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A Corrector-Predictor Arc-search Interior Point Algorithm for
P.(x)-LCP Acting in a Wide Neighborhood of the Central Path

B. Kheirfam'”, M. Chitsaz2

We propose an arc-search corrector-predictor interior point method for solving P, (k)-linear
complementarity problems. The proposed algorithm searches for the optimizers along an
ellipse that is an approximation of the central path. The algorithm generates a sequence of
iterates in the wide neighborhood of the central path introduced by Ai and Zhang. The
algorithm does not depend on the handicap xof the problem, so that it can be used for any
P, (x)-linear complementarity problem. Based on the ellipse approximation of the central

path and the wide neighborhood, we show that the proposed algorithm has 0((1 + k)v/nL)
iteration complexity, the best-known iteration complexity obtained so far by any interior point
method for solving P,(k)-linear complementarity problems. Some numerical results are
presented to show the performance of the algorithm.

Keywords: Linear complementarity problem, Interior point method, Corrector-predictor
algorithm, Arc search, Polynomial complexity.

Manuscript was received on 18/05/2016 revised on 16/03/2017 and accepted for publication on 18/03/2017

1. Introduction

Interior point methods (IPMs) have provided polynomial time algorithms for solving linear
optimization (LO) problems and other classes of convex optimization problems. Based on numerical
experiments, the class of primal-dual path-following IPMs are considered to be the most efficient
algorithms among all IPMs. Excellent practical performance of these methods is explained in part by
their superlinear convergence. The Mizuno, Todd and Ye (MTY) predictor-corrector algorithm was
the first algorithm for LO having both polynomial complexity and superlinear convergence [10].
Predictor-corrector algorithms operate between two neighborhoods of the central path [19, 25]. The
role of the predictor step is to increase optimality while keeping the point in the outer neighborhood.
It is followed by a corrector step, which brings the point back into the inner neighborhood so that the
next predictor-corrector iteration can be applied. The MTY predictor-corrector algorithm was
extended to the P,(k)-linear complementarity problems (P, (x)-LCPs) in 1995 by Miao [9]. His
algorithm depends on k, uses the small neighborhood of the central path, has 0((1 + k)v/nL) as
iteration complexity and is quadratically convergent for nondegenerate problems. Since the handicap
of a matrix is sometimes very difficult to compute, and it is explicitly used in the construction of
Miao’s algorithm, so his algorithm cannot be used for general sufficient LCPs. Potra and Sheng [18]
extended the MTY predictor-corrector algorithm further for sufficient complementarity problems.
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All the above algorithms operate in JV,, neighborhoods, also known as the small neighborhoods,
of the central path. In [16], Potra proposed a predictor-corrector method for monotone LCPs using
the wide neighborhood WV, of the central path. Potra and Liu [17] extended the algorithm of [16] to
sufficient LCPs. Two algorithms were analyzed in [17]. Both algorithms are of predictor-corrector
type acting in between two wide neighborhoods of the central path. The radii of those neighborhoods
have to satisfy an inequality that depends on the handicap x of the problems. The first algorithm of
[17] also depends on k, while the second does not. In order to devise an algorithm that is independent
of the handicap of the problem, the idea of corrector-predictor method was investigated in [3, 6, 14]
.The first advantage of this approach is that only one neighborhood of the central path needs to be
considered, thus avoiding the explicit relation between the radii of the neighborhoods assumed in [16,
17]. Second, the decrease of the duality gap along the predictor direction being faster if the point is
closer to the central path, it makes sense to start the iteration with a corrector step. Indeed, the
corrector-predictor algorithm reduces the duality gap in both the corrector and the predictor steps,
and therefore it is more efficient.

