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Multiple Allocation Hub Location Problem 
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The hub location problems (HLP) constitute an important class of facility location problems 

that have been addressed by numerous operations researchers in recent years. HLP is a 

strategic problem frequently encountered in designing logistics and transportation networks. 

Here, we address the competitive multiple allocation HLP in a duopoly market. It is assumed 

that an incumbent firm (the leader) is operating an existing hub network in a market and an 

entrant firm (the follower) tries to enter the market by locating its own hubs aiming at 

capturing as much flow as possible from the leader. The customers choose one firm based on 

the service level (cost, time, distance, etc.) provided by the firm. We formulate the problem 

from the entrant firm’s point of view and propose an efficient tabu search based solution 

algorithm to solve it. Computational experiments show the capability of the proposed solution 

algorithm to obtain the optimal solutions in short computing times. 
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1. Introduction 
 

Hub networks play major roles in reducing costs and enhancing service levels in many 

transportation, telecommunications, and computer networks. These networks provide efficient 

services between many origins-destination (O/D) pairs of nodes via a set of hubs that serve as 

switching and flow consolidation points. The hub location problem (HLP) deals with determining the 

location of hub facilities and allocation of non-hub nodes (spokes) to the installed hubs in such a way 

that the traffic between O/D pairs be routed in a most favorable way [1]. 

 

The non-hub nodes can be allocated to the hubs based on one of the two basic allocation types 

called the single and multiple allocation. In a single allocation network, all the incoming and outgoing 

traffic to/from each demand node is routed through a single hub, whereas in a multiple allocation 

network, every demand node can receive and send flow via more than one hub. An example of a 

multiple allocation hub-and-spoke network which is the underlying network topology our 

investigation is shown in Fig. 1. 
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Figure 1. Example of a multiple allocation hub network 

 

Most studies in the literature of HLP deal with situations in which the markets are monopolistic 

and try to model and solve the problems on behalf of a firm operating in such a market. However, in 

real world applications, there may be competitors present in the market whose decisions would 

definitely affect the level of goal achievement for the other firms. In here, we address the competitive 

multiple allocation HLP in a duopoly market. We assume that an incumbent firm (the leader) is 

operating an existing hub network in a market and an entrant firm (the follower) tries to enter the 

market by configuring its own hub network trying to capture as much flow as possible from the leader. 

The customers choose one firm based on the service level (cost, time, distance, etc.) provided by the 

firm. We consider the follower’s problem which aims at optimally locating its hubs, based on the 

known decisions already made by leader. To this end, a mixed integer programming (MIP) model is 

developed for the follower's problem and an efficient solution procedure based on Tabu Search (TS) 

metaheuristic is proposed to solve the problem. 

 

The remainder of our work is organized as follows. The next section briefly reviews the relevant 

literature to the problem. In Section 3, we will present a mathematical formulation of the problem. 

Our proposed TS algorithm is presented in Section 4. Computational experiments and corresponding 

results are presented in Section 5. Finally, our concluding remarks and directions for future works are 

given in Section 6. 

 

2. Literature Review 
 

HLP was first addressed by O’Kelly [20]. He presented the first mathematical formulation and 

solution method for the single allocation HLP. Later, O'Kelly [21] developed the first quadratic 

mathematical formulation for the uncapacitated single allocation p-hub median problem 

(USApHMP). Campbell [2] proposed linear integer programming formulations for different versions 

of HLP such as p-hub median problem, the uncapacitated hub location problem, p-hub center 

problem, and hub covering problem both in single and multiple allocation settings.  

 

The p-hub maximal covering problem is a variant of hub covering problem where the objective is 

to maximize the covered flow in a hub network using a fixed number of hubs. Originally, p-hub 
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covering problem was modeled by Campbell [2]. Kara and Tansel [13] proposed new mathematical 

formulations for the single allocation hub covering problem. Wagner [31] proposed the hub covering 

location problem with bounded path lengths. Yildiz and Karaşan [32] applied the hub covering 

concept to model the regenerator location problem (RLP) in telecommunication networks and 

proposed a branch and cut algorithm for solving their model. Jabalameli et al. [12] proposed an 

efficient simulated annealing based heuristic for solving the single allocation p-hub maximal covering 

problem. Pasandideh et al. [22] proposed a bi-objective hub maximal covering problem considering 

time-dependent reliabilities. Karimi et al. [14] formulated the multi-modal single allocation 

capacitated p-hub covering problem over fully interconnected hub networks. Peker and Kara [23] 

proposed efficient mathematical formulations for the p-hub maximal covering problem with both 

single and multiple assignments. The authors also extended their models to the case of partial 

coverage. For more details on HLP and recent advances in this field, the interested readers are referred 

to surveys given in [1], [3], and [9].  

 

The hub location problem with competition was first addressed by Marianov et al. [18]. Given a 

set of existing hubs for the leader, they formulated the follower’s problem as maximization of its 

market share. Their model allows partial captures by the follower depending on the provided service 

levels. Wagner [30] addressed for a similar problem with a different capture paradigm where the 

follower gets nothing in case of equal service level for the same problem. In another competitive 

HLP, an entrant airline transportation firm was assumed to enter a competitive market [7]. It was also 

assumed that the customers choose an airline based on a combination of factors such as flying time 

and travel fare based on gravity like utility functions. Lin and Lee [15] studied a competition game 

on hub network design and determined a hub network for each one of the carriers in the oligopolistic 

market based on the long-term Cournot-Nash equilibrium steady state. Lüer-Villagra and Marianov 

[16] addressed a competitive HLP where location and pricing decisions were made by an entrant firm 

entering into a market where some other firms had already been operating. Customer preferences 

were modeled using a logit function resulting in a nonlinear model maximizing the profit of the 

entrant firm. Another research conducted by Sasaki et al. [24] deals with a competitive hub arc 

location problem under the Stackelberg competition. In their problem, rather than locating hub 

facilities, hub arcs are located in the network. It is also assumed that the capture of demands by the 

players follows a gradual capture mechanism rather than a binary all-or-nothing capture mechanism. 

