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A Scenario-Based Nonlinear Programming Model for a
Two-Level Inventory Control: A Case Study in Dairy
Product Industry
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Here, a novel scenario-based two-level inventory control model with a limited budget is formulated.
The demand during the selling period is considered to follow a uniform probability distribution. It
is assumed that there will be some customers who are willing to wait for their demands to be
satisfied; thus, a service level is considered for these customers. The aim is to find the optimal order
quantities of the products and the required raw materials at the beginning of the selling period such
that the relevant expected total profit obtained during the period is maximized. A penalty function
along with a barrier method is proposed to solve the developed nonlinear stochastic programming
problem. The problem is solved under different scenarios including good, fair, and low demands.
Finally, a case study in a dairy manufacturing company is provided to illustrate the application of
the proposed methodology in real-world inventory control systems.
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1. Introduction

On time delivery of quality products in proper quantities to the customers is a fundamental aim of
any manufacturing company working in today’s global market. However, the uncertainty involved in
demand is a major problem the companies face with to increase service level and to decrease cost.
One of the most popular approaches used by companies to control the demand uncertainty during the
selling period is the so-called newsvendor modeling devised for the single-period inventory control
problems. In this approach, a prior knowledge of demand variations is required to prepare products
before the selling period. The newsvendor model was firstly introduced by Hadley and Whitin [1]
with the extensions provided by Silver et al. [2] and Khouja [3] later on. As the selling process became
more complex, further extensions of the model involving service level, lost sales, salvage value,
emergency order, risk and many other interesting parameters were proposed by various researchers
in the literature.

The present study considers the single-period inventory control problem as a two-level model in
which the vendor procures raw materials and converts a certain amount of the raw materials into final
products before the selling season starts. As the cost of the raw materials left at the end of the period
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is lower than that of the products, it is more appropriate for the vendor to have some raw materials
remained at the end of the selling period, although it is ideal for the vendor to sell out all the purchased
raw materials and products with the highest profit and least lost sales. When the demand during the
selling period exceeds the stocked products, it is assumed that the vendor turns a part of the raw
materials into the final products. As this transformation is time-consuming, some customers cannot
wait and at least some impatient customers’ demands will be lost. Therefore, the vendor should decide
how much raw material and products to be stocked at the beginning of the period in order to maximize
the profit. Similar to all newsvendor models, in our work here, the vendor predicts the sale quantity
before the beginning of the selling season using the historical demand data and prepares raw materials
and products according to this prediction. More specifically, a scenario-based two-level single-period
inventory problem under a limited budget is investigated in an attempt to examine the influence of
the demand prediction on the newsvendor’s profit. The modeling and the solution approach proposed
here are applicable in different real-world systems such as inventory systems of multi-echelon supply
chains, spare part distribution systems, food industries and in general in any inventory control system
involving products and raw materials. In short, our main contributions are:

1. A new model is developed to enable the newsvendor to compare her decision under
different scenarios.

2. When the demand during the selling period exceeds the stored products at the beginning
of the period, a re-production during the period is allowed for those customers who are
willing to wait to receive their products.

3. A stochastic optimization approach is taken to deal with uncertain demand in order to
investigate the effect of demand prediction on the total expected profit. In other words,
different cases (demand scenarios) are considered to investigate their effects on the
newsvendor expected profit.