The concept of the central path plays a critical role in the development of primal-dual path-
following IPMs. Theoretical analysis and computational experiments [12] demonstrate that searching
along the central path is the most efficient way to find optimizers. The majority of optimization
algorithms search optimizers either along an arc of a power series approximation or along a straight
line related to the first-order and higher-order derivatives of the central path [4, 8, 11]. Since the
central path for LO appears to have sections of gentle curvature connected by sections of high
curvature, intuitively ellipses can adjust center and axes parameters to approximate both gentle
curvature and high curvature sections much better than straight lines which are used by most first-
order and higher-order methods. Recently, Yang [20, 21, 22] devised a higher-order arc-search
method. The arc-search algorithms utilized the first and second-order derivatives to construct an
ellipse to approximate the central path. Yang [22] showed that arc-search along ellipse may be a better
method than other one-dimensional search methods because the algorithm was proved to be
polynomial with a better bound than the bounds of all existing higher-order algorithms. Ai and Zhang
[1] introduced a new wide neighborhood, IV, (), and proposed a predictor-corrector method for

solving monotone LCPs. Their algorithm has 0 (v/nL) iteration complexity coinciding with the same
theoretical complexity as a small neighborhood algorithm. Potra [15] designed three interior point
methods for solving sufficient horizontal LCPs in the wide neighborhood of the central path
introduced by Ai and Zhang. Recently, Yang et al. [24] used Ai and Zhang’s wide neighborhood and
established a polynomial arc-search infeasible-interior-point algorithm for LO with a complexity

bound of O(n%L). Quite recently, Pirhaji et al. [13] generalized the arc search technique proposed by
Yang [21, 22] and Yang et al. [24] for LO to LCPs. Based on using the Ai-Zhang’s neighborhood [1]
and the Yang et al.’s new strategy [23] for obtaining the search directions, they proposed an arc search
infeasible interior point algorithm for LCPs. They proved the algorithm to be well-defined and
admitting the best known complexity bound,0 (n log £~1), for infeasible IPMs.

Motivated by Potra’s algorithms [16, 17] and arc-search approximation of the central path, here
we present a corrector-predictor arc-search interior point algorithm for P, (x)-LCP acting in the wide
neighborhood JV; () of the central path. The algorithm first performs a corrector step to improve
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centrality and optimality. Then, in order to enhance improvement of the optimality, the algorithm
moves along an ellipsoidal curve using the predictor step. Here, we use the wide neighborhood

N3+ (a) for any value of a € (0,1), while in [1] this neighborhood was used only for a € (0, %].

The rest of our work is organized as follows. In Section 2, we define P, (k)-LCP and review some
basic concepts of IPMs for solving P, (x)-LCP, such as the central path and the neighborhoods of the
central path. In Section 3, we describe our algorithmic scheme. Some technical lemmas are given in
Section 4 and then, a complexity analysis of the algorithm is presented. Some numerical results are
reported in Section 5. Section 6 gives our conclusions.

2. Preliminaries
The P.(x)-LCP consists of finding a pair of vectors (x,s) € R?" such that
s=Mx+qxTs=0,x520,
where ¢ € R™ and M € R™™ is a P,(x)-matrix, i.e., for some nonnegative constant «,
(1 +41) Yier, xi(Mx); + X x;(Mx); = 0,Vx € R", @

where I,: = {i: x;(Mx); = 0} and I_: = {i: x;(Mx); < 0} are two index sets. The smallest x with the
property (1) is called the handicap of the matrix. The class of P, (x)-matrices was first introduced by
Kojima et al. [5], where the authors proved the existence and uniqueness of the central path for P, (x)-
LCP and extended the primal-dual IPM for LO to P,(k)-LCP. Denote the set of all feasible points
and strictly feasible points of P, (x)-LCP by

F:={(x,5) € R?™:s = Mx + q, (x,5) = 0},
FO ={(x,s) € R?™:s = Mx + q, (x,s) > 0}.
Moreover, we denote its solution set by
F*i={(x*s") € F: (x")Ts* = 0}.
It is known (see [5]), under the assumption that F° is nonempty, the nonlinear system

—Mx+s=gq,
Xxs = ue,

has a unique positive solution (x(u), s()), forany u > 0. We call (x(u), s(1)) the u-center of P, (x)-
LCP. The set of u-centers form the central path C of P, (x)-LCP:

C:={(x(w),s(u)):u > 0}.