To maximize their own revenues, the leader and the follower locate p and r hub arcs, respectively. 

They modeled the problem as a bilevel program. Čvokić et al. [5] considered a competitive market 

where prices had fixed markups and the each one two competitors (a leader and a follower) try to 

maximize his/her profit. The aim of this problem is to find the optimal hub and spoke network for the 

leader. They formulated the problem as a bilevel nonlinear MIP problem and proposed a heuristic as 

a solution approach. Furthermore, Čvokić et al. [6] demonstrated the existence of the unique 

Stackelberg and Nash pricing equilibria by proposing a model where two competitors (the leader and 

follower) are sequentially creating their hub and networks and setting prices. A new hub-and-center 

transportation network problem for a new company competing against an operating company was 

introduced by Niknamfar et al. [19]. In their research, a new company aims to maximize the total 

captured flow and to minimize the total transportation cost by locating p hubs and assigning the center 

nodes. They proposed two multi-objective meta-heuristic algorithms (MOBBO and NSGAII) to solve 

this NP-hard problem. 

 

In another study, Mahmutogullari and Kara [17] considered a competitive multiple allocation HLP 

based on the Stackelberg competition where the market was assumed to be a duopoly. Two firms 

decide locations of their hubs and then customers choose one firm with respect to provided service 

levels. They named the follower's problem as the (r|Xp) hub-medianoid and the leader's problem as 

the (r|p) hub-centroid problem. Both problems were formulated as MIP models and exact solution 
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algorithms based on enumeration were proposed for solving them. More recently, Ghaffarinasab et 

al. [10] addressed the competitive single and multiple allocation HLPs as Stackelberg games and 

proposed efficient simulated annealing (SA) based heuristics for solving the problems in both single 

level (follower’s problem) and bilevel (leader’s problem) settings. 

 

Although integer programming optimization approaches are used to solve small hub problems, 

large instances of the HLP are usually solved by heuristic or metaheuristic procedures as the HLP 

belongs to the class of hard combinatorial optimization problems. The main advantage of the 

metaheuristic algorithms is that they obtain optimal or near-optimal solutions in relatively short 

computing times. For this reason, metaheuristic approaches are being extensively used in practice for 

many real world applications. Many researchers have already addressed different variants of the HLP 

using metaheuristic algorithms. A tabu search (TS) heuristic was proposed for the uncapacitated 

single allocation p-hub median problem [27]. Ernst and Krishnamoorthy [8] developed an SA 

heuristic for the same problem and showed that it was comparable, in both solution quality and 

computing time, to the TS heuristic [27]. Topcuoglu et al. [29] proposed a GA algorithm for the 

uncapacitated single allocation hub location problem (USAHLP). Another hybrid heuristic for this 

problem was proposed by Chen [4]. His hybrid heuristic outperformed the heuristic of [29] both in 

solution time and quality. Silva and Cunha [25] proposed three variants of a simple and efficient 

multi-start TS heuristic as well as a two-stage integrated TS heuristic to solve the uncapacitated single 

allocation HLP. In another work, Silva and Cunha [26] proposed a TS heuristic for the model of 

uncapacitated single allocation 𝑝-hub maximal covering problem. 

 

Here, we consider the competitive hub location problem stated in [17] from the follower’s 

perspective. A new mathematical programming formulation based on the concept of maximal 

covering HLP is proposed for the problem. To solve the proposed model, an efficient tabu search 

based solution procedure is developed having the capability to solve the problem to optimality in a 

short computational time.  

 

3. Mathematical Formulation 
 

Assume that 𝐺 =  (𝑁 , 𝐸) is a graph in which N is the set of nodes and 𝐸 is the set of edges (𝐸 ⊆
 𝑁 ×  𝑁). Let 𝐻 ⊆  𝑁 be a subset of the nodes that are candidate for opening hubs. Also, for all 𝑖, 𝑗 ∈
 𝑁, let 𝑤𝑖𝑗 and 𝑐𝑖𝑗 respectively denote the amount of flow originated at node 𝑖 and destined to node 𝑗, 

and the transportation cost of a unit flow from node 𝑖 to node 𝑗. Transportation costs on inter-hub 

connections are discounted by a constant factor 𝛼 (0 ≤  𝛼 ≤  1) to reflect the scale economies on 

connections between the hubs. It is assumed that the leader is operating its network of 𝑝 hubs and the 

follower wants to enter the market. The number of hubs to be located by the follower is 𝑟. Customers 

are captured by the leader or follower based on the respective provided service levels. Service level 

is defined as the cost of routing a unit flow on the route from its origin to its destination. A customer 

prefers the follower if the service level provided by the follower is strictly better than that of the 

leader, otherwise the demand is captured by the leader. In case of equal service levels, ties are broken 

in favor of the leader as the customer has no incentive to change the current position. The notations 

and definitions used in the remainder of this section are mostly borrowed from [17] as we address 

similar problems and also we want the terminology to be consistent in the competitive hub location 

literature. 
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Let us assume that the leader has already opened her hubs at a subset of nodes 𝑋𝑝 =

 {𝑥1, 𝑥2, … , 𝑥𝑝}, 𝑋𝑝  ⊆  𝐻 and is serving the market with these hubs. For every node pair 𝑖 and 𝑗, the 

service level provided by the leader, denoted by 𝛽𝑖𝑗, can easily be calculated by [17]: 

,
min { },                          , 0

p

ij ik km mj
k m X

c c c i j 


      (1) 

 

Assume now that the follower enters the market and establishes her hubs on a subset of nodes 

𝑌𝑝 = {𝑦1, 𝑦2, … , 𝑦𝑟}, 𝑌𝑟 ⊆ 𝐻. In a similar manner, the follower's service levels, denoted by 𝛾𝑖𝑗, for all 

node pairs 𝑖 and 𝑗 can be calculated as [17]: 

 

,
min { },                           , 0

r

ij ik km mj
k m Y

c c c i j 


      (2) 

 