2. Literature Review

Several extensions of the single-period (newsvendor) problem have been proposed in the
literature, since the pioneering work of Hadley and Whitin [1] was introduced for a single product.
Vairaktarakis [4] investigated a multi-item newsboy problem with a budget constraint and made a
single-period stocking decision prior to realizing the demand for all items. Abdel-Malek et al. [5]
developed a multi-product newsvendor model with budget limitation and proposed an exact solution
approach when the demand follows a uniform distribution. Later, their work was extended by Abdel-
Malek and Montanari [6] for a multi-product newsboy problem with the budget constraint assumed
in three ranges of large, medium and very tight. Some numerical examples were solved to illustrate
the application of the proposed procedures. Mostard and Teunter [7] analyzed a newsvendor problem
with resalable returns, assuming that all unsatisfied demands were lost. They derived a simple closed-
form equation to determine the optimal order quantity given the demand distribution, the probability
that a sold product was returned and all relevant revenues and costs. Abdel-Malek and Areeratchakul
[8] devised a quadratic programming solution approach for a multi-product newsvendor problem with
side constraints. Their model considers a lower bound on the demand and is suitable to conduct
sensitivity analysis to allow for adjusting the available resources when necessary. Niederhoff [9]
proposed an approximating programming technique to solve a multi-product newsvendor problem
with independent products demands. He found the optimal solution for any demand distribution using
a convex separable program. Panda et al. [10] developed a mathematical model for a single-period
multi-product manufacturing system consisting of stochastically imperfect items with a continuous
stochastic demand under budget and shortage constraints. They solved their problem using a
nonlinear optimization technique called the generalized reduced gradient method. Zhang and Hua
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[11] established the structural properties for the optimal decisions of their proposed profit-
maximization model, in which the procurement strategy for newsboy product was designed as a
portfolio contract. They proposed an efficient algorithm to solve the problem. Huang et al. [12]
studied a multi-product competitive newsvendor problem with shortage penalty cost and partial
product substitution. They devised an iterative algorithm on the basis of approximating the effective
demand as well as the expected profit function for each product. Performing sensitivity analysis,
Khanra et al. [13] identified conditions for symmetry and skewness of the cost deviation and
established a lower bound on the cost deviation for a symmetric unimodal demand distribution.
Recently, Kim et al. [14] introduced a multi-period newsvendor problem and formulated it as a multi-
stage stochastic programming model with integer recourse decisions.

To name a few works on the two-level inventory control problem, Axséter [15] extended a new
model in two ways: first he provided a complete probability distribution for the retailer inventory
levels, and second he generalized the case from having Poisson demands to compound Poisson
demands. He determined the distribution of the inventory levels at the retailers in the steady state.
Tee and Rossetti [16] developed a robust version of a standard model for a two-echelon inventory
system proposed by Axsater [15]. They concluded that their model performed well at the low demand
and large retailer order batch size situation. For a single-item, two-echelon, continuous-review
inventory model, Hill et al. [17] assumed a number of retailers to have stock replenished from a
central warehouse and the demand processes on the retailers to be independent Poisson. They
presented a means of studying the steady-state behavior of a multi-level batch ordering model which,
on the basis of simulation results, provided very accurate answers. Pasandideh et al. [18] proposed a
new model for a two-echelon inventory control system for a non-repairable item where the system
consisted of one warehouse and m identical retailers. They solved their nonlinear integer-
programming problem using a parameter-tuned genetic algorithm. Tsai and Zheng [19] presented a
simulation optimization algorithm to solve a two-echelon constrained inventory control problem.
They determined the optimal setting of stocking levels to minimize the total inventory investment
costs while satisfying the expected response time targets for each field depot. They showed that their
proposed algorithm required less simulation effort to guarantee to achieve a better solution than the
ones obtained by other existing approaches. Alvarez and van der Heijden [20] considered a two-
echelon supply chain system under Poisson demand with a one-for-one replenishment policy. They
assumed that the demand was lost if no items were available at the local warehouse, central depot or
in the pipeline in between. In order to approximate the service level, they proposed a simple and fast
approach. Recently, Priyan and Uthayakumar [21] proposed a two-echelon multi-product multi-
constraint product returns inventory model with a permissible delay in payments. A distributor and a
warehouse consisting of a serviceable part and a recoverable part were considered in their work. They
showed that the model of their problem was a constrained nonlinear programming one and solved it
using the Lagrangian relaxation method. Keramatpour et al. [22] developed a new model for the two-
level newsvendor problem with budget constraint. They considered a service level for customers and
solved their problem using meta-heuristic algorithms.

The rest of our work is organized as follows. The problem statement, the assumptions involved,
and the notation are presented in Section 3. In Section 4, the problem is modeled. Under a uniform
distribution of the demand a real case-study is investigated in Section 5 to demonstrate the application
of the proposed approach. The convexity proof and the obtained results are provided in Section 6.
Finally, the conclusion and future research directions are presented in Section 7. Some necessary
mathematical derivations are given in Appendices A and B.
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3. Problem Statement