It has been shown that the limit of the central path (as u goes to zero) exists and yields a solution
for P,(x)-LCP ([5, Theorem 4.4]). Theoretical analysis and computational experiments demonstrate
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that searching along the central path is the most efficient way to find optimizers [12]. Many IPMs
search optimizers along an arc of a power series approximation. However, there is no practical way
to calculate the entire arc of the central path. Recently, Yang [20] suggested approximating the central
path using ellipse, and developed an algorithm for LO which searches optimizers along the ellipse.
The ellipse Y in 2n-dimensional space is defined as follows:

Y = {(x(0),5(0)): (x(8),s(8)) = icos(0) + jsin(8) + K}, (2)

where i € R2™ and j € R?™ are the axes of the ellipse, which are perpendicular to each other, and k €
R?" is the center of ellipse.

Let (x,s) and (¥, §) respectively denote the first and second derivatives of (x,s) and z = (x,s) =
(x(80),5(85)) € Y, which is close to or on the central path. Based on Yang's idea [20, 21, 22], we
proceed to determine the vectors i, j, k and the angle 6, such that the first and second derivatives of

(x, s) satisfy

Mx—s=0,

sx + x$ = xs, 3)
M —5=0,

L 4)
SX + x§ = —2x8.

Let 6 € [0, %]. It has been shown in [20] that one can avoid the calculation of the vectors i, j, k in the
expression for ellipse, which leads to the following lemma.

Lemma 1. ([22, cf. Theorem 3.1]) Let (x(8),s(8))be an arc defined by (2) passing through a
point (x, s), and its first and second derivatives at (x, s) be (x,s) and (%, s), which are defined by (3)
and (4). Then, an ellipsoidal approximation of the central path is given by

x(0): = x —sin(8)x + (1 — cos(6))X, (5)
s(8):=s —sin(#)s + (1 — cos(0))S3, (6)

where 6 € [0,7].
2

The distance of a point z = (x, s) € F to the central path can be quantified by different proximity
measures. The following proximity measures have been extensively used in the literature:

xs xs — e =1 (%S _ -
52(2)-—”7—6’"2, 500(2)-—"7—6”00, 000 (2): "(u )" oo,

T
where (v)~ denotes the negative part of the vector v, i.e., (v)”™ = —max{—v,0} and u = %

According to the above-defined proximity measures, the neighborhoods of the central path are
defined as follows:
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Ny(a) = {z € F°:6,(2) < a},
Ny(a) ={z € F%6,(2) < a},
Nog(@) ={z€F%65(z)<a}={z€F%xs > (1-a)ue},

where 0 < @ <1 is a given parameter. In 2005, Ai and Zhang [1] introduced a new wide
neighborhood as follows:

Npz(@) = {(x,5) € FO:ll (xs — ue)™ Il < atu}, (7)

where 0 < 7 < 1. Itis clear that || (xs — tue)™ ll,= 0, for all (x,s) € N, (1 — 1), and that for any
(x,5) € Ny-(a),

| (xs —tue)” I,<atu and x;s; <71U,
which imply
0<1- XT’—;‘ < a, orequivalently x;s; = (1 — a)tu. (8)
Therefore, we have
No(d=1)c Ny (a) € N (1= (1 —a)7), Va,t € (0,1). 9
Since N (1 — 1) is a wide neighborhood, so is V; ;(a).
3. Arc-search Corrector-Predictor Algorithm

Here, we describe an arc-search corrector-predictor method which follows approximately the
ellipsoidal central path defined by (2). Let (x,s) = (x(6),s(6p)) € N, (a) be given. We first
perform a corrector step in order to improve centrality and optimality of (x, s). By modifying (3) we
define the first and second derivatives at (x,s) € Y in the corrector step to satisfy

Mx —s =0,

sx +x$ = —[(tue — xs)~ +Vn(tue — xs)*], (10)
Mr—s=9 . (11)
SX + x§ = —2xs.