For all 𝑖, 𝑗 ∈  𝑁, the follower captures the flow 𝑤𝑖𝑗 if 𝛾𝑖𝑗 <  𝛽𝑖𝑗. Therefore, the total flow captured 

by the follower can be expressed by a mapping 𝑓 ∶  𝛲𝑝(𝐻) ×  𝑃𝑟(𝐻) → [0, 𝑊] such that: 

 

, :

( , ) ,
ij ij

p r ij

i j N

f X Y w
  

   (3) 

 

where 𝛲𝑝(𝐻) is the set of all subsets of cardinality 𝑝 from 𝐻 and 𝑊 is the sum of flows over the 

network, that is, 

 

,
.

j iji N
W w


  (4) 

 

Given the leader's hubs located on 𝑋𝑝, the follower’s problem is to locate a set of 𝑟 hubs that 

maximizes the captured demand by her. To model this problem, assume that 𝑞𝑖𝑗𝑘𝑚 is a binary 

covering parameter that takes the value of 1 if the flow between nodes 𝑖 and 𝑗 is captured by the 

follower and 0, otherwise. In other words, with 𝛽𝑖𝑗  defined by (1) for a fixed 𝑋𝑝, 

 
1,

,
0,   otherwise

    i

,

f   ik km mj ij

ijkm

c c c
q

   



                                    ∀𝑖, 𝑗 ∈  𝑁, ∀𝑘, 𝑚 ∈  0        (5) 

 

Let the variable 𝑧𝑖𝑗𝑘𝑚 denote the fraction of flow 𝑤𝑖𝑗 that is sent from node 𝑖 to node 𝑗 using the 

link between the hubs 𝑘 and 𝑚 by the follower. Let also the binary variable 𝑦𝑘 ∈ {0, 1} be 1 if node 

𝑘 is selected by the follower as a hub and 0, otherwise. The problem consists of the selection of nodes 

which will act as the follower's hubs and determining how the non-hub nodes will be allocated to the 

hub nodes and the flows will be routed in the network so that the total captured flow by the follower 

is maximized. The MIP model for the follower’s problem can now be written as follows: 

 

max   
ij ijkm ijkm

i j k mN N H H

w q z
   

  (6) 

s.t.    
k

k

H

y r


  (7) 

         

1,ijkm

k N m H

z
 

                          ∀i,j ∈ N     (8) 
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         |

,ijkm ijmk k

m H m H m k

z z y
  

                  ∀i,j ∈ N, k ∈ H (9) 

         
0,ijkmz                                     ∀i,j ∈ N, k, m ∈ H (10) 

         
{0,1},ky                                  ∀k ∈ H    (11) 

 

The objective function (6) maximizes the total flow captured by the follower. Constraint (7) 

determines the number of hubs to be located by the follower. Constraints (8) assure that the whole 

flow associated with each O/D pair is routed via some hub pair. Constraints (9) state that the flows 

can only be routed via nodes that have been designated as hubs. The constraints (10) and (11) define 

the real and binary variables, respectively. 

 

4. Tabu Search Algorithm 
 
 

The tabu search (TS) algorithm, proposed by Glover [11], is a local search algorithm successfully 

applied to a variety of hard optimization problems. The algorithm starts with an initial solution and 

uses a tabu list to control the search process in order to prevent trapping in local optima. From the 

current solution, all non-tabu moves are explored and the best one is selected. This move which might 

lead to an either better or worse solution than the current one, is recorded in the tabu list. The next 

move is among those not listed in the tabu list, unless it fulfills an aspiration level. TS would be 

terminated whenever a termination criterion such as a maximum number of iterations, or a fixed 

number of iterations with no improvement in the best solution, etc., is met. 

 

4.1. Solution Representation and Initial Solution Generation 

 

We use a one-dimensional array to represent the solutions and the size of this array is r which 

includes the numbers associated with the nodes being selected as hubs by the follower. The sorting 

of numbers within the arrays is not important. Note that having known the selected hubs, for each 

O/D pair 𝑖 − 𝑗, one can easily determine the paths for routing the associated flow 𝑤𝑖𝑗 by solving a 

shortest path problem.  

 

To generate an initial solution, we randomly select r out of n nodes as hub nodes. This method for 

generating the initial solution is not only quick, but it also produces diverse solutions which can 

usually help the algorithm not to get trapped in local optima. 
 

4.2.  Neighborhood Structures 

 

We define and use a single operator in our algorithm for generating neighbors. This operator, 

called “Swap”, is used to alter one of the hubs in the solutions. To this end, we randomly select a hub 

node and a non-hub node. Then, if the selected non-hub node is not in the tabu list, the selected hub 

node becomes a non-hub node and the selected non-hub node becomes a hub.  

 

4.3. Parameters Used in the TS Algorithm 

 

The proposed TS algorithm uses two input parameters, namely 𝑇𝐿𝑠𝑖𝑧𝑒 and 𝑇𝑚𝑎𝑥. 𝑇𝐿𝑠𝑖𝑧𝑒 represents 

the size of the tabu list and 𝑇𝑚𝑎𝑥 denotes the number of iterations with no improvement in the best 

solution. The algorithm would be terminated when the algorithm does not improve the best solution 

in the last 𝑇𝑚𝑎𝑥  iterations.  
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4.4. The Overall TS Algorithm  

 

To solve the (𝑟|𝑋𝑝) hub-medianoid problem, as mentioned before, we assume that the leader has 

already located her hubs based on the solution of the uncapacitated multiple allocation p-hub median 

problem (UMApHLP) for multiple allocation network.  

 

Algorithm 1: TS for multiple allocation (r|Xp) hub-medianoid (𝑇𝑚𝑎𝑥, 𝑇𝐿𝑠𝑖𝑧𝑒 , 𝛼, 𝑋𝑝, 𝑟). 
1: Generate a random initial solution 𝑌𝑟. 
2: Generate tabu list array 𝑇𝐿 with size of 𝑁. 

3: Calculate 𝑓(𝑋𝑝, 𝑌𝑟). 

