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Air defense is a crucial matter for all naval combat systems. In this study, we consider a warship 

equipped with an air-defense weapon that targets incoming threats using surface-to-air missiles. 

We define the weapon scheduling problem as an optimal scheduling of a set of surface-to-air 

missiles of a warship to a set of attacking air threats. Optimal scheduling of the weapon results in 

an increase in the probability of successful targeting of all incoming threats. We develop a heuristic 

method to obtain a very fast and acceptable solution for the problem. In addition, a branch and 

bound algorithm is developed to find the optimal solution. In order to increase the efficiency of the 

algorithm, a lower bound, an upper bound and a set of dominance rules are proposed. Using 

randomly generated test problems, the performances of the proposed solution approaches are 

analyzed. The results indicate that in all practical situations, the branch-and-bound algorithm is 

able to solve the problem in less than a second. 
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1. Introduction 
 

The security of a country’s borders is of strategic importance and thus countries are severely 

concerned with defending their frontiers. Accordingly, maritime boundaries are no exception, 

specially taking into account the exclusive circumstances that complicate naval warfare. For the 

countries with long seashores and multitudes of security elements within their regions the 

strengthening of their naval forces using scientific methodologies is necessary to effectively solve 

problems faced with in the field of naval combat. 

 

Given the increasingly complex structure of missiles, being a major threat for any naval fleet, we 

investigate increasing the chances of survival for a frigate while confronted with airborne threats, 

particularly missiles.  One major method of air defense used in engaging incoming missiles is multi-

layer defense consisting of fighter jets, surface-to-air missiles (SAM) and ultimately artillery as the 

last layer of defense. 

 

Surface-to-air missiles, as the middle defense layer, are of great significance. Since weapons used 

in this layer have limited firing capacity, careful planning is vital in order to achieve an optimal 

performance. This can be done using weapon scheduling methods that have been utilized since the 

First World War. Special circumstances of combats dictate optimal consumption of resources and 

thus scheduling problems have gained importance. The next section investigates scheduling problems 

when jobs may fail, corresponding to the failure of shots on threats. Then, the literature regarding the 

weapon target assignment (WTA) problem is reviewed. There are various forms of the WTA problem 
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one of which can be applied to air defense scheduling problem. Ultimately, the background for air 

defense scheduling problems is discussed. 

 

It is worthwhile mentioning that throughout our work here, the term “threat” refers to hostile 

rockets fired at the warship which is responded by the “missiles” launched from the frigate. 

 

1.1.  Scheduling Problems When Jobs May Fail 

 

Stochastic scheduling problems have mainly addressed jobs with stochastic processing times or 

stochastic release dates. Consideration the possibility of failure for each job was first introduced in 

sequential testing by Ünlüyurt [13]. Subsequently, this was applied to scheduling of research and 

development projects.  De Reyck and Leus [5] argued that the main feature of R&D projects is the 

possibility of completion at any time. This is because the success of jobs in the project is of a 

probabilistic nature. Coolen et al. [4] investigated scheduling of R&D projects by considering each 

project to be a combination of modules with each module consisting of several activities. This was 

an extension of Reyck and Leus' work where instead of an activity, a module is in place and the 

success of the project depends on the success of all modules while the success of a module is 

dependent only on the success of a single alternative within the module. Similarly, in this paper, each 

missile fired at a threat is successful if it hits the threat and fails otherwise. Therefore, by considering 

each firing of a missile as a job, the outcome can probabilistically be a success or a failure. 

 

1.2.  Weapon Target Assignment Problems 

 

The WTA problem is the assignment of a set of weapons to a set of targets (or threats) in order to 

minimize the expected value of the targets’ survival (Ahuja et al. [1]). This problem was initially 

introduced in the 1950’s and a comprehensive overview of the initial studies on this problem can be 

found in Eckler and Burr [6]. Ahuja et al. [1] developed an integer programming model for the WTA 

problem and used a branch and bound (B&B) algorithm to solve the problem.  For the first time, the 

authors presented the optimal solution for the WTA problem for 200 weapons and 200 threats. Naeem 

and Masood [11] developed an optimal dynamic multi-air threat evaluation and weapon allocation 

algorithm using a variant of Stable Marriage Algorithm. They use a new dynamic weapon scheduling 

algorithm, allowing multiple engagements using shoot-look-shoot strategy, to compute a near-

optimal solution. 