By solving systems (10), (11), we consider the point (x(8), s(8)) as defined in (5) and (6). Then, we
compute sin(8) to obtain the point (¥, 5): = (x(9),s(9)) € Ny (@), with@ < a and jz < p.

In the predictor step, we improve optimality by moving along an ellipsoidal curve defined by

Mix —

S+s (12)

Il
xR O

-

&I
KU ».
Il
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Mx-s=0, | (13)
XS

Then, by calculating step length sin(€) and using (5) and (6), we get (£(£),5(£)). As an immediate
consequence, we have

ts*)= (2(6),5(8)) € V@), w(z) <it

and this implies that a new corrector step can be started. Therefore, a formal description of the
algorithm is given in Fig. 1.

Algorithm 1: A corrector-predictor algorithm with arc-search

Input:
accuracy parametere > 0;
neighborhood parametera, 0 < a < 1;
centering parameterz, 0 <t < i;
aninitial point(x®,s%) € Ny (a), po = (x®)7s%/n;
setk: = 0.
begin
whiley, > ¢ do
(corrector step)
Compute the directions (x*, s%) and (k*,5*) by solving (10) and (11).
Compute the largest positive sin(ék) such that the relations
(x(0),5(6)) € Ny (a),
u(6) < p,
hold for every sin(8) € [0,sin(8,)] with @ < a.
Compute (,3) = (x(ék), s(ék)) by (5) and (6).
Set (x*,5%) « (%,38), iy, < (X)T5/n.
(predictor step)

Compute the directions (¥¥,s%) and (x*,5%) by solving (12) and (13).
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Compute the largest positive sin(£ ) such that the relations
(x($),5(5)) € Npz(a),
f() < [,
hold for every sin(¢) € [0, sin(&y)].
Compute (x*, s*) = (f(fk), _s(ék)) by using (5) and (6).
Set (xK*1, sk« (x*, s*),  pftl e (xH)Tst/n.
Setk « k+ 1.

end while

end

Fig. 1. Algorithm 1

Before proceeding to the analysis of the algorithm, we recall two technical lemmas that are widely
used in subsequent sections. For ease of notation, we shall adopt the following conventions:

D:= X252, | (wv) IZ: =l Du ll} +I D~Mw 1, @:= (xs)"*?a.

Lemma 2. [3, cf. Lemma 2] If LCP is P,(k), then for any (x,s) € R%% and any a € R™ the linear
system

Mu—-—v =0,
su+xv =a.

has a unique solution (u, v) , for which the following estimates hold:

1
lhuv I,< (5

FHe)laB<sa+200a3, @) 12 A +20 a3

Lemma 3.[24, cf. Lemma 4] Let (x,s) € N, (a). Then,
Il (xs)~Y2((tue — xs)™ +Vn(tue — xs)*) I13< (1 + g)nu.
4.  Analysis of the Algorithm

4.1. Analysis of the Corrector Step

Here, we analyze the corrector step such that its two requirements are ensured.
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Lemma 4. Let (x,s) € NV, (a). Then, the solutions of (10) and (11) satisfy the followings:

2
Il 22 (1 + Sy (14)
2
I G, $) 12< (1 + 200 (145 ) mp, (15)
2
(1421 (14— ?n?p
I %5 1l,< e , (16)
2
L (142103 (14502 n?p
I (% §) 12< ) (17)

2,33
(142102 (14+5—)2n2p

J(A-a)T

| x5+ $x lI,< (18)

Proof. Applying Lemma 2 to the system (10), and using Lemma 3, we have

1+2k
2

1 2
| xs ll,< 1+2£ Il (xs)72((tue — xs)~ + Vn(rue — xs)*) I13< 1+ f_—;)nu

and

2

L a
Il (x,8) I1I2< (1 + 2K) || (xs) 2((tue — x5)~ +Vn(tue — xs)Y) 13< (1 + 2K)(1 + T

T
a)nu.
These establish the inequalities (14) and (15). Similarly, applying Lemma 2 to the system (11) gives