4: Set 𝑇𝑐𝑜𝑢𝑛𝑡 ← 0, 𝑓𝑏𝑒𝑠𝑡 ← 𝑓(𝑋𝑝, 𝑌𝑟
′), 𝑌𝑏𝑒𝑠𝑡 ← 𝑌𝑟

′. 

5: while 𝑇𝑐𝑜𝑢𝑛𝑡 < 𝑇𝑚𝑎𝑥  do 

6: Get a random non-hub based on 𝑌𝑟 
with 𝜌 ← [1, |𝐻| − 𝑟]. 

7: if 𝜌 ∉ 𝑇𝐿 then 

8: Generate a new solution 𝑌𝑟
′ based on 𝑌𝑟  with 𝜌 using the "Swap" operator 

9: Calculate 𝑓(𝑋𝑝, 𝑌𝑟
′). 

10: Update 𝑇𝐿. 

11: if  𝑓(𝑋𝑝, 𝑌𝑟
′) > 𝑓𝑏𝑒𝑠𝑡 then        

12: Set 𝑌𝑏𝑒𝑠𝑡 ← 𝑌𝑟
′, 𝑓𝑏𝑒𝑠𝑡 ← 𝑓(𝑋𝑝, 𝑌𝑟

′). 

13: Set 𝑇𝑐𝑜𝑢𝑛𝑡 ← 0. 
14: end if 

15: Set  𝑌𝑟 ← 𝑌𝑟
′, 𝑓(𝑋𝑝, 𝑌𝑟) ← 𝑓(𝑋𝑝, 𝑌𝑟

′). 

16: else 

17: Generate a new solution 𝑌𝑟
′ based on 𝑌𝑟   with 𝜌 using the "Swap " operator. 

18: Calculate 𝑓(𝑋𝑝, 𝑌𝑟
′). 

19: if  𝑓(𝑋𝑝, 𝑌𝑟
′) > 𝑓𝑏𝑒𝑠𝑡 then        

20: Set 𝑌𝑏𝑒𝑠𝑡 ← 𝑌𝑟
′, 𝑓𝑏𝑒𝑠𝑡 ← 𝑓(𝑋𝑝, 𝑌𝑟

′). 

21: Set Update the 𝑇𝐿. 

22: end if 

23: Set 𝑌𝑟 ← 𝑌𝑟
′, 𝑓(𝑋𝑝, 𝑌𝑟) ← 𝑓(𝑋𝑝, 𝑌𝑟

′). 

24: end if 

25: Set 𝑇𝑐𝑜𝑢𝑛𝑡 ← 𝑇𝑐𝑜𝑢𝑛𝑡 + 1. 
26: end while 

27: return 𝑌𝑏𝑒𝑠𝑡 and 𝑓𝑏𝑒𝑠𝑡. 

 

In the proposed TS algorithm, we set the size of the tabu list array 𝑇𝐿 as 𝑇𝐿𝑠𝑖𝑧𝑒 , which is an input to 

the algorithm and also set a fixed number of iterations with no improvements in the best solution as  

𝑇𝑐𝑜𝑢𝑛𝑡 , which is input parameter. 𝑌𝑏𝑒𝑠𝑡 indicates the best solution found so far and 𝑓𝑏𝑒𝑠𝑡  denotes the 

corresponding objective function value. In each iteration, we generate a random integer number 𝜌 on 

the interval [0, |𝐻| − 𝑟] to get a candidate non-hub. If
 
𝜌 ∉ 𝑇𝐿, we generate a new solution (𝑌𝑟

′) based 

on the current solution (𝑌𝑟) using the "Swap" operator, which is defined previously. Subsequently, 

the objective function of the new solution, (𝑋𝑝, 𝑌𝑟
′) , is calculated and TL is updated based on the 

first-in-first-out (FIFO) rule. If the objective function 𝑓(𝑋𝑝, 𝑌𝑟
′)  at the new solution 𝑌𝑟

′ is even larger 

than the best objective value, 𝑓𝑏𝑒𝑠𝑡 , so far, we set
 
𝑌𝑏𝑒𝑠𝑡 ← 𝑌𝑟

′, 𝑓𝑏𝑒𝑠𝑡 ← 𝑓(𝑋𝑝, 𝑌𝑟
′) and 𝑇𝑐𝑜𝑢𝑛𝑡 ← 0. In 

addition, we update the current solution, 𝑌𝑟 ← 𝑌𝑟
′ , and the current objective function, 𝑓(𝑋𝑝, 𝑌𝑟) ←
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𝑓(𝑋𝑝, 𝑌𝑟
′). Otherwise, if

 
𝜌 ∈ 𝑇𝐿, we generate a new solution 𝑌𝑟

′ using the "Swap" operator and 

calculate the objective function at the new solution. If 𝑓(𝑋𝑝, 𝑌𝑟
′) > 𝑓𝑏𝑒𝑠𝑡, we set

 
𝑌𝑏𝑒𝑠𝑡 ← 𝑌𝑟

′  and 

𝑓𝑏𝑒𝑠𝑡 ← 𝑓(𝑋𝑝, 𝑌𝑟
′) and update the tabu list (𝑇𝐿). Moreover, we set the current objective function, 

(𝑋𝑝, 𝑌𝑟) ← 𝑓(𝑋𝑝, 𝑌𝑟
′) , and the current solution, 𝑌𝑟 ← 𝑌𝑟

′. Subsequently, we add one to 𝑇𝑐𝑜𝑢𝑛𝑡. The 

algorithm is terminated when the number of iteration 𝑇𝑐𝑜𝑢𝑛𝑡 reaches the maxim fixed number of 

iterations with no improvement in the best solution 𝑇𝑚𝑎𝑥. The pseudo-codes of the proposed TS 

algorithm for the multiple allocation (𝑟|𝑋𝑝) hub-medianoid problem is shown in Algorithm 1. 

