furthermore, any

Clarke stationary point is a critical point.

3. DC Programming Approach to Clustering Problems

Let 𝐴 be a finite set of points in ℝ𝑛, that is, 𝐴 = {𝑎1, … , 𝑎𝑚}, 𝑎𝑖 ∈ ℝ𝑛, 𝑖 = 1, … , 𝑚. The hard

clustering problem is the distribution of the points of the set 𝐴 into a given number 𝑘 of disjoint

subsets 𝐴𝑗, 𝑗 = 1, … , 𝑘, such that

1. 𝐴𝑗 ≠ ∅ and 𝐴𝑗⋂𝐴𝑙 = ∅, 𝑗, 𝑙 = 1, … , 𝑘, 𝑗 ≠ 𝑙.

2. 𝐴 = ⋃ 𝐴𝑗𝑘
𝑗=1 .

The sets 𝐴𝑗, 𝑗 = 1, … , 𝑘, are called clusters and each cluster 𝐴𝑗 can be identified by its center 𝑥𝑗 ∈
ℝ𝑛, 𝑗 = 1, … , 𝑘. The problem of finding these centers is called the 𝑘-clustering (or 𝑘-partition)

problem. In order to formulate the clustering problem one needs to define the similarity (or

dissimilarity) measure. Here, the similarity measure is defined using the 𝐿2 norm as follows:

𝑑2(𝑥, 𝑎) = ∑(𝑥𝑖 − 𝑎𝑖)2

𝑛

𝑖=1

 .

The nonsmooth optimization formulation of the MSSC problem is [8, 11]:

minimize 𝑓𝑘(𝑥) subject to 𝑥 = (𝑥1, … , 𝑥𝑘) ∈ ℝ𝑛𝑘, (5)

where

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 3 / 14

http://iors.ir/journal/article-1-449-en.html

4 Bagirov

𝑓𝑘(𝑥1, … , 𝑥𝑘) =
1

𝑚
∑ min

𝑗=1,…,𝑘
𝑑2(𝑥𝑗, 𝑎).

𝑎∈𝐴

 (6)

The objective function 𝑓𝑘 in problem (5) can be represented as a DC function,

𝑓𝑘(𝑥) = 𝑓𝑘1(𝑥) − 𝑓𝑘2(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑘) ∈ ℝ𝑛𝑘, (7)

where

𝑓𝑘1(𝑥) =
1

𝑚
∑ ∑ 𝑑2(𝑥𝑗, 𝑎)

𝑘

𝑗=1𝑎∈𝐴

, 𝑓𝑘2(𝑥) =
1

𝑚
∑ max

𝑗=1,…,𝑘
∑ 𝑑2(𝑥𝑠, 𝑎)

𝑘

𝑠=1,𝑠≠𝑗𝑎∈𝐴

.

Since the function 𝑑2 is convex in 𝑥, the function 𝑓𝑘1, as a sum of convex functions, is also convex.

The function 𝑓𝑘2 is a sum of maxima of sum of convex functions. Since the sum of convex functions

is convex, the functions under maximum are also convex. Furthermore, since the maximum of a finite

number of convex functions is convex, the function 𝑓𝑘2 being a sum of convex functions is also

convex.

Next, we derive expressions for subdifferentials of the functions 𝑓𝑘1 and 𝑓𝑘2. The function 𝑓𝑘1 is

differentiable and its gradient is [25]

∇𝑓𝑘1(𝑥) = 2(𝑥 − 𝐴̂). (8)

Here, 𝐴̂ = (𝐴̂1, … , 𝐴̂𝑘), 𝐴̂1 = ⋯ = 𝐴̂𝑘 = (𝑎̂1, … , 𝑎̂𝑛) and

𝑎̂𝑡 =
1

𝑚
∑ 𝑎𝑡

𝑎∈𝐴

.

This means that the subdifferential 𝜕𝑓𝑘1(𝑥) is a singleton for any 𝑥 ∈ ℝ𝑛.