+ 2k
2

Il x$ 113 - (1+ 2K)3 a’t

I Ges) 2(—24) 13< 2(1 + 2K) T <30 —ar L T

I X3 1I,<
where the second inequality follows from (8), and the last inequality is a consequence of (14). This
establishes the inequality (16). Similarly, we obtain the inequality (17). In order to find an upper
bound for |l x5+ sk ll,, we use the triangular inequality and the inequality ad + bc <

Va2 + b2\c2 + d?, forall a, b, c,d = 0. In this case, we have

I X3 + $& <l DX Nl Il D728 Ny +1l DX N2l D78 <1l (%, 8) Nl (%, 3) .
Substituting the upper bounds on || (x,s) Il, and Il (X, $) Il into the above inequality gives the

desired inequality. Therefore, the proof is complete. L]

Now, for convenience, we define the following expressions:
x(68)s(0) = xs + [(tue — xs)~ + Vn(tue — xs)*]sin(8) + d(8), (19)

eTd(8)
n

u@) =u+ % [(tue — xs)™ + Vn(zue — xs)*]sin(0) +
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+ [(tu— ) + —eT(Tue — x5)*]sin(@) + £ d(g), (20)
where
d(8) = —(1 — cos(6))?xs — sin(8) (1 — cos(8)) (x5 + $¥) + (1 — cos(9))%is. (21)
It is clear that 1 — cos(6) < sin?(6).

Lemmab5. Let d(8) be defined asin (21),0 < a < 1l,and0 <t < i. Then, for all sin(@) satisfying

sin(@) < sin(6y): = ‘/EZ— “(l_a)f, n=3, (22)
2 /1+:‘_—;(1+2x)\/ﬁ
we have
I d(8) ll,< zﬂan/ 1-a)T |1+ —\/_ nsin(@)u < ——— ~(1- ). (23)

Proof. Taking the 2-norm on both sides of (21) and using the triangular inequality and 1 — cos(6) <
sin?(8), we get

Il d(8) ll,=Il —(1 — cos(8))?%s — sin(8)(1 — cos(8)) (x5 + %) + (1 — cos(8))?¥5 II,
< sin*(0) || %5 Il,+ sin3(0) || x§ + $& ll,+ sin* (@) || X5 II,
< sin(8) (sin?(8p) Il 5 llo+ sin?(8,) Il %5 + §% ll,+ sin3(8p) Il 5 Il,). (24)

It is easily seen that the inequalities (14), (16) and (18) can be written, respectively, as

3
a’t
((6(7.')(1—6()1')% 2 1+m(1+21€)\/7_l

I xS 1I,< "
16(1+2k)2 (1+%)\/ﬁ Vat,/(1-a)t

3
3 2 2
= a“T a“T
(CKT)21/ (1—6{)‘[ 1+§\/n 2 1+§(1+2K)\/n

16 Vat,/(1-a)t H

I X5 ll,<

2
2 2
(a)[(I=—a)T [1+7Vn [ 2 (1472 (1+2i0Vn
4

Var,/(1-a)t H-

| x5+ X lI,<

Substitution of the above three bounds into (24) yields

2 -—
I d(8) ll,< ar/(d — a) 1+§\/zsin(9)< V-0 +3+%T>u

16(1+2K)2(1+5)n 4
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217 a? :
< ——ary(1-a)r 1+ ﬁ\/ﬁsm(e)y,

where the second inequality follows from the factthatn > 3,a < Ve and a(1 — a) < %, which imply

that the term in brackets is less than or equal to %. Since sin(@) € [0, sin(6,)], by substituting the

value of sin(6,) from (22) in the last inequality forll d(6) I, , we get

217
12288

I d(@) ll,< (1 - a)tp.

This completes the proof.
Lemma 6. For any (x,s) € NV, .(a) and sin(0) € [0, sin(6,)], we have
466 .
u(®) < (1 - 5rsin(0)n,

10 = (1 - (1—1)sin(®) — 12—;(’535111(9))#.

Proof. From the first inequality in (23), it follows that

316

217 .
I1d(0) < >=732Ja(l - a) + a®tVnsin(O)u < -

\nsin(6) .