 

Planning for air defense consists of two components (Kwon et al. [9] ). The first component is the 

allocation of weapons, i.e., the missile launchers to threats and the second is scheduling of the 

launching sequence of each weapon. Cha and Kim [3] studied the weapon scheduling problem by 

minimizing the number of survived threats. Sherali et al. [12] considered a scheduling problem in 

which a set of illuminators (homing devices) should strike a set of targets using surface-to-air missiles 

in a naval battle. This problem is a production floor shop scheduling problem of minimizing the total 

weighted flow e, subject to time-window job availability and machine downtime side constraints. 

They developed a simple algorithm based on solving assignment problems. 

 

1.3.  Missile Allocation Problems 

 

The main distinction between WTA problem and missile allocation problem is the type of threats. 

In the previous section, the planning for weapon assignment was made regardless of the nature of the 

threats while in this section, targets are mobile and thus a more detailed planning is required to take 

into account the various characteristics of the threats. Missile allocation problems have long existed 

in the literature of scheduling and a thorough classification of such problems can be found in Matlin 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
25

-1
0-

26
 ]

 

                             2 / 13

http://iors.ir/journal/article-1-474-en.html


Weapon Scheduling in Naval Combat Systems 89 

 

[10]. Yet, Karasakal et al. [7] introduced a new approach to this problem. The authors interpreted the 

missile allocation problem as an optimal assignment of air defense weapons to a set of air threats. 

They defined the goal of this problem as maximizing the number of neutralized threats while 

minimizing the resources used in the warship. This problem considered a naval fleet consisting of a 

multitude of warships with various weapons. Ultimately, two greedy heuristic algorithms were 

developed to allocate the optimal combination of weapons and threats as well as assigning weapons 

to all existing threats. 

 

The novelties of this paper are threefold: (1) introducing the weapon scheduling problem in a 

modular form where the number of missiles fired at each threat is probabilistic, (2) defining the 

objective function based on the idea of weighted number of tardy jobs, and (3) solving the problem 

using an exact method based on a B&B algorithm. 

 

The remainder of our work is structured as follows. Section 2 provides a description of the problem 

and presents a nonlinear stochastic model. Section 3 describes the proposed solution method. In 

Section 4, computational results are discussed. Concluding remarks are given in Section 5. 

 

2. Problem Description and Modeling  
 

A warship may be equipped with different weapons in order to engage potential threats and 

missiles, due to their high velocities, require a more elaborate response. Anti-missile weapons 

normally consist of short-range missiles with a specific range that cannot eliminate targets outside 

the specified range. 

 

 
Fig. 1. Weapon’s firing range and the threat’s release date and due date 

 

We consider a single weapon on a warship that should fire at incoming threats. This problem is 

similar to a single machine scheduling problem where the jobs indicate the threats and processing of 

jobs is equivalent to firing at threats. Jobs in this problem have release dates, i.e., when threats enter 

a weapon’s specified firing range, denoted by 𝑟𝑗 for threat j. Given the mobility of threats, they may 

escape a weapon’s range which indicates a due date 𝛿𝑗 for threat j. After this due date, the job cannot 

be completed as it would be impossible to fire at a target outside the weapon’s range. This condition 

is illustrated in Fig. 1. Depending on the velocity of a threat, its initial distance from the warship, and 

the velocity of the air defense missile, a number of missiles are fired at the threat. Since a warship 

can only contain a limited number of missiles, it is vital to optimally utilize such resources. 
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Accordingly, we assume a shoot-look-shoot (SLS) policy for firing the missiles. This means that a 

second shot will only be made if the first one misses its target. Under the SLS assumption, the 

maximum number of missiles fired at a threat can be calculated. This number is denoted by 𝜈𝑗 and is 

in form of a chain of jobs for any given threat. In other words, the 𝑗th chain consists of 𝜈𝑗 jobs 

(missiles fired) with precedence relations. If any of the missiles hits its target, the entire chain 

succeeds and processing of the remaining jobs in the chain would no longer be required.  