A single-item single-period two-level inventory control problem with a limited budget is
investigated. Similar to the classical newsvendor problem, the demand is a random variable and
shortage is allowed in the form of lost sales. It is assumed that when the demand during the selling
period exceeds the stocked products at the beginning of the period, the newsvendor turns a part of the
raw materials into the final products. However, as turning the raw materials into the final products is
time-consuming, all customers cannot wait. As a result, some of the impatient customers’ demands
will be lost. Therefore, the newsvendor should decide how much raw materials and products to
prepare at the beginning of the selling period in order to maximize her profit. Although some
researchers such as Serel [23] and Karimi et al. [24] considered this special case as the so-called
“emergency order,” the approach taken here is different. Here, the demand is a random variable and
shortage is permitted. As such, the newsvendor profit is directly affected by the actual demand
happening during the period. It is obvious that in the newsvendor problem, the final product inventory
is prepared at the beginning of the period based on the predicted demand. So, the demand pattern of
the final product should be analyzed in depth to maximize the newsvendor’s expected profit. To this
aim, three scenarios including good, fair, and low are assumed for the product demand. The
newsvendor decides how much products and raw materials should be prepared at the beginning of the
period under different scenarios. The first major contribution of our work is to develop a new
modeling for a two-level inventory control problem. A real-world case is provided to show the
efficiency of the developed model. Our second major contribution is the proposed solution method.
An exact solution method rarely used by researchers is presented.

3.1. Assumptions and Notations

As stated before, it is assumed that the newsvendor prepares raw materials and final products just
before the beginning of the selling period. If the customers are willing to wait for their products in
case a shortage happens during the period, i.e. the demand during the period exceeds the prepared
products, then the vendor produces products using raw materials, each with a different usage
coefficient.

In general, the following assumptions are made:

1. There is only a single type of product for sale during the period.

There is a limited budget available to purchase raw materials and to transform them into

final products just before the beginning of the selling period.

A product is produced using raw materials with different usage coefficients.

Raw materials can be stocked just once before the beginning of the selling period.

Products are produced and stocked before the selling period.

If the demand during the period exceeds the already stocked products at the start of the

selling period, then some customers wait for their orders to get ready for delivery.

7. Inaddition to the products that are prepared prior to the selling period, some products can

be prepared and delivered during the period for customers who are willing to wait for their

orders to be met.

Shortage is considered as lost sale.

Excess products and raw materials left at the end of the period are sold at a lower price.

10. As revenue is obtained by selling products within the period, no budget constraint is
considered for the transformation of raw materials into final products during the period.
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11. The demand for the product is assumed to follow a discrete set of three scenarios: good,
fair, and low.
12. The demand quantity does not affect the price of the products.

3.2.Notations
The following indices, parameters, and decision variables are used throughout the paper.
3.2.1. Indices

i = index used for a raw material (i = 1, 2,3, ...,1)
s = index used for a demand scenario (s = 1, 2, 3)

3.2.2. Parameters

T = Unit cost of transforming raw materials into products

y; = Consumption rate of ith raw material in products

C; = Unit purchasing cost of raw material i needed to produce one unit of the finished product

D; = Unit discounted sale price of ith raw material left at the end of the selling period

D' = Unit discounted sale price of the product remained at the end of the selling period

H; = Holding cost per unit time of ith raw material

H' = Holding cost per unit time of the product

P = Selling price per unit of the product

u = Service level or a percentage of the customers willing to wait (if the product is sold out during
the selling period)

7 = shortage cost per unit of the products

xs = Customers’ demand for the products in scenario s (a random variable)

fx(x5) = Probability density function of the demand in scenario s

Fx(xg) = Cumulative probability distribution function of the demand in scenario s

B = available budget to purchase raw materials and to transfer them into the final product

ps = probability of scenario s to happen (0 < ps < 1)

3.2.3. Decision Variables

Qr,s = Quantity of the raw materials purchased before the beginning of the selling period for
scenario-s demand

Qr s = Quantity of the final product stocked just before the beginning of the selling period for
scenario-s demand.

Note that the maximum number of products one can manufacture from Qp s with the raw material

consumption rates y; is Qf s, i.e., Qf ¢ = min (%) After solving the problem and obtaining the
! ! 1

1

optimal solution for Qp s, the quantity of the i-th raw material is easily obtained by ¥;Qg s.
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4. Mathematical Formulation

Given the assumptions and notations, the product demand during the selling period in each scenario
happens to fall within the following three states.

State 1: Product demand is not bigger than the quantity of the products prepared before the period,
I.e. xs < Q. In this case, products are partially sold and fractions of products alongside
the raw materials that are not used in production are sold at lower prices at the end of the
period.