Using (20) and the above inequality, we may verify that

— T
1(6) = i+ [(ou — ) + Y2 e (zue — x5) Jsin(0) + 52
Sp+(t—1+ar)sin(@)u + %
. 316 .
Sp+(t—1+ar)sin(@)u + 7053 sin(0)u

316 . .
<-1-t—at— 12653)51n(6’))u

466 .
<(1- Esm(@)),u.

Similarly, we have

eTd(e)
n

1(O) = -+ (= ) + e (zue — x5)*Isin(6) +

. liacei
>pu—(1-1)sin(@)p — éﬁ)

> (1 - (1 —1)sin(9) — = sin(6))

(25)

(26)
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This completes the proof. ]
Lemma 7. [24, cf. Lemma 13] Let u(8) > 0. Then, for all sin(6) € [0, sin(6,)], we have

Il (xs + [(tue — xs)™ + Vn(zue — xs)*]sin(8) — tu(@)e)~ l,< (1 — Vnsin(0))arp.

In the next lemma, we obtain an upper bound for the quantity &. Then, we guarantee that the corrector
point (X, s) belongs to the wide neighborhood N, (&).

Lemma 8. Suppose that (x,s) € NV, () with0 <a <land0 <7 < %, and let sin(6,) be defined

asin (22). Then, (x(8), s(8)) € Ny, (@), forall sin(®) € [0, sin(6,)], where

1— Vatr,/(1-a)t a

2
8 [1+% % (1+2k)
1-a

a =

’

which implies that sin(8) > sin(8,).
Proof. First, note that

2511

1 —sin(8) = 1 —sin(fy) = 2605"

Using (19), (8), (23) and the inequality —ll z I, e < z <Il z |l e, forall z € R™, we deduce
x(0)s(0) = xs + [(tue — xs) + (\/_ — 1)(T,ue —x8)*]sin(0)—11 d(0) Il, e
= (1 — sin(8))xs + tusin(§)e + (vn — 1) (tue — xs)*sin(@)—Il d(8) Il, e
2
2605 12288 (1 - a)rpe > 0.

Due to the above inequality and using a continuity argument, we deduce that x(8) > 0 and s(6) >
0, for all sin(8) € [0, sin(8,]. Since —Mx(8) + s(8) = q, it follows that (x(8), s(8)) € F°. Thus,
in order to prove (x(60), s(0)) € N, (@), we only need to prove

I (x(8)s(@) —tu@)e)” ll,— aru(f) < 0.
To this end, according to (19), (23), (26) and Lemma 7, we obtain

I (x(0)s(6) —Tu(@)e)™ ll,— artu(f) <
Il (xs + [(tue — x5)~ + Vn(zue — xs)*]sin(8) — tu(8)e)™ ll, +1l d(6) I,

1— _Varja-ao7 atu(0)

a’t
8 1+m(1+21€)
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< (1 = Vasin(@))aty + 22 ar [(1 — )7 |1 + S nsin(@)u

- ) 1 1 oy 2 sin@pas
8 [1+5——(1+2K)

< (1 — Vnsin(8))aru + %atﬁsin(@)u -1 1- erjG-ayr atu

2
8 [1+Z 5 (1+2k)
1-a

316
12653

. - Vatr/(1-a)t
= vnsin(atu|—1+ 28 g Llry S8 )y atu
( 1855  n 12653\/71) 8 1+f_2;(1+2")

+((1 — 7)sin(0) +

sin(8))atu

293 1-7 316 1
b=t — =

< +/nsin(8y)aru (_1 + e va ' 12653vn | 4

)<o.

This is the desired result. L]
4.2. Analysis of the Predictor Step

Now, we are ready to analyze the predictor step. Since the predictor step follows a corrector step,
we take the point (%, §):= (x(8), s(8)) obtained in the corrector step as the starting point, and try
to compute the directions (i, s) and (x,s) by solving the systems (12) and (13). In this case, we get
the predictor point, according to Lemma 1, as follows:

x(&) = x —sin(&)x + (1 — cos(§))x, 5(¢) =5—sin(é)§ + (1 — cos(§))S.