 

Generally, there are three steps in each launching of a missile: (1) the setup time which is the time 

taken for target identification, rotation, angle deflection, etc. This is shown by 𝑠𝑖𝑗 and represents the 

amount of time it takes a weapon to switch from target i to target j; (2) the time taken for launching 

of a missile which is a constant for every launch and only depends on the type of the weapon or 

launcher; (3) the amount of time it takes a missile to reach its target which is a variable because the 

missile and the threat are in simultaneous movement. Consequently, the moment that the two missiles 

collide can be estimated as the initial distance between the two missiles divided by the sum of their 

velocities. It should be mentioned that we assume the course of both the missile and the threat to be 

linear, despite the fact that in reality, missiles move nonlinearly and in unpredictable directions. In 

scheduling problems, however, the nonlinear flight path of a missile only impacts the estimated 

traversed distance. Therefore, if the nonlinear course of a missile (or a threat) can be assumed as a 

multiple of the direct traversed distance, then the results of our work would still be valid. 

 

The description of the problem is presented using a nonlinear stochastic mathematical model. In 

this model, 𝑁 = {1, … , 𝑛} is the set of threats and 𝑖 and 𝑗 would be the associated indices. As 

mentioned previously, for any given threat there exists a chain of jobs each being denoted by 𝑘. 

 

Table 1. Model parameters 

Parameter Description 

jr Release date of threat j into the weapon’s firing range (earliest start time for      

processing of the first job in chain j) 

j The moment when threat j escapes the weapon’s firing range (due date for jth  

module) 

d Duration of the missile launching 

jp Probability of a missile hitting threat j 

ijs Setup time required for switching from threat i to threat j 

j Initial distance of the threat j from the warship 

j Precision of the threat j (probability of threat j hitting the warship) 

jV Velocity of threat j (a constant) 

 Velocity of the missile fired at a threat (a constant) 

M A big number 

 

Also, in order to schedule all module’s jobs on a single machine, 𝐴 = ∑ 𝑣𝑗
𝑛
𝑗=1  positions (in this 

case, missile launchers) are required which are indexed as r in the model. In other words, each specific 

sequence of all shots at all threats includes A elements where each element indicates a position. 

 

Table 1 explains the model parameters. The precision parameter indicates the probability of a 

threat hitting the warship and the subsequent damage if no action is taken against it. Using this 

parameter, the most hazardous threat can be identified. We assume that the total number of threats is 

known and targets have previously been identified by radars. We define the binary decision variable 
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𝑋𝑗𝑘𝑟 that gets the value of 1 if the 𝑘th missile to threat j is fired in the 𝑟th position and gets to be zero 

otherwise. Table 2 shows the stochastic variables of the model. 

 

Table 2. Random parameters of the model 

Variable Description 

jkrY = Finish time of 𝑘th shot at threat j when the shot is made from the 

𝑟th position.  

jkW = A Bernoli stochastic variable with parameter 𝑝𝑗 that gets to be 1 if 

the 𝑘th fire successfully hits threat j, and 0 otherwise. 

jkrL  The time it takes a fired missile to reach threat j when the 𝑘th shot 

is made from the 𝑟th position. This parameter can be approximated 

using the laws of physics. 

 
It should be noticed that 𝑌𝑗𝑘𝑟 is a stochastic variable because the finishing time of all jobs within 

the 𝑗th chain, except for the first one, depends on the outcome of preceding jobs. Furthermore, the 

shots made at a threat are not independent of each other and to calculate the probability of a shots 

being within the feasible range, the outcome of preceding shots must be known. 

 
A mathematical formulation of the model is proposed as follows. 
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~ ( ), 1,..., ; 1,..., ,jk j jW Bernoli p j n k     (10) 

 0,1 , 1,..., ; 1,..., ; 1,..., .jkr jX j n k r A      (11) 

 

The objective function indicates survival probability of a warship equipped with air defense 

weapons, i.e., the missiles. This is the probability of no threats hitting the warship. If 𝑈𝑗 is defined as 

a binary variable with 𝑈𝑗 = 1 denoting intact passing of the threat through the weapon’s firing range, 

then 𝑃(𝑈𝑗 = 1) indicates the corresponding probability. Therefore, if the intact passing of a threat 

through the weapon’s firing range poses danger to the warship, then 𝜂𝑗𝑃(𝑈𝑗 = 1) would be the 

probability of the threat hitting the warship. Consequently, the probability of the warship surviving 

from all n threats would be ∏ (1 − 𝜂𝑗𝑝(𝑈𝑖 = 1))𝑛
𝑗=1 𝑃(𝑈𝑗 = 1), meaning that in the weapon’s range 

(distance between 𝑟𝑗 to 𝛿𝑗) either no missiles have been fired at the threat or the missiles fired have 

missed their target. This condition can be divided into three possible scenarios: (1) the first job from 

the 𝑗th module is scheduled to be carried out after its due date. Because of the precedence relations 

between jobs within a module, the subsequent jobs of the 𝑗th module will also be scheduled after 𝛿𝑗. 