 

5. Computational Experiments 
 

In this section we present the results obtained from our computational experiments. Experiments 

are conducted in order to test the effectiveness of the proposed TS algorithm. To this end, we use two 

famous data sets from the literature of HLP: CAB and TR. The CAB data set introduced by O'Kelly 

[21] is based on the airline passenger interactions between 25 US cities in 1970 evaluated by the Civil 

Aeronautics Board (CAB). This data set has been used by most of the hub location researchers in the 

literature in which all the 25 nodes are candidates for being hubs (|𝐻|  =  |𝑁|  =  25). The second 

data set that is used in our computational experiments is the TR data set [28] which is based on the 

cargo flows between 81 cities (|𝑁|  =  81) on Turkey. Most authors use only 22 most populated cities 

as candidate nodes for locating hubs (|𝐻|  =  22). However, we also use the case where all the nodes 

are candidates for locating hubs (|𝐻|  =  81) as a large data set in our experiment.  

 

We have generated and used 32 instances from the CAB data set and 171 instances from the TR 

data set. For the CAB data set, the number of hubs to be opened by the leader (p) and the follower (r) 

are selected as r,p{2,3,4,5}, and the parameter α is considered at two levels: 0.6, and 0.8. For the 

TR data set, two sets of instances are considered with small and large values as the number of hubs, 

respectively. In the first set of instances ( , 5r p  ), the number of hubs are selected as r,p{2,3,4,5}, 

while in the second set ( , 6r p  ), the number of hubs are selected as r,p{6,8,10,12,14}. In both 

cases, the parameter α is considered at three levels: 0.6, 0.8, and 0.9 as in [17].  

 

The proposed TS algorithms are implemented in Microsoft Visual C# 2013 (version 5.0). Also, 

the mathematical model for the follower problem is solved independently using the CPLEX version 

12.6. All the experiments were run on a computer with Intel(R) Core(TM) Intel(R) Core(TM) i3-295 

CPU of 3.30 GHz and 16 GB of RAM, using the Microsoft Windows 7 operating system. 

 

In a set of preliminary experiments, different combinations of algorithm parameters have been 

tested in order to tune their values so that high-quality solutions be obtained in short CPU times. 

Based on our findings, the tabu list size (TLsize) is chosen as 10 and 7 for the CAB and TR data sets, 

respectively. Furthermore, we set the termination criterion for our algorithm to be 15 iterations with 

no improvement in the quality of best solution. Computational experiments were conducted using the 

above mentioned test problems to show the efficiency of the proposed TS algorithm and the results 

are reported in the following section. For each problem instance, we ran the TS algorithm for three 

times and the best obtained solution is reported. 
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5.1. Numerical Results 

 

Table 1 shows the results obtained by solving the problem using the proposed TS algorithm as 

well as CPLEX based on the proposed mathematical model (6)-(11) with the CAB data set for 

different discount factors. Since the distance matrix in the CAB data set (also in the TR data set) is 

symmetric, it is clear that if the flow wij from node i ∈ N to node j ∈ N is captured by the follower, 

the flow from node j to node i is also captured by the follower. Furthermore, since the flow from each 

node i ∈ N to itself is zero (i.e., wii = 0), in our computational studies the constraints (8)-(10) are 

imposed for only i < j and the objective (6) is modified as 

 

( )

( ) ,ij ijkm ijkji

i j k

m

N N H H
j i

m

q zww
   



     

 

to reduce the size of our model. To set the location of the hubs in the incumbent leader’s network, we 

assume that the leader has already located her hubs based on the uncapacitated multiple allocation p-

hub median problem (UMApHMP). Therefore, before solving the follower’s problem, we solve the 

leader’s problem based on UMApHMP and obtain the optimal location for her hubs which are 

subsequently used in our numerical experimentations.  

 

The columns entitled p and r denote the number of hubs which are opened by the leader and the 

follower, respectively. The next two columns show the follower's capture as the optimal objective 

function value obtained by CPLEX and the corresponding CPU time (in seconds). Finally, the two 

columns under the label “TS” give the best objective function value obtained by solving the instances 

with the TS algorithm and the average CPU time for the three runs of the TS algorithm.  

 

As can be seen from the above Table 1, the proposed TS algorithm solves all instances to 

optimality within a fraction of a second. This is an indication of the efficiency of the proposed TS 

algorithm. Observe that the solution times for CPLEX are substantially larger than the corresponding 

times for the TS algorithm. Note also that since the leader decides on the location of her hubs based 

on a cost minimization criterion as in UMApHMP, which does not take into account the upcoming 

competition, the follower can capture a considerable share of the market upon entrance to the market. 

For example, when the follower locates the same number of hubs as the leader's, i.e., 𝑝 = 𝑟 = 2, the 

market share of the follower is more than 65% of the total demand. 
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Table 1. Results for solving the problems using the CAB data set 

p r 

α = 0.6 α = 0.8 

CPLEX TS CPLEX TS 

OF  

(%) 

CPU 

(s) 

OF  

(%) 

CPU 

(s) 

OF  

(%) 

CPU 

(s) 

OF  

(%) 

CPU 

(s) 

2 2 

3 

4 

5 

65.62 

78.25 

87.08 

92.38 

14.74 

17.56 

17.83 

16.05 

65.62 

78.25 

87.08 

92.38 

0.02 

0.06 

0.07 

0.10 

65.84 

74.19 

80.69 

87.14 

8.82 

22.03 

25.10 

18.35 

65.84 

74.19 

80.69 

87.14 

0.03 

0.05 

0.10 

0.11 

3 2 

3 

4 

5 

30.49 

45.13 

53.69 

62.02 

26.60 

24.56 

22.13 

23.93 

30.49 

45.13 

53.69 

62.02 

0.06 

0.08 

0.12 

0.15 

29.18 

42.92 

52.83 

60.14 

24.99 

22.58 

20.57 

22.47 

29.18 

42.92 

52.83 

60.14 

0.05 

0.06 

0.11 

0.13 

4 2 

3 

4 

5 

18.89 

28.39 

37.73 

46.18 

27.72 

30.68 

33.16 

25.76 

18.89 

28.39 

37.73 

46.18 

0.06 

0.09 

0.20 

0.22 

21.06 

32.69 

42.10 

48.60 

24.48 

21.92 

23.47 

25.25 

21.06 

32.69 

42.10 

48.60 

0.05 

0.06 

0.13 

0.14 

5 2 

3 

4 

5 

18.64 

28.14 

35.04 

42.32 

27.97 

23.62 

19.22 

22.77 

18.64 

28.14 

35.04 

42.32 

0.08 

0.09 

0.19 

0.16 

18.19 

29.12 

36.93 

44.32 

23.49 

20.11 

24.00 

25.48 

18.19 

29.12 

36.93 

44.32 

0.08 

0.14 

0.11 

0.13 

Avg. 48.12 23.39 48.12 0.10 47.87 22.07 47.87 0.09 

 