Thus, after some calculations, we obtain
£(©)5(§) = (1 - sin(§)7s + d(©), (27)
A = (1 - sin(@)a + 2, (28)
where
A(§) = ~(1 — cos(§))255 — sin(§) (1 — cos(D)(F5 + ) + (1 - cos(D)E5.  (29)

Lemma 9 Let sin(€) be the maximum step size in the predictor step. Then, for all sin(¢) € [0,
sin(&,)], we have (x(§), 5(¢)) € Ny (a), where

@ G
sin($o): = 2(1+2K)vVn’
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which further implies sin(§) > sin(&,).

Proof. According to Lemma 8, the corrector step produces a point (x,5) € N, (1 — (1 — a)t) C
N (1 = (1 — a)7) (see (9)). Using Lemma 2, we deduce that the directions obtained by the predictor
step satisfy

I (%,5) I,< /(1 + 21N,

| 56 11, < Qr20nE _ @ (-0’ ( 2VR(142K) )4 _
2= = Vara-ar) P

2 32(1+2k)3n

41|%5113 < (1+2K)%2n2Q

1
—_— —— _ = 2 2
I (XS) 2( sz) 2= (1-o)p — (@(A-a)t

)

3
Lo CN—1/2(_ 9 (1< (1+2K)2n
Il (%,5) II,< V1 + 2k || (¥5)"Y2(=2%5) Il,< Ne=rak
e 142k c\—1/2(_ o=z 2 M _
Il xs ”2S > Il (XS) ( ZXS) HZS 2(1-a)T

< (ar)z(l—a)r< 2R (142K) )4 _

- 32(1+2k) \Veary(1-o)T
3
ERTY ENT) CRS IRt (1+2)€)21’LE _
< <

B (a‘r)3/2(1—a)‘r( 2VA(142K) )3 _
T 8(1+2k) Var/(1-o)r) T

Using (29) and the above inequalities we obtain that for any sin(¢) € (0, sin(é,)] , we have
Il d(&) ll,< sin* (&) II X5 I+ sin3(&y) || €5 + §X ll,+ sin* (&) Il X5 I,

< ((0{‘:)2((1—0:)‘:)2 (a1)3/2(1-a)T (ar)z(l—a)‘r) _
= \"32(1+26)%n 8(1+2k) 32(1+2k)

217(at)3/2(1-a)T _ 217 _ _
1536(1+2k) p= 12288 (1 - )i (30)

Due to (27), the inequality —ll z ll, e <z <l z Il e, for all z € R™, (8) and (30), we conclude that
for any sin(§) € (0, sin(&)], we have
X(6)35(8) = (1 —sin(®)x5—1d) ll e

> (1 - sin(§))(1 — @)tie — —— (1 — a)rile.

H 1 . 195 . . .
Since0<a<1,n=3 0<7=<, we have sin(§;) < S202" which implies
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. 2511
1 —sin(&y) > 205

Therefore,

235 = (B - 21) (1 - a)rfie > 0.

Using a continuity argument, we deduce x(¢) > 0, 5(&) > 0, for all 0 < sin(§) < sin(&,). Since
—M3x(§) + 5(§) = q, it follows that (2(£), 5(§)) € F°, forall 0 < sin(¢) < sin(&).

According to the fact that (x, ) € IV, (@), using (27) and (28), we get
Il (X(6)5(&) —tii(§)e)™ l,< (1 —sin(é)) Il (x5 — tize)™ ll, +1d(é) I,

< (1 —sin(@®))ari+ll d(€) ll,,

A() = (1 —sin() — 142k

and by using Lemma 8 and (30), we deduce that for any 0 < sin(¢) < sin(§,), we have

I (x($)5($) — aa(§)e)” lz—arip(§) = (1 —sin()) (@ —a)rp + (1 + %) Ihd() I,

< —(1 - sin(§) YLD 5 3y g |
8 /1+%(1+2x)