Thus, no missiles would be fired at threat j before 𝛿𝑗, (2) this scenario considers the second to 𝑣𝑗th 

jobs of a module, where 𝑢 𝑡ℎ job from module j finishes after its due date while 𝑢 − 1 precedent jobs, 

although unsuccessfully, have been finished on time. Given the existence of precedence relations 

between the jobs, it suffices only to consider the assumption for the (𝑢 − 1)th job since (𝑢 − 2)th 

job and the preceding ones have been completed on time and without success. Because firing of the 

𝑢th missile takes longer than 𝛿𝑗, the 𝑗th threat will pass through the weapon’s firing range, (3) this 

scenario investigates the condition where all the missiles assigned to the 𝑗th threat are fired on time 

and all such missiles miss their target. Consequently, the threat would safely pass through.   

 

Constraints (2) indicates that firing of each missile should be carried out at a single position. 

Constraint (3) imply that in each position only one missile can be fired. Constraints (4) illustrate the 

sequence of missiles fired at a threat so that for example the position of the second missile fired at a 

threat should be larger than the position of the first missile fired at the same threat. Constraints (5) 

state the fact that the finish time for any job must be larger than sum of its release date and the time 

taken for launching. If firings of two consecutive missiles at two distinct threats are required, then 

the weapon must undergo a setup time in order to rotate, prepare, and aim at the second threat. 

Constraints (6) illustrate the condition. Furthermore, if two consecutive missiles should be fired at a 

threat, based on the SLS assumption, the second shot can only be made once the outcome of the first 

shot is known. This is shown by constraints (7). The time it takes a missile to reach its target can be 

estimated according to laws of physic. Constraints (10) indicate the amount of time it takes to know 

the outcome of a missile fired at a target. Ultimately, the types of the variables are defined by (9), 

(10) and (11). 

 

3. Solution Method 
 

Here we discusses the method used for solving the proposed problem. There are various solution 

methodologies for weapon assignment and scheduling in the literature. For example, Blodgett et al. 

[2] developed a metaheuristic approach based on Tabu search for resource management in naval 

warfare. Kwon et al. [8] used a Lagrangean relaxation approach to the targeting problem. Van Dongen 

and Joost [14] developed a simulation model for the analysis of ship air defence.  

 

Given the nonlinear and stochastic characteristics of our model, it cannot be solved using 

optimization software and thus a B&B algorithm is developed here. A B&B algorithm explores the 
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entire feasible space in order to find the optimal solution but as the dimension of the problem 

increases, the search space grows exponentially which considerably affects the computing time and 

hence bounding schemes are used.  

 

It should be mentioned that our problem has a dynamic nature but the obtained solution of our 

developed B&B algorithm is static. Thus, this solution is considered as a baseline and rescheduling 

of the problem can be made using reimplementation of the B&B algorithm. In other words, we 

manage the dynamic feature of the problem using reimplementation of our fast B&B algorithm.  

 

3.1.  Branching Scheme 

 

We use of a depth-first approach in developing the B&B algorithm. Starting from a root node, 

several nodes called offsprings are generated. The offsprings are then ranked using the 
𝑡ℎ𝑟𝑒𝑎𝑡  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑒
 ratio. The far left side node, that has the largest value based on the 

ratio, is then selected and the branching procedure will accordingly continue. The general structure 

derived from this procedure is called a search tree. The branching method should explore the entire 

solution space which means considering all possible sequences of firing the missiles. Therefore, in 

each stage, the branching is applied to all jobs that can be carried out, i.e., all the missiles that can be 

fired by the weapon. Since jobs form a chain, it is necessary to identify the jobs whose direct 

precedents are already scheduled. The branching is then applied to the first organized job of each 

chain. As an example, four sample threats are illustrated in Table 3. The order of threats based on the 
𝑡ℎ𝑟𝑒𝑎𝑡 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑒
 ratio is determined. The air defense missile has a velocity of 782 

meters per second and the launching time is 4 seconds. The weapon’s firing range is 700 meters to 

15 kilometers. Number of shots fired is not an input and is determined by calculating the velocity of 

the threat and its initial distance.  