Table 2 shows the results obtained by solving the problem using the TR data set for 𝑟, 𝑝 ≤ 5. Here, 

it is also assumed that the leader has already selected her p hubs based on UMApHMP. Similar to the 

case of the CAB data set, to evaluate the performance of the proposed TS algorithm on the TR data 

set, all instances were solved to optimality using CPLEX and the results obtained by the TS are 

compared to their corresponding optimal values.  
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Table 2. Results for solving the problem using the TR data set with |H|=22 ( , 5r p  ) 

p r 

α = 0.6 α = 0.8 α = 0.9 

CPLEX TS CPLEX TS CPLEX TS 

OF 

(%) 

CPU  

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU  

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU  

(s) 

OF 

(%) 

CPU 

(s) 

2 

2 

3 

4 

5 

50.60 

68.73 

80.13 

89.97 

456.21 

673.52 

344.27 

115.03 

50.60 

68.73 

80.13 

89.97 

0.18 

0.39 

0.46 

0.51 

49.95 

62.48 

72.47 

84.88 

538.33 

878.01 

568.05 

132.67 

49.95 

62.48 

72.47 

84.88 

0.19 

0.40 

0.44 

0.52 

50.66 

67.09 

77.52 

85.27 

476.94 

558.60 

323.88 

191.20 

50.66 

67.09 

77.52 

85.27 

0.18 

0.35 

0.44 

0.62 

3 

2 

3 

4 

5 

30.49 

40.82 

56.40 

66.43 

1873.32 

1245.46 

577.22 

487.51 

30.49 

40.82 

56.40 

66.43 

0.36 

0.48 

0.60 

0.84 

30.68 

40.80 

51.43 

60.66 

1435.06 

1667.72 

959.99 

560.07 

30.68 

40.80 

51.43 

60.66 

0.37 

0.43 

0.69 

0.81 

40.58 

52.71 

63.24 

72.38 

233.93 

494.27 

360.14 

130.33 

40.58 

52.71 

63.24 

72.38 

0.35 

0.51 

0.72 

0.92 

4 

2 

3 

4 

5 

22.14 

33.69 

44.79 

55.69 

1389.16 

739.71 

949.52 

517.45 

22.14 

33.69 

44.79 

55.69 

0.55 

0.82 

0.91 

1.09 

20.33 

30.18 

39.40 

48.57 

2223.10 

1897.41 

1604.90 

786.07 

20.33 

30.18 

39.40 

48.57 

0.61 

0.80 

0.98 

1.22 

20.38 

30.55 

38.46 

47.40 

1465.93 

1777.43 

1316.08 

565.69 

20.38 

30.55 

38.46 

47.40 

0.69 

0.81 

0.97 

1.18 

5 

2 

3 

4 

5 

15.01 

23.88 

33.97 

42.20 

2076.17 

1457.35 

528.04 

397.08 

15.01 

23.88 

33.97 

42.20 

0.78 

0.91 

1.26 

1.30 

15.72 

24.24 

32.69 

40.21 

1638.12 

1618.06 

665.54 

381.95 

15.72 

24.24 

32.69 

40.21 

0.79 

0.95 

1.13 

1.28 

16.47 

23.94 

33.03 

41.01 

1387.98 

1258.68 

670.19 

400.56 

16.47 

23.94 

33.03 

41.01 

0.91 

0.95 

1.15 

1.20 

Avg. 47.18 864.19 47.18 0.71 44.04 1097.19 44.04 0.72 47.54 725.74 47.54 0.74 

 

The results on Table 2 reveal that the solution times by CPLEX substantially grow as the size of 

the problems increased. However, one can see that the proposed TS algorithm is able to obtain the 

optimal solutions for all the instances in the TR data set, with 𝑟, 𝑝 ≤ 5, within a fraction of a second, 

on the average. An interesting observation from this table is that in case of equal number of hubs for 

the leader and the follower, that is 𝑝 = 𝑟, the leader captures more than half of the market share. In 

other words, the follower should open more hubs on order to capture more than half of the market 

share. Results obtained by solving the problems with the TR data sets for 𝑟, 𝑝 ≥ 6 are shown in Table 

3. 
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Table 3. Results for solving the problem for the TR data set with |𝑯| = 𝟐𝟐 (𝒓, 𝒑 ≥ 𝟔) 