. Var,/(1-a)tr _  651(ar)3/2(1-a)T _
< (1 =sin(®)) orsra

2
8 [1+%5(1+2k)
1-a

ZT
- JarJa=aye | —(1-sin(&)) N 651a,/(1-a)T /1+f_—a

8 3072

a’t

< Vat/(1-a)tT (—2511 N 651\/?1/a(1—a)+a31'>

2 20840 3072
14+ (142K)

37 Yar/(1-a)tr <0

812

aZt
T+—(1+2K)
This completes the proof. L]

Theorem 1. If LCP is P,(x), then Algorithm 1 is well defined and produces a sequence of
points(x¥, s*) belonging to the neighborhood N, (a) such that


http://iors.ir/journal/article-1-480-en.html

[ Downloaded from iors.ir on 2025-10-27 ]

A corrector-predictor arc-search interior point algorithm 15

445\/at\/(1-a)t _
Hiey1 < (1 - W) e, k=01,..

Proof. The first part of the theorem follows from Lemma 9. From (28) and (30) , we have

f1(&) < (1 —sin(ép)i + n&@%

217(at)3/2(1-a)T _

< (1 - Sin(fo))ﬂ + 1536(1+2K)Vn

< <1 _ Yar/O-ao)r (1 _ 217ar\/(1—a)r)> i

2Vn(1+2k) 768

< (1 _ 445@,/(1—@1) i

906+/n(1+2k)
This completes the proof. ]

Corollary 2. Under the hypothesis of Theorem 1, Algorithm 1 produces a point (x*, s*) €
Ny (@) with pu* <e inatmostO ((1 + K)\/HL) iterations, where L = log %

5. Numerical Results

Here, we present some numerical results to illustrate the performance of Algorithm 1. All of our
tests were made on an Intel Core i7 Labtop with 2GB RAM under Windows XP and MATLAB
(R2009a). We set T = 0.001 and a = 0.5. We first compare the proposed corrector-predictor arc-
search, Algorithm 1, with the algorithm of [7]. These two algorithms will be denoted by C-P algorithm
and LSL algorithm, respectively. The comparison is carried out by testing LCPs generated as
follows: A = rand(n), M = ATAand g = e — Me. The algorithms are terminated when the relative
duality gap satisfies

XTS

o0 <1078

Table 1 shows the average number of iterations (Iter) and the average CPU time (Time) per iteration
of ten randomly generated problems with the same n. Our preliminary implementations show that our
algorithm is promising.
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Table 1
n C-P algorithm LSL algorithm

Iter. Time Iter Time
100 4.1 0.0305 7.5 0.0081
300 4.4 0.1671 7.9 0.0831
700 4.7 1.4341 8.4 0.7868
900 4.7 2.4096 8.4 1.5269
1000 4.6 3.1464 8.3 1.9732

We also compare our algorithm with the proposed algorithm of [2]. To this end, we consider the
following LCP:

12 2 2 1
w01 2 2) |
0 0 0 1 1

Without loss of generality, we chose x° = s = e as the starting point. We sett = 0.5and e = 1074,
The number of iterations are given in Table 2.

Table 2
n C-P algorithm algorithm in [2]
Iter. Iter
10 13 46
20 14 58
30 14 67

Tables 1 and 2 show that Algorithm 1 needed smaller number of iterations.
6. Conclusions

We presented an arc-search corrector-predictor interior point algorithm for solving P, (x)-LCPs
acting in the wide neighborhood of the central path. The proposed algorithm searches the optimizers
along the ellipses that approximate the central path. Using Ai and Zhang’s directions, the corrector
step increased both centrality and optimality and the predictor step further improved optimality. Our
algorithm did not explicitly use the handicap of the problem, and it could solve any P, (x)-LCP
requiring at most O((1 + x)+/nL) iterations. The bound coincides with the currently best known
theoretical bound obtained so far by any interior point method for solving P, (x)-LCPs. Our numerical
experiments show the algorithm to be promising.
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