State 2: All products prepared before the selling period are sold out during the period, i.e., xg =
Qrs. In this case, fractions of raw materials are transformed into the products during the
selling period and the remaining products are sold at lower prices at the end of the period.
Moreover, the demands of some impatient customers who cannot wait are lost. Note that in
this case (xs — Qrs ) < Qjf s, and hence Qr s < x5 < Qf s/

State 3: All products and raw materials prepared before the selling period are sold out, i.e. the
product demand is greater than the quantity of all products prepared at the beginning of the
selling period and that the number of customers who are willing to wait for their demands
be met is so high that all the procured raw materials at the start of the period are transformed
into the products during the period. In this case, no products and raw materials remain at
the end of the period to be sold at lower prices and the vendor will just have some lost sales.
Thus, we have Qr s + Qf /1 < xs.

Figure 1 depicts a summary of the above three states.
Using the above assumptions, the costs and the incomes in each state are as follows.

State 1:

Income includes the sale of a fraction of products that is equal to the quantity of the demand plus
sale of the remaining raw materials plus the sale of the remaining products at the end of the period at
lower prices. In other words,

I
Income; = P(x,) + 2 Dl-(QR'S) + D’(QF,S — xs). @
i=1

Costs include the purchasing cost of raw materials plus the transformation cost of raw materials
into products plus the holding costs of raw materials along with the holding cost of a fraction of
products until the end of the period, that is,

1 1 1
Cost, = ) Ci(Qrs) + (T £y ci) Qrs+ ) Hi(Qrs) + H'(Qps — x5). @
i=1 i=1 i=1

Note that Qs is the number of raw materials purchased at the beginning of the period that is used
to produce the products during the selling period if required. The cost of raw materials used in the
product (Q ) at the beginning of the period is considered separately. Then, the newsvendor’s expected
profit is obtained using (3) below, given the demand scenario:
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Qfs
Profit, = @, = f (Income; — Costy) fx(xs) dxs. (3)
0

State 2:
Income includes the sale of all products plus sale of a fraction of the products produced during the
period plus the sale of raw materials left at the end of the period at a lower price. In other words,

I
Income, = P(Qrs) + P(1)(xs — Qrs) + Z Di[Qrs — vi() (s — Qr.5)], 4)
i=1
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Figure 1. Different states of the two-level single-period problem
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where the last term on the right-hand-side of (4) is constrained to be non-negative as a constraint of
the problem (see Equation (11) as given later).

Costs include the purchasing cost of raw materials plus the transformation cost of raw materials
into the products at the start of the period plus the transformation cost of raw materials during the
period plus the lost cost of impatient customers who cannot wait plus the holding cost of raw materials
until the end of the period, that is,

I i
Cost, = z Ci(QR,S) + <T + z Ci) Qs+ T(.U)(xs - QF,S) + (1 — .U)(xs - QF,S)
i=1 i=1
1

()
+ Z Hi[Qrs — vi() (xs — Qp,s)]-
i=1
Then, Profit,, added to Profit,, that may be obtained in (Qp,s, Qrs+ Qfs /,u), becomes
QF,SWL%L'S
Profit, = @, = j (Income, — Cost,) fx(xs)dxs. (6)
Qrs

Note that in (6), if all the customers can wait, i.e. u = 1, and if the consumption rates of raw
materials are all equal to 1, i.e., y; = 1, then all the products and raw materials are sold out and the
interval of the integration will change from Qs t0 Qr s + Qg s. This means that the demand that
exceeds the quantity of the prepared products is at most as high as all prepared the products at the
beginning of the period plus the quantity produced during the period using the raw materials provided
at the start of the period.

State 3:

Income includes sales of all the prepared products at the beginning of the period plus the sale of
all the products produced from raw materials during the period. In other words

Income; = P(Qrs + Qff5). (7)

Costs include the purchasing cost of raw materials plus the transformation cost of raw material
into the products plus the transformation of the raw material into the products during the selling period
given the consumption factor plus the loss of impatient customers who cannot wait. In other words,

I I
Costz = Z Ci(Qrs) + (T + Z Ci) Qrs + T(Qfs) + m(xs — Qrs — QF 5). (8)
i=1 i=1


http://iors.ir/journal/article-1-532-en.html

[ Downloaded from iors.ir on 2025-10-18 ]

A Scenario-Based Nonlinear Programming Model 57

In this state, the newsvendor’s expected profit is obtained by (9) below based on the demand
interval:

Profit; = @3 = f (Income; — Cost3) fx(xs)dxs.