p r 

α = 0.6 α = 0.8 α = 0.9 

CPLEX TS CPLEX TS CPLEX TS 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

6 6 

8 

10 

12 

14 

39.31 

49.19 

56.94 

64.02 

68.91 

330.68 

213.08 

241.03 

89.82 

46.73 

39.31 

49.19 

56.94 

64.02 

68.91 

2.43 

3.59 

3.36 

4.76 

4.50 

37.97 

48.24 

55.70 

61.84 

66.97 

329.58 

210.68 

156.08 

104.83 

49.58 

37.97 

48.24 

55.70 

61.84 

66.97 

3.16 

3.08 

2.59 

4.15 

4.31 

40.86 

49.44 

56.04 

61.54 

66.45 

199.74 

208.29 

140.39 

110.19 

63.93 

40.86 

49.44 

56.04 

61.54 

66.45 

3.89 

2.75 

3.15 

4.10 

5.10 

8 6 

8 

10 

12 

14 

28.58 

37.09 

44.37 

51.77 

57.97 

311.06 

311.12 

188.64 

104.74 

32.70 

28.58 

37.09 

44.37 

51.77 

57.97 

3.27 

5.17 

4.33 

3.12 

2.51 

29.37 

37.08 

44.35 

50.71 

56.33 

298.18 

188.41 

120.10 

87.52 

57.38 

29.37 

37.08 

44.35 

50.71 

56.33 

3.41 

4.82 

4.30 

3.40 

3.17 

31.10 

38.69 

44.83 

50.49 

55.77 

162.97 

178.41 

141.54 

65.47 

55.71 

31.10 

38.69 

44.83 

50.49 

55.77 

3.41 

5.04 

4.87 

4.13 

2.98 

10 6 

8 

10 

12 

14 

19.91 

27.13 

34.10 

40.48 

45.73 

239.45 

163.11 

119.31 

65.47 

42.69 

19.91 

27.13 

34.10 

40.48 

45.73 

3.87 

2.57 

3.49 

3.14 

4.15 

20.12 

27.03 

33.84 

40.74 

46.84 

212.75 

130.36 

102.23 

58.40 

29.62 

20.12 

27.03 

33.84 

40.74 

46.84 

3.87 

2.57 

3.49 

3.14 

4.15 

20.74 

27.77 

33.86 

39.89 

44.90 

198.06 

119.45 

88.82 

57.53 

30.97 

20.74 

27.77 

33.86 

39.89 

44.90 

3.75 

2.41 

4.19 

3.39 

4.72 

12 6 

8 

10 

12 

14 

15.83 

21.79 

27.06 

31.37 

35.48 

121.95 

79.38 

55.82 

41.83 

32.71 

15.83 

21.79 

27.06 

31.37 

35.48 

3.92 

4.39 

5.44 

5.32 

3.42 

16.93 

23.41 

28.62 

32.81 

35.93 

79.40 

53.09 

31.82 

22.33 

20.83 

16.93 

23.41 

28.62 

32.81 

35.93 

3.92 

4.39 

5.44 

5.32 

3.42 

18.45 

24.59 

29.08 

32.98 

36.18 

72.18 

32.61 

21.75 

23.53 

18.40 

18.45 

24.59 

29.08 

32.98 

36.18 

4.05 

3.98 

6.15 

5.09 

3.86 

14 6 

8 

10 

12 

14 

13.04 

17.87 

22.25 

26.00 

28.42 

58.69 

54.39 

37.53 

19.86 

20.22 

13.04 

17.87 

22.25 

26.00 

28.42 

7.79 

4.89 

6.84 

4.60 

5.07 

13.02 

18.57 

22.52 

25.20 

27.46 

59.85 

20.04 

20.16 

18.22 

18.89 

13.02 

18.57 

22.52 

25.20 

27.46 

7.79 

4.89 

6.84 

4.60 

5.07 

13.66 

18.81 

22.50 

25.60 

28.18 

57.79 

19.43 

18.87 

22.26 

17.27 

13.66 

18.81 

22.50 

25.60 

28.18 

6.74 

5.15 

6.85 

5.16 

4.75 

Avg. 36.18 120.88 36.18 4.23 36.06 99.21 36.06 4.21 36.50 85.02 36.50 4.38 

 

We can observe from Table 3 that the TS algorithm is able to obtain the optimal solutions of all 

the instances of the TR data set with 𝑟, 𝑝 ≥ 6 The average solution time for these instances is less 

than 5 seconds on which shows the high efficiency of the proposed solution algorithm. An interesting 

observation from the above tables is that CPLEX solves the TR instances with 𝑟, 𝑝 ≥ 6 in shorter 

time than the instances with 𝑟, 𝑝 ≤ 5 This can be due to the limited number of candidate nodes for 

hub (|𝐻| = 22) in the above experiments. In this case, as the number of hubs located by the leader 

gets larger, the set of promising solutions for the follower becomes smaller and hence the time taken 

to reach the optimal solution by CPLEX gets shorter. Comparing the results for different values of 

discount factor, one can see that the capture values are similar for different values. This is because of 

the fact that the same discount factor applies for both firms. Another important observation form the 

above tables is that as the number of hubs opened by the leader (𝑝) increases, the follower fails to 

capture much of the market share even if 𝑟 >  𝑝. One possible reason for this can be the fact that as 

𝑝 increases, the leader selects more of the critical locations for opening hubs and increases her 

provided service level. In addition, since the customers choose the leader's service on case of equal 

service offered by the leader and the follower, the leader's market share stays higher than that of the 

follower. 
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The efficiency and advantage of the proposed TS algorithm is more evident when it is shown that 

it solves large instances which are not solvable within reasonable times by the commercial solvers. 

To this end, our next set of experiments is conducted on a larger data set by assuming that all the 81 

nodes in the TR data set are available as candidate locations for installing hub facilities (i.e., |H|=81) 

by both the leader and the follower. Initially, we tried to solve the instances using CPLEX. However, 

due to the large size of these instances (as it now includes all the 81 nodes of the TR data set as 

candidate locations for installing hubs), CPLEX was not able to solve any of the instances within the 

time limit of 5 hours. Therefore, to evaluate the efficiency of the proposed TS algorithm, we solved 

the problem using an existing simulated annealing (SA) based algorithm proposed in [10]. The results 

for solving the problem using the TS and SA algorithms with the TR data set by assuming |𝐻| = 81 

are reported in Table 4. It is assumed that the leader has already selected its p hubs based on 

UMApHMP where all the 81 nodes are candidates for being hub. Since CPLEX was not able to solve 

any of the instances within the time limit of 5 hours, no result is not reported for its performance. 