In general, the function 𝑓𝑘2 is nonsmooth. To compute its subdifferential, consider the following

function and a set as follows [25]:

𝜑𝑎(𝑥) = max
𝑗=1,…,𝑘

∑ 𝑑2(𝑥𝑠, 𝑎)

𝑘

𝑠=1,𝑠≠𝑗

, (9)

and

𝑅𝑎(𝑥) = {𝑗 ∈ {1, … , 𝑘}: ∑ 𝑑2(𝑥𝑠, 𝑎)

𝑘

𝑠=1,𝑠≠𝑗

 = 𝜑𝑎(𝑥)}. (10)

The subdifferential 𝜕𝜑𝑎(𝑥) of the function 𝜑𝑎 at 𝑥 is

𝜕𝜑𝑎(𝑥) = conv{𝑉 ∈ ℝ𝑛𝑘: 𝑉 = 2(𝑥̃𝑗 − 𝐴̃𝑖
𝑗
), 𝑗 ∈ 𝑅𝑎(𝑥)}, (11)

where

𝑥̃𝑗 = (𝑥1, … , 𝑥𝑗−1, 0𝑛, 𝑥𝑗+1, … , 𝑥𝑘), 𝐴̃𝑖
𝑗

= (𝐴̃𝑖1
𝑗

, … , 𝐴̃𝑖𝑘
𝑗

) ∈ ℝ𝑛𝑘,

and

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 4 / 14

http://iors.ir/journal/article-1-449-en.html

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering 5

𝐴̃𝑖𝑡
𝑗

= 𝑎𝑖 , 𝑡 = 1, … , 𝑘, 𝑡 ≠ 𝑗, 𝐴̃𝑖𝑗
𝑗

= 0𝑛.

Then, the subdifferential 𝜕𝑓𝑘2(𝑥) can be expressed by

𝜕𝑓𝑘2(𝑥) =
1

𝑚
∑ 𝜕𝜑𝑎(𝑥)

𝑎∈𝐴

. (12)

Problem (5) is a global optimization problem. It has many local minimizers and only global or

near global solutions provide the best clustering structure of a data set. To find such solutions using

a local search method, it is crucial to apply a special procedure to generate good starting cluster

centers. We apply an algorithm introduced in [25]. This algorithm involves the solution of the so-

called auxiliary clustering problem. Next, we briefly describe this problem.

Assume that the solution 𝑥1, … , 𝑥𝑘−1, 𝑘 ≥ 2, to the (𝑘 − 1)-clustering problem is known. Denote

by 𝑟𝑘−1
𝑎 , the distance between the data point 𝑎 ∈ 𝐴 and the closest cluster center among the 𝑘 − 1

centers 𝑥1, … , 𝑥𝑘−1:

𝑟𝑘−1
𝑎 = min{𝑑2(𝑥1, 𝑎), … , 𝑑2(𝑥𝑘−1, 𝑎)}. (13)

The 𝑘-th auxiliary cluster function is defined as [5, 25]

𝑓𝑘̅(𝑦) =
1

𝑚
∑ min{𝑟𝑘−1

𝑎 , 𝑑2(𝑦, 𝑎)}

𝑎∈𝐴

, 𝑦 ∈ ℝ𝑛. (14)

This function is nonsmooth, locally Lipschitz, directionally differentiable and as a sum of minima of

convex functions it is, in general, nonconvex. It is obvious that

𝑓𝑘̅(𝑦) = 𝑓𝑘(𝑥1, … , 𝑥𝑘−1, 𝑦), ∀𝑦 ∈ ℝ𝑛.
A problem,

minimize 𝑓𝑘̅(𝑦) subject to 𝑦 ∈ ℝ𝑛, (15)

is called the 𝑘-th auxiliary clustering problem [5, 25]. The DC representation of the function 𝑓𝑘̅ is as

follows:

𝑓𝑘̅(𝑦) = 𝑓𝑘̅1(𝑦) − 𝑓𝑘̅2(𝑦), (16)

where

𝑓𝑘̅1(𝑦) =
1

𝑚
∑(𝑟𝑘−1

𝑎 + 𝑑2(𝑦, 𝑎))

𝑎∈𝐴

, 𝑓𝑘̅2(𝑦) =
1

𝑚
∑ max{𝑟𝑘−1

𝑎 , 𝑑2(𝑦, 𝑎)}

𝑎∈𝐴

.