 

Table 3. Characteristics of threats specified in the example 

Threat No. Velocity of 

threat (m/s) 

Initial 

distance (m) 

Possible no. 

of shots 

Possibility of 

success 

Threat 

precision 

1   680 21000 2 0.75 0.99 

2 510 14000 2 0.72 0.97 

3 680 13000 2 0.75 0.96 

4 510 15000 3 0.75 0.93 

 
Fig. 2 shows part of the search tree and the branching procedure for this example. The 𝑖 − 𝑗 

notation inside each node represents the 𝑗th job from the 𝑖th module. Starting from the root node, if 

the 𝑖 − 𝑗 node is placed before (above) the 𝑖′ − 𝑗′ node, it implies that the 𝑗th job from the 𝑖th module 

must be carried out before the 𝑗′th job from the 𝑖′th module. 
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Fig. 2. Structure of the search tree 
 

3.2.  Elimination of Tardy Jobs 

 

The problem discussed has several distinct characteristics one of which is the mobility of threats. 

Because of this characteristic, the threat, regardless of the action taken against it, will continue to 

change its location. For example, in some cases, there may be no missiles fired at a threat but the 

target, following its own flight path, may move out of the weapon’s firing range. In such cases, the 

branching will not continue on the same node because branching is only applied to jobs the direct 

precedents of which are already finished. In other words, no missiles will be fired at a target that has 

escaped the weapon’s firing range and such threat should be damaged by another weapon. 

 

3.3.  Lower Bound 

 

A lower bound for the problem would be a sequence of jobs on the weapon. In order to improve 

the quality of the lower bound, job ordering rule is used. According to this rule, the remaining time 

for taking action against a threat is calculated using  

 

𝑟𝑡𝑗 =
Δ𝑗 − 𝑉𝑗𝑇

𝑉𝑗
 (12) 

 

where T denotes the earliest time of weapon availability for firing at a target. Threats with shorter 

response times have higher priorities. Furthermore, when the outcome of a missile fired at a threat is 
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not known, a second missile cannot be fired at the top-priority threat. In such cases, in order to 

preserve time, the next top-priority threat is selected. 

 

It should be noted that the collision of the two missiles must take place within the weapon’s firing 

range. After calculation of the lower bound in the proposed algorithm, if there exists a threat with no 

missiles scheduled to be fired at, a job from that threat’s module is replaced by a job from another 

module. This is done by selecting and eliminating a job from the other module. This selection is based 

on the order of threats, number of missiles fired and their corresponding weights. This means that the 

priority (for elimination) is given to threats with most missiles fired at, and if there are the same 

number of missiles fired at two threats, the threat with the smaller weight (less potential damage) will 

be selected. Subsequently, the first job in the module of a threat with no missiles fired at is replaced 

by the last job in the module of the selected threat. Ultimately, it is necessary to validate the 

scheduling sequence in terms of setup times, firing range, and module due dates.  

 

3.4.  Upper Bound 

 

In using a B&B algorithm, it is possible to calculate the objective function for the most recent 

partial scheduling. Moreover, using an upper bound, the value of the objective function from a node’s 

offspring can be predicted for the best-case scenario. If this best possible value is lower than an 

existing solution (lower bound), the branching on that node can be terminated and consequently the 

node would be fathomed. An upper bound for this problem can be equivalent to the condition that all 

missiles are simultaneously fired at the threats. In other words, the entire set of jobs in a module is 

scheduled on the weapon in parallel. Parallel scheduling of jobs would require equal number of 

weapons while in reality only a single weapon is at disposal. The solution calculated under the 

assumption of parallel scheduling can be considered as an upper bound. If 𝑣𝑗
′ is the number of 

available jobs in a module at a given time, an upper bound can be calculated as  

 

1
(1 (1 ) )j

n

j j
j

UB p






    . (13) 

 

In fact, this assumption considers a weapon firing at all threats simultaneously. This value can act as 

an upper bound for the obtained value of the objective function at a node because if it is assumed that 

all jobs are finished on time (before the due date 𝛿𝑗), the first two terms of the objective function 

would then equal to zero which means the probability of tardiness of jobs becomes zero and the only 

non-zero term in the objective function would be the third term which represents the probability of 

all jobs finishing on time without success. In other words, it is assumed that all missiles fired at a  

threat j are within the weapon’s firing range. (1 − 𝑝𝑗)
𝜈𝑗

′

 is the probability of all 𝜈𝑗
′ missiles missing 

their target, i.e., the 𝑗th threat and 𝜂𝑗(1 − 𝑝𝑗)
𝜈𝑗

′

 is the probability of the 𝑗th threat hitting the warship. 