 

Table 4. Results for the problems of the TR data set with |𝐻| = 81 (𝑟, 𝑝 ≤ 5) 

p r 

α = 0.6 α = 0.8 α = 0.9 

SA [10] TS SA [10] TS SA [10] TS 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

OF 

(%) 

CPU 

(s) 

2 2 

3 

4 

5 

43.44 

67.00 

79.86 

87.71 

0.83 

1.12 

1.60 

2.32 

44.40 

67.00 

79.86 

87.71 

0.31 

0.49 

0.65 

1.02 

43.55 

61.99 

74.05 

83.49 

0.89 

1.05 

1.63 

2.29 

43.55 

61.99 

74.05 

83.49 

0.29 

0.50 

0.59 

0.94 

42.08 

57.44 

72.56 

80.54 

0.77 

1.08 

1.76 

2.40 

42.08 

58.09 

72.56 

80.54 

0.33 

0.54 

0.64 

0.98 

3 2 

3 

4 

5 

27.29 

44.60 

59.83 

73.67 

1.12 

1.50 

1.91 

2.42 

30.15 

44.60 

59.83 

73.67 

0.40 

0.53 

0.68 

1.05 

28.55 

42.36 

54.80 

65.31 

1.13 

1.45 

1.89 

2.41 

28.55 

42.36 

54.80 

65.31 

0.41 

0.59 

0.66 

1.02 

28.56 

38.73 

53.60 

63.84 

1.10 

1.39 

1.90 

2.59 

28.56 

41.40 

53.60 

63.84 

0.47 

0.64 

0.73 

1.07 

4 2 

3 

4 

5 

22.81 

34.50 

46.24 

59.92 

1.56 

1.74 

2.10 

2.61 

22.81 

34.50 

46.24 

59.92 

0.40 

0.55 

0.60 

1.12 

26.63 

37.08 

46.97 

56.08 

1.69 

1.80 

2.09 

2.75 

27.33 

37.08 

46.97 

56.08 

0.44 

0.59 

0.67 

1.10 

26.58 

36.11 

49.89 

58.20 

1.62 

1.88 

2.10 

2.84 

26.58 

37.99 

49.89 

58.20 

0.51 

0.65 

0.59 

1.14 

5 2 

3 

4 

5 

16.19 

24.85 

34.80 

44.63 

2.16 

2.60 

2.98 

3.47 

16.50 

24.85 

34.80 

44.63 

0.49 

0.60 

0.84 

1.19 

15.57 

27.64 

36.11 

45.36 

2.17 

2.67 

3.01 

3.45 

15.57 

27.64 

36.11 

45.36 

0.50 

0.61 

0.93 

1.15 

15.70 

24.57 

35.49 

45.19 

2.15 

2.52 

3.09 

3.39 

15.70 

24.57 

35.49 

45.19 

0.51 

0.69 

0.91 

1.18 

Avg. 47.96 2.00 48.22 0.68 46.60 2.02 46.64 0.69 45.57 2.04 45.89 0.72 

 

The results in Table 4 show that the proposed TS algorithm outperforms the SA [10] algorithm 

both in terms of solution time and quality. It can be seen that for seven instances (denoted in bold in 

Table 4), the objective values of the solutions found by the TS are better than those of the SA’s 

solution. For the rest of the instances, on the other hand, the two algorithms found the same solutions. 

Furthermore, the solution times for the TS are significantly smaller than those of the SA algorithm. 

These results show that the TS algorithm is very efficient in solving the competitive multiple 

allocation hub location problem. 
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5.2. Optimal Hub Locations on Map 

 

As the last part of our computational experiments, we illustrate how the decisions regarding the 

locations of the hubs alter for different values of discount factor. The analysis is conducted with the 

the CAB data set. Fig 2 depicts the optimal locations of the hubs opened by the leader and the 

follower, where p=2, r=5 and α=0.6. The triangles show the locations of leader’s hubs, whereas the 

squares show the optimal locations of the follower’s hubs which are optimally located according to 

the locations chosen by the leader. As can be seen from Table 1, in this case the follower can capture 

92.38% of the market share after locating its five hubs. One reason for such a large capture is the 

large number of hubs located by the follower as compared to the number of hubs located by the leader. 

Another reason is that the leader has located her hubs without considering the upcoming follower’s 

entrance to the market. In other words, the leader could have improved her market share if the initial 

locations of her hubs were selected in anticipation of upcoming follower’s entrance to the market.  

 
Figure 2. Optimal hub locations for the leader and the follower with p=2, r=5 and α=0.6 

 

Fig 3 depicts the optimal locations of the hubs opened by the leader and the follower for the CAB 

data set where p=2, r=5 and α=0.8. Observe that the follower's optimal hub locations when the 

discount factor increased are different from the hub locations when α=0.6. On the other hands, by 

increasing the discount factor α to 0.8, the market share captured by the follower dropped to 87.14%.  

 
Figure 3. Optimal hub locations for the leader and the follower with p=2, r=5 and α=0.8 
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It can be seen from the above maps that the hubs opened by the leader and the follower are different 

for α=0.6 and α=0.8, which can be regarded as a reason why variant levels of discount factor α need 

to be considered in computational experiments.  

 

6. Conclusions 
 

In this research, we considered the competitive multiple allocation HLP in a duopoly market. It 

was assumed that an incumbent firm (the leader) was operating an existing hub network in a market 

and an entrant firm (the follower) tried to enter the market by configuring its own hub network trying 

to capture as much flow as possible from the leader. The customers chose one firm based on the 

service level (cost, time, distance, etc.) provided by these firms. Therefore, the follower aimed at 

locating its hubs in such a way that its total captured flow (market share) was maximized. We 

proposed a mathematical formulation the follower’s problem and an efficient tabu search (TS) based 

heuristic for solving the problem. Extensive computational experiments based on two data sets of the 

CAB and TR were conducted to analyze different properties of these problems and to evaluate the 

performance of the proposed TS algorithm as well as the mathematical model. In all the instances for 

the two data sets, the proposed TS algorithm obtained the optimal solutions. Furthermore, the 

computational results showed the efficiency of the proposed algorithm in terms of CPU times. 

 

As an interesting line for future research, one can incorporate the leader’s decisions to the problem 

and study a more comprehensive and realistic problem in which the leader and follower make 

decisions in a sequential game which can be modelled as a bilevel programming problem. Moreover, 

instead of assuming an all-or-nothing (binary) mechanism for the capture of flows by the players, one 

can use a more general mechanism such as partial capture may better reflect the typical problems in 

real-world contexts. 
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