To express subdifferentials of the functions 𝑓𝑘̅1 and 𝑓𝑘̅2 at a given point 𝑦 ∈ ℝ𝑛, deine the

following sets:

𝐴̅1(𝑦) = {𝑎 ∈ 𝐴: 𝑟𝑘−1
𝑎 > 𝑑2(𝑦, 𝑎)}, 𝐴̅2(𝑦) = {𝑎 ∈ 𝐴: 𝑟𝑘−1

𝑎 < 𝑑2(𝑦, 𝑎)},

𝐴̅3(𝑦) = {𝑎 ∈ 𝐴: 𝑟𝑘−1
𝑎 = 𝑑2(𝑦, 𝑎)}.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 5 / 14

http://iors.ir/journal/article-1-449-en.html

6 Bagirov

Then, the function 𝑓𝑘̅2 at 𝑦 can be rewritten as

𝑓𝑘̅2(𝑦) =
1

𝑚
(∑ 𝑟𝑘−1

𝑎

𝑎∈𝐴̅1(𝑦)

+ ∑ 𝑑2(𝑦, 𝑎)

𝑎∈𝐴̅2(𝑦)

+ ∑ max{𝑟𝑘−1
𝑎 , 𝑑2(𝑦, 𝑎)}

𝑎∈𝐴̅3(𝑦)

).

The function 𝑓𝑘̅1 is continuously differentiable on ℝ𝑛 and its gradient at 𝑦 ∈ ℝ𝑛 is

∇ 𝑓𝑘̅1(𝑦) =
2

𝑚
∑(𝑦 − 𝑎)

𝑎∈𝐴

. (17)

The function 𝑓𝑘̅2, in general, is nonsmooth and its subdifferential at 𝑦 ∈ ℝ𝑛 is

𝜕𝑓𝑘̅2(𝑦) =
2

𝑚
(∑ (𝑦 − 𝑎)

𝑎∈𝐴̅2(𝑦)

+ ∑ conv{0, (𝑦 − 𝑎)}

𝑎∈𝐴̅3(𝑦)

). (18)

4. An Algorithm for Solving Optimization Problems

In this section we describe the DCA for solving both the clustering problem (5) and the auxiliary

clustering problem (15). It is easy to observe that both problems can be formulated as the following

unconstrained DC programming problem:

minimize 𝑓(𝑥) subject to 𝑥 ∈ ℝ𝑛, (19)

where 𝑓(𝑥) = 𝑓1(𝑥) − 𝑓2(𝑥), the function 𝑓1 is continuously differentiable convex and the function

𝑓2 is, in general, a nonsmooth convex function.

DCA is an algorithm for solving DC programming problems. A detailed study of this algorithm

can be found in [4, 29]. The generic DCA scheme for solving the problem (19) is shown in Algorithm

1 below.

Algorithm 1. DCA scheme for problem (19).

Step 1: Select any starting point 𝑥1 ∈ ℝ𝑛 and set 𝑗: = 1.

Step 2: Compute 𝜉𝑗 ∈ 𝜕𝑓2(𝑥𝑗).

Step 3: If 𝜉𝑗 = ∇𝑓1(𝑥𝑗) then stop.

Step 4: Find the solution 𝑥𝑗+1 to the following convex optimization problem:

minimize 𝑓1(𝑥) − 〈𝜉𝑗 , 𝑥 − 𝑥𝑗〉 subject to 𝑥 ∈ ℝ𝑛.

(20)

Step 5: Set 𝑗: = 𝑗 + 1 and go to Step 2.

Proposition 4.1. All accumulation points of the sequence {𝑥𝑘} generated by Algorithm 1 are Clarke

stationary points of the problem (19).

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 6 / 14

http://iors.ir/journal/article-1-449-en.html

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering 7

Proof. It is well known that accumulation points of the sequence {𝑥𝑘} are critical points of the

problem (19). Since the function 𝑓1 in (19) is continuously differentiable, the sets of critical points

and Clarke stationary points of the problem (19) coincide.

In order to apply DCA to solve problem (15), the subgradient 𝜉𝑗 in Step 2 is computed as (see

(18))

𝜉𝑗 =
2

𝑚
∑ (𝑥𝑗 − 𝑎)

𝑎∈𝐴̅2(𝑥𝑗)

, 𝑥𝑗 ∈ ℝ𝑛.

Then, the solution 𝑥𝑗+1 to the problem (20) in Step 4 can be expressed as follows:

𝑥𝑗+1 =
1

𝑚
(|𝐴̅2(𝑥𝑗)| 𝑥𝑗 + ∑ 𝑎

𝑎∈𝐴̅1(𝑥𝑗)⋃𝐴̅3(𝑥𝑗)

).

Applying (17), the stopping criterion in Step 3 can be given by

∑ (𝑥𝑗 − 𝑎)

𝑎∈𝐴̅1(𝑥𝑗)⋃𝐴̅3(𝑥𝑗)

= 0.

Now, we describe an application of DCA to solve the clustering problem (5). Let 𝑥𝑗 =

(𝑥𝑗
1, … , 𝑥𝑗

𝑘) ∈ ℝ𝑛𝑘 be a vector of cluster centers at the iteration 𝑗 and 𝐴1, …, 𝐴𝑘 be the cluster partition

of the data set 𝐴 given by these centers.

In order to compute the subgradient 𝜉𝑗 in Step 2, for each 𝑎 ∈ 𝐴 we compute the set 𝑅𝑎(𝑥𝑗) given

by (10), take any 𝑝 ∈ 𝑅𝑎(𝑥𝑗) and compute the subgradient 𝑣𝑎
𝑗

∈ 𝜕𝜑𝑎(𝑥𝑗) using (11). Then, we apply

(12) to compute the subgradient 𝜉𝑗. Thus, we get the following formula for the subgradient 𝜉𝑗:

𝜉𝑗 =
2

𝑚
(∑ (𝑥𝑗

1 − 𝑎)

𝑎∈𝐴∖𝐴1

 , … , ∑ (𝑥𝑗
𝑘 − 𝑎)

𝑎∈𝐴∖𝐴𝑘

)

 =
2

𝑚
((𝑚 − |𝐴1|)𝑥𝑗

1 − (𝑚𝑎̅ − |𝐴1|𝑎̅1), … , (𝑚 − |𝐴𝑘|)𝑥𝑗
𝑘 – (𝑚𝑎̅ − |𝐴𝑘|𝑎̅𝑘)),

where 𝑎̅𝑙 is the center of the cluster 𝐴𝑙, 𝑙 = 1, … , 𝑘, and 𝑎̅ is the center of the whole set 𝐴.

The solution 𝑥𝑗+1 = (𝑥𝑗+1
1 , … , 𝑥𝑗+1

𝑘) to the problem (20) in Step 4 is given by

𝑥𝑗+1
𝑡 = (1 −

|𝐴𝑡|

𝑚
) 𝑥𝑗

𝑡 +
|𝐴𝑡|

𝑚
𝑎̅𝑡 , 𝑡 = 1, … , 𝑘.

Finally, the stopping criterion in Step 3 can be given by

𝑥𝑗
𝑡 = (1 −

|𝐴𝑡|

𝑚
) 𝑥𝑗

𝑡 +
|𝐴𝑡|

𝑚
 𝑎̅𝑡 , 𝑡 = 1, … , 𝑘.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 7 / 14

http://iors.ir/journal/article-1-449-en.html

8 Bagirov

These results demonstrate we do not need to apply any optimization algorithm to solve problem

(20) for both clustering problem (5) and auxiliary clustering problem (15). In both cases, solutions

can be expressed explicitly.

5. Incremental Algorithm

We propose an incremental algorithm to solve problems (5) and (15). This algorithm starts with

computing the center of the whole data set. Then, it solves the 𝑘-clustering problem (𝑘 > 1) by

gradually adding one cluster center at each iteration. At the 𝑙th, 1 < 𝑙 ≤ 𝑘, iteration a special

procedure is applied to find the starting cluster centers using the solution of the (𝑙 − 1)-clustering

problem. One such procedure was introduced in [25] (see also [7]) which we will use in the

incremental algorithm given below. At each iteration of the incremental algorithm, DCA is applied

to solve the optimization problems (5) and (15). The proposed incremental algorithm is called the

Incremental DCA (IncDCA). It is easy to see that this algorithm, in addition to the 𝑘-partition problem,

also solves all intermediate 𝑙-partition problems, for 𝑙 = 1, … , 𝑘 − 1.

Algorithm 2. An incremental clustering algorithm (IncDCA).

Step 1: (Initialization) Compute the center 𝑥1 ∈ ℝ𝑛 of the set 𝐴. Set 𝑙: = 1.

Step 2: (Stopping criterion) Set 𝑙: = 𝑙 + 1. If 𝑙 > 𝑘 then stop the 𝑘-partition problem has been solved.

Step 3: (Computation of a set of starting points for the auxiliary clustering problem) Apply the

procedure from [25] to find the set 𝑆1𝑙 ⊂ ℝ𝑛 of the starting points for solving the auxiliary

clustering problem (15) for 𝑘 = 𝑙.
Step 4: (Computation of a set of starting points for the 𝑙th cluster center) Apply Algorithm 1 to solve

problem (15) starting from each point 𝑦 ∈ 𝑆1𝑙 and generate a set 𝑆2𝑙 ⊂ ℝ𝑛 of starting points

for the 𝑙th cluster center.

Step 5: (Computation of a set of cluster centers) For each 𝑦̅ ∈ 𝑆2𝑙, apply Algorithm 1 to solve

problem (5) starting from the point (𝑥1, … , 𝑥𝑙−1, 𝑦̅) and find a solution (𝑦̂1, … , 𝑦̂𝑙). Denote

by 𝑆3𝑙 ⊂ ℝ𝑛𝑙, the set of all such solutions.

Step 6: (Computation of the best solution) Compute

𝑓𝑙
min = min{𝑓𝑙(𝑦̂1, … , 𝑦̂𝑙): (𝑦̂1, … , 𝑦̂𝑙) ∈ 𝑆3𝑙}

and the collection of cluster centers (𝑦̅1, … , 𝑦̅𝑙) such that 𝑓𝑙(𝑦̅1, … , 𝑦̅𝑙) = 𝑓𝑙
min.

Step 5: (Solution to the 𝑙-partition problem). Set 𝑥𝑗: = 𝑦̅𝑗, 𝑗 = 1, … , 𝑙, as a solution to the 𝑙th partition

problem and go to Step 2.

Algorithm 2 contains a special procedure to generate starting cluster centers (Step 3) which is

described in detail in [25]. The values of the parameters in this procedure were chosen according to

the recommendations given in [7].

6. Numerical Results

To test IncDCA and compare it with other clustering algorithms, numerical experiments with a

number of real-world data sets were carried out. Algorithms were implemented in Fortran 95 and

compiled using the gfortran compiler. Computational results were obtained on a PC with the CPU

Intel(R) Core(TM) i5-3470S 2.90 GHz and RAM 8 GB. Eight data sets were used in the numerical

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 8 / 14

http://iors.ir/journal/article-1-449-en.html

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering 9

experiments. Their brief descriptions are given in Table 1. The detailed descriptions can be found in

[23]. All data sets contain only numeric features and they do not have missing values. The number of

attributes in these data sets ranges from 3 to 128 and the number of data points ranges from tens of

thousands (smallest: 13,910) to hundred of thousands (largest: 434,874).

The IncDCA’s performance was compared with two other incremental algorithms: the global 𝑘-

means algorithm (GKM) [24] and the multi-start modified global 𝑘-means algorithm (MS-MGKM)

[25]. Implementations of the GKM and MS-MGKM algorithms were discussed in [24] and [25],

respectively.

Table 1. A brief description of data sets

Data sets Number of instances Number of attributes

Gas Sensor Array Drift 13910 128

EEG Eye State 14980 14

Letter Recognition 20000 16

KEGG Metabolic Relation Network 53413 20

Shuttle Landing Control 58000 9

Localization Data for Person Activity 164860 3

Skin Segmentation 245057 3

3D Road Network 434874 3

We computed up to 25 clusters in all the data sets. The CPU times used by the algorithms were

limited to 20 hours. Results are presented in tables 2-4. In these tables, we use the following notations:

 𝑘 is the number of clusters;

 𝑓𝑏𝑒𝑠𝑡 (multiplied by the number shown after name of the data set) is the best value of the cluster

function (6) (multiplied by 𝑚) obtained by the three algorithms;

 𝐸 is the percentage error calculated as follows:

𝐸 =
𝑓̅ − 𝑓best

𝑓best
× 100%,

where 𝑓 ̅is the value of the clustering function obtained by the corresponding algorithm;

 𝑁𝑏𝑒𝑠𝑡 is the least number of distance function evaluations used by the three algorithms;

 𝑟𝑁 is the ratio of the number of distance function evaluations (𝑁) used by an algorithm and the

corresponding 𝑁𝑏𝑒𝑠𝑡: 𝑟𝑁 = 𝑁/𝑁𝑏𝑒𝑠𝑡;

 𝑡𝑏𝑒𝑠𝑡 is the least CPU time required by three algorithms;

 𝑟𝑡 is the ratio of the CPU time (𝑡) required by an algorithm and the corresponding least CPU time:

𝑟𝑡 = 𝑡/𝑡𝑏𝑒𝑠𝑡;

 The sign “-” in the tables shows that an algorithm failed to compute clusters in the given time limit.

Results for the best cluster function values found by different algorithms are presented in Table 2.

These results show that in most cases all the three algorithms achieved high accuracy. The IncDCA

failed to find highly accurate solutions over the Localization Data and the GKM and MS-MGKM

algorithms over the KEGG Network data set. It is well-known that both the GKM and MS-MGKM

algorithms are able to find either global or near global solutions to the clustering problem. Results

from Table 2 allow us to claim that the IncDCA algorithm is also able to find either global or near

global solutions of the clustering problems.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 9 / 14

http://iors.ir/journal/article-1-449-en.html

10 Bagirov

Results for the number of distance function evaluations by different algorithms are shown in Table

3. One can see that the MS-MGKM algorithm uses the least number of distance function evaluations

among the three algorithms in almost all cases. The IncDCA algorithm requires less distance function

evaluations than the GKM algorithm. We can also see that the IncDCA and MS-MGKM algorithms

use similar number of distance function evaluations over the three largest data sets: Localization Data,

Skin Segmentation and 3D Road Network. In these data sets the GKM algorithm uses significantly

more function evaluations than the other two algorithms.

Table 2. Cluster function values obtained by the algorithms

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 10 / 14

http://iors.ir/journal/article-1-449-en.html

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering 11

Table 3. Number of distance function evaluations

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 11 / 14

http://iors.ir/journal/article-1-449-en.html

12 Bagirov

Results for the CPU times required by the algorithms are given in Table 4. These results show that

the GKM algorithm is the most time consuming among the three algorithms as the size of a data set

increases. The MS-MGKM algorithm requires the least CPU time over five data sets (except the

cases, when 𝑘 = 2, 3): Gas Sensor Array Drift, EEG Eye State, Letter Recognition, KEGG Network

and Shuttle Control. However, in three largest data sets the IncDCA algorithm requires the least CPU

time. Moreover, the GKM and MS-MGKM algorithms computed only 5 clusters in 3D Road Network

data set within the given time limit. These results demonstrate that for largest data sets used in this

paper, the IncDCA algorithm outperforms the other two algorithms, that is, the IncDCA algorithm is

more efficient for solving clustering problems with hundreds of thousands of data points.

Table 4. CPU times used by the algorithms

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 12 / 14

http://iors.ir/journal/article-1-449-en.html

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering 13

7. Conclusion

An algorithm for solving the minimum sum-of-squares clustering problems was developed. The

algorithm exploited DC representation of the clustering problems, was based on the incremental

approach and applied the DC algorithm to solve optimization problems. The proposed algorithm was

tested using, in particular, real world data sets with hundreds of thousands of data points. Results

demonstrated that the algorithm was able to find global or near global solutions of the clustering

problems with very large data sets in a reasonable time, outperforming two other state-of-the-art

incremental clustering algorithms.

Acknowledgement

This research by Dr. Adil Bagirov was supported under Australian Research Council’s Discovery

Projects funding scheme (Project No. DP140103213).

References

[1] Al-Sultan, K.S. (1995), A tabu search approach to the clustering problem, Pattern Recognition,

28(9), 1443-1451.

[2] An, L.T.H., Belghiti, M.T. and Tao, P.D. (2007), A new efficient algorithm based on DC

programming and DCA for clustering, Journal of Global Optimization, 37(4), 593-608.

[3] An, L.T.H., Minh, L.H. and Tao, P.D. (2014), New and efficient DCA based algorithms for

minimum sum-of-squares clustering, Pattern Recognition, 47, 388-401.

[4] An, L.T.H., Ngai, H.V. and Tao, P.D. (2012), Exact penalty and error bounds in DC

programming, Journal of Global Optimization, 52(3), 509-535.

[5] Bagirov, A.M. (2008), Modified global k-means algorithm for minimum sum-of-squares

clustering problems, Pattern Recognition, 41(10), 3192-3199.

[6] Bagirov, A.M. and Mohebi, E. (2015), Nonsmooth optimization based algorithms in cluster

analysis, In Celebi, M.E. (Ed), Partitional Clustering Algorithms, Springer, pp. 99-146.

[7] Bagirov, A.M., Ordin, B., Ozturk, G. and Xavier, A.E. (2015), An incremental clustering

algorithm based on hyperbolic smoothing, Computational Optimization and Applications, 61,

219-241.

[8] Bagirov, A.M., Rubinov, A.M., Soukhoroukova, N.V. and Yearwood, J. (2003), Unsupervised

and supervised data classification via nonsmooth and global optimization, Top, 11, 1-93.

[9] Bagirov, A.M. and Ugon, J. (2005), An algorithm for minimizing clustering functions,

Optimization, 54(4-5), 351-368.

[10] Bagirov, A.M., Ugon, J. and Webb, D. (2011), Fast modified global k-means algorithm for

incremental cluster construction, Pattern Recognition, 44(4), 866-876.

[11] Bagirov, A.M. and Yearwood, J. (2006), A new nonsmooth optimization algorithm for

minimum sum-of-squares clustering problems, European Journal of Operational Research,

170(2), 578-596.

[12] Bai, L., Liang, J., Sui, C. and Dang, Ch. (2013), Fast global k-means clustering based on local

geometrical information, Information Sciences, 245, 168-180.

[13] Clarke, F.H. (1983), Optimization and Nonsmooth Analysis, Canadian Mathematical Society

Series of Monographs and Advanced Texts, Wiley.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

 13 / 14

http://iors.ir/journal/article-1-449-en.html

14 Bagirov

[14] Demyanov, V.F., Bagirov, A.M. and Rubinov, A.M. (2002), A method of truncated

codifferential with application to some problems of cluster analysis, Journal of Global

Optimization, 23(1), 63-80.

[15] Diehr, G. (1985), Evaluation of a branch and bound algorithm for clustering, SIAM J. Scientific

and Statistical Computing, 6, 268-284.

[16] Du Merle, O., Hansen, P., Jaumard, B. and Mladenovic, N. (1999), An interior point algorithm

for minimum sum-of-squares clustering, SIAM Journal on Scientific Computing, 21(4), 1485-

1505.

[17] Hansen, P. and Mladenovic, N. (2001), Variable neighborhood decomposition search, Journal

of Heuristic, 7, 335-350.

[18] Horst, R. and Thoai, N.V. (1999), DC programming: overview, Journal of Optimization Theory

and Applications, 103(1), 1-43.

[19] Jain, A.K., Murty, M.N. and Flynn, P.J. (1999), Data clustering: a review, ACM Comput. Surv.,

31(3), 264-323.

[20] Jain, A.K. (2010), Data clustering: 50 years beyond k-means, Pattern Recognition Letters,

31(8), 651-666.

[21] Kogan, J. (2007), Introduction to Clustering Large and High-dimensional Data, Cambridge

University Press.

[22] Lai, J.Z.C. and Huang, T.-J. (2010), Fast global k-means clustering using cluster membership

and inequality, Pattern Recognition, 43(5), 1954-1963.

[23] Lichman, M. (2013), UCI machine learning repository, University of California, Irvine, School

of Information and Computer Sciences, http://archive.ics.uci.edu/ml.

[24] Likas, A., Vlassis, N. and Verbeek, J. (2003), The global k-means clustering algorithm, Pattern

Recognition, 36(2), 451-461.

[25] Ordin, B. and Bagirov, A.M. (2015), A heuristic algorithm for solving the minimum sum-of-

squares clustering problems, Journal of Global Optimization, 61, 341-361.

[26] Rahman, Md A. and Islam, Md Z. (2014), A hybrid clustering technique combining a novel

genetic algorithm with k-means, Knowledge-Based Systems, 71, 345-365.

[27] Scitovski, R. and Scitovski, S. (2013), A fast partitioning algorithm and its application to

earthquake investigation, Computers & Geosciences, 59, 124-131.

[28] Selim, S.Z. and Al-Sultan, K.S. (1991), A simulated annealing algorithm for the clustering,

Pattern Recognition, 24(10), 1003-1008.

[29] Tao, P.D. and An, L.T.H. (1997), Convex analysis approach to DC programming: theory,

algorithms and applications, Acta Mathematica Vietnamica, 22(1), 289-355.

[30] Teboulle, M. (2007), A unified continuous optimization framework for center-based clustering

methods, The Journal of Machine Learning Research, 8, 65-102.

[31] Tuy, H., Bagirov, A.M. and Rubinov, A.M. (2001), Clustering via DC optimization, In

Advances in Convex Analysis and Global Optimization, Springer, pp. 221-234.

[32] Xavier, A.E. (2010), The hyperbolic smoothing clustering method, Pattern Recognition, 43,

731-737.

[33] Xavier, A.E. and Xavier, V.L. (2011), Solving the minimum sum-of-squares clustering

problem by hyperbolic smoothing and partition into boundary and gravitational regions,

Pattern Recognition, 44(1), 70-77.

 [
 D

ow
nl

oa
de

d
fr

om
 io

rs
.ir

 o
n

20
26

-0
1-

29
]

Powered by TCPDF (www.tcpdf.org)

 14 / 14

http://iors.ir/journal/article-1-449-en.html
http://www.tcpdf.org