Therefore, (1 − 𝜂𝑗(1 − 𝑝𝑗)
𝜈𝑗

′

) is the survival probability of the warship from threat j. In order to 

construct the upper bound, all possible finishing times for partial scheduling of a node are calculated 

and then the number of remaining jobs for each module is determined and used in the equation for 

calculating the upper bound. 
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3.5.  Bounding Scheme 

 

The search tree explores all possible solutions to the problem while many nodes ultimately lead to 

poor solutions. Furthermore, considering all possible combinations significantly increases the 

computing time. Thus, two bounding schemes are used to limit the search process. 

 

The first bounding scheme limits the search process for nodes when improving the solution is not 

possible. All solutions from the B&B algorithm are feasible whether the weapon is scheduled to fire 

at a single threat or a multitude of threats. But, when no further shots can be scheduled, i.e., all threats 

are outside the weapon’s firing range, no more nodes will be generated and thus the node can be 

fathomed. 

 

The second bounding scheme is used when the upper bound of the value of the objective function 

at a node is less than an already existing feasible solution. In this case, the node is fathomed to prevent 

generation and consideration of poor solutions. 

 

4. Computational Results 

 
Here we discusses the computational results obtained from executing an implementation of the 

algorithm on 200 test problems. Then, in order to evaluate the proposed lower bound, solutions in the 

existence and absence of proposed bounds are compared. The proposed B&B algorithm is 

implemented in the Visual C++ 2010 environment and all the test problems have been saved on a 

notebook with CPU Core i7, 6 GB RAM, and Windows 7 operating system. 

 

4.1.  Setting of Test Problems  

 

In order to generate the test problems, two factors were taken into consideration: the number of 

threats (n) and initial distance of the threats from the warship (). We considered five values 

𝑛: 5, 10, 15, 20 and 25. The initial distance of the threats from the warship was defined as a random 

variable in the specified intervals. The intervals were selected based on the radar range (25 

kilometers) and characteristics of medium-range air defense weapons (a range of 700 meters to 15 

kilometers). Hence, the initial distance of the threats from the warship was generated uniformly as a 

random number in the intervals [1, 25], [5, 25], [10, 25] and [15, 25] kilometers. For each combination 

of distance interval and number of threats, 10 test problems were randomly generated where in each 

category the problems varied in terms of velocity of threats, setup times and weapon precision. In all 

of the 200 randomly generated test problems, precision of threats were randomly generated in the 

interval [0.9, 1] with uniform distribution, the velocity of the threats was selected randomly with 

equal chance from the three values 680, 510 and 306 as meters per second and the velocity of the air 

defense missile was set to 782 meter per second. The setup time for launching a missile is randomly 

determined from a [0,1] minute interval. Furthermore, the probability of the missile hitting any target 

(or threat) was determined as a random value from the [0.7, 0.8] interval. As mentioned before, the 

launching time for all missiles is a constant and depends on the type of the weapon. Here, the 

launching time was set to be 4 seconds. 

 

4.2.  Evaluation of B&B Performance   

 

In this section, the results of the proposed B&B algorithm in terms of CPU run time are discussed. 

Initially, the algorithm was run with a sufficiently large time limit (approximately four hours) and the 

optimal solutions of all test problems were obtained. Since the four-hour time limit (TL) is impractical 
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for the applications of this type of a problem, the algorithm was run for six different TL: 0.5, 1, 5, 10, 

30, and 60 seconds (the corresponding results are shown in Table 4).  For each time limit, the average 

percent deviation of the best found solution from the optimal solution was calculated and the number 

of optimal solutions found (#opt) in each time limit was noted. The average percent deviation (APD) 

was estimated using  

 

𝐴𝑃𝐷 =
𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑏𝑒𝑠𝑡 𝑓𝑜𝑢𝑛𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100. (14) 

 

Table 4 presents the results obtained by the B&B algorithm on 200 test problems. 