Qfs
+—=
Qrst—

(9)

Based on the expected profits obtained for states 1-3 in (3), (6), and (9) respectively, the
newsvendor’s expected profit is derived by Z = (@, + @, + @3). This profit is aimed to be
maximized within the budget constraint as

1
Z Ci(Qrs) + (T + Qrs) <B. (10)
i=1

The inequality (10) shows that the purchasing and the transformation costs of raw materials into
the products cannot exceed the available budget before the selling period. Note that as the revenue is
obtained by selling the products within the period, no budget constraint is assumed to transform raw
materials into the products during the period. Moreover, the total quantity of the products to be
produced either at the start or within the selling period cannot exceed the potential number of products
that can be produced using the raw materials based on their consumption factor. In other words,

Qrs
[QF.S + ,u(xs - QF,S)] < y-’ . (11)

In short, the mathematical formulation of the problem at hand is

max/Z = (@1 + @2 + @3)

s.t.
Qrs

(1o, = f (Income, — Costy) fx(xg)dxg
0
QF,S"'%

20, = -[ (Income, — Cost,) fx(xs)dxs
Qozgs

3)o; = f ot (Incomes — Costs) fx(xs)dxs (12)
QF,S"'%S

I
4 Ci(Qrs) + (T +0rs) < B
i=1

(5) [Qr.s + ulxs = Qrs)] < Qf.’s

Qrs-Qrs >0, vsS=123.

where the Incomes and the Costs in States 1-3 have been obtained previously. In the above model,
the last constraint shows that the quantities of raw materials and products must be positive. It should
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be mentioned that the above model can be easily extended to a multi-product case by adding a new
index for each product in all the necessary parameters.

4.1. Case of Uniform Distribution of the Demand

As used in previous studies, a uniform probability distribution in the interval [a.b]is a proper
choice for probable values of the random demand between a and b (Wanke [25]). This is also suitable
for new products whose demand is unknown. The properties of a uniform distribution allow one to
obtain a maximum and a minimum value as simple estimations of the newsvendor’s expected profit.

Stochastic programming deals with situations where some or all of the parameters of the
optimization problem are considered to be stochastic rather than deterministic quantities. In this
section, the demand for the product is assumed to be a random variable X that follows a uniform
distribution in the interval [a. b]. As the problem is examined using a scenario-based approach, the
probability distribution of the demand under scenario S, i.e. xg , is:

1

f(xS) =1bs —ag
0, otherwirse.

i < <
p fasSxs<bs i 0 < g < b (13)

Given the objective function presented in the previous section and the probability density function
of the demand given by (13), the mathematical formulation of the expected profit for each state
follows. Note that the expected profit in each state is used in the integration first. Then, the start and
the endpoints of the integral are applied to evaluate the expected profit.

State 1:

QFs

{P(xs)+xsZD(QRs)+x5(D)(Q” ; )}

Oy = XSZC(QRS)"'XS(T"‘Z )QF.S+ xsZHi(QR.s)"' bs — ag
i=1

xs(H') (QF.S - %xs)

(14)

1
1 1
{E P(Qfs) + Qrs Zl D;(Qrs) + 5 (D)QEs

1 I I
N (QF.S Z Ci(Qrs) + QE‘.S <T + Z Ci) + QE‘.S Z H;(Qrs) ‘J bs — as
- i=1 i=1 i=1

1 ! 2
S (H)(@Fs)
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State 2:
(P)(Qe5) + (P (3% — Qrs) + e
Zni |00~ vit) (5%~ 02|
R icl(QRs)+<T+ZCl)QFS+(T)(u)( o) |
- (5%~ 0rs) + Zl He[ Qs = 1) (335 — 05|
o 0rs

( P(QFS)"'P(H)( <QFS Q‘ZS> QF.S) 1

i+z [QRS yi(w) < (QFS Q‘u > Qr. 5)]}
1 I
= z Ci(Qrs) + <T + Z )QFS + (MW < <QFS + %) QF.S> (15)

— 9 +m(1 — ) ( (QFS QZ S) Qr. 5)
+Z [QRS yi(w) < <QFS Q+ > QF. 5)]
l ‘u' J

<QFS +%> :

bs — ag

"

{P(Qp.s) + P() (5 (0rs) = Qrs) + i Di|Qrs = 1) G (@r.s) = QF-S)H

i=1

- Y 60us) + <T + i cl) Ors + (M0 (306~ Qrs) +
_ i=1 i=1
(1l —p) ( (Qr.s) — QFS) +iH1 [QRS i) ( (Qr.s) — QFS)]
@) o
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State 3:
{(P)(Qrs) + (P)(Qits)} bs
1 1
By x| | C@rs)+ (T +) Ci) Qrs + (M0 !
—< i1 