 

Table 4. Performance of the proposed B&B algorithm 

TL 0.5 1 5 10 30 60 

APD 7.98 7.28 6.04 5.04 3.97 3.51 

#opt 123 126 140 148 161 162 

 
Table 4 illustrates the efficiency of the proposed B&B algorithm. In 0.5 seconds the algorithm 

reached a solution having value 62% of the optimal solution and this increased to 81% for 60 seconds. 

It should be mentioned that for practical problems number of threats are not usually more than five 

and our developed B&B algorithm was able to find all optimal solutions of the 40 test problems with 

𝑛 = 5 in a CPU run time less than a second. 

 

Table 5 shows the average  for the objective function, i.e., the survival probability of the warship 

for 200 test problems in 20 sets. 

 

Table 5. Average value  of the objective function for test problems with 60 seconds time limit 

n  [1, 25] [5, 25] [10, 25] [15, 25] 

5 0.5861 0.8436 0.9047 0.9348 

10 0.5864 0.7132 0.8325 0.9153 

15 0.2298 0.5471 0.7382 0.7912 

20 0.1927 0.326 0.616 0.6759 

25 0.1667 0.343 0.3748 0.4376 

 
Quite expectedly, as the lower bound of the initial distance of threats increases, the survival 

probability of the warship is improved because an increased lower bound for the initial distance of 

the threat leads to an increase in the number of missiles fired at the threat and consequently the chance 

of the warship for survival improves. Also, it is evident that an augmented number of threats will 

reduce the chance of survival. 

 

4.3.  Evaluation of the Lower Bound’s performance 

 

Here, we compare the results obtained from the solution procedure developed as the lower bound 

with the optimal results. Fig. 3 illustrates the APD based on the initial distance intervals. In test 

problems with Δ ∈ [1, 25], APD is about 16% and deviations for problems with Δ ∈ [5, 25] and Δ ∈
[10, 25] increased but ultimately plunged for the last interval. This sharp decrease can be attributed 

to the design of the lower bound because the method used for calculating the lower bound is 

proportional to large distances. This is why the number of initial solutions equal to the optimal 
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solution in this interval is more than the other intervals. It should be noted that the solution found 

using lower bounds was equal to the optimal solution in 29 of the test problems. 

 
Fig. 3. APD diagram based on the intervals for initial distance of threats 

 

4.4.  Impact of the Upper Bound 

 

In order to evaluate the impact of the developed upper bound, we ran the B&B algorithm without 

the upper bound and its corresponding dominance rule. Similar to Table 4, we report the new results 

in Table 6. It is concluded that with shorter CPU run times, the upper bound has more impact on the 

efficiency of the B&B algorithm. 

 

Table 6. Impact of the upper bound on B&B performance 

TL 0.5 1 5 10 30 60 

APD 21.83 18.36 12.47 8.14 5.48 4.83 

#opt 72 78 91 121 143 158 

 
4.5.  Operationalization of the Proposed Solution Method 

 

As mentioned previously, our problem involves stochastic variables and the proposed solution 

method maximizes the expected value of a warship’s survival. In reality, however, different 

circumstances could occur. For example, while the optimal solution may consist of three missiles 

fired at threat j, the first missile might hit the target and thus the launching of the other two would not 

be required. The solution we presented here is a baseline scheme for scheduling air defense weapon 

which is only optimal before the launching of the missiles. In practice, the scheduling of a weapon 

must be updated after the missiles are fired. As long as the missiles fired miss their targets or no new 

threat is introduced, the scheduling of the weapon using the B&B algorithm works fine. But, if a 

missile hits a target or new threats are posed, a new problem is at hand and thus the algorithm should 

run again.  

 

5. Conclusions 
 

We investigated weapon scheduling for a warship’s air defense system. The problem was 

formulated using the literature of R&D projects scheduling and the concept of possible failure of jobs 
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in projects. A mathematical model with stochastic variables and nonlinear objective function was 

constructed for calculating the survival probability of the warship. The model being nonlinear and 

stochastic, a B&B algorithm was developed to solve the model. Computational results indicated that 

the proposed algorithm could reach 81% of the optimal solution in 60 seconds. 

 

Given the novelty of this problem in the field of scheduling and its immediate applications in naval 

combats, further developments can be considered for the model. Developing dynamic solution 

approaches for this problem is an interesting research topic. Also, the same problem can be considered 

with several air defense weapons of the same kind. In this case, the problem takes the form of a 

parallel machine scheduling problem. Developments of more efficient exact and heuristic algorithms 

for the proposed problem are always useful.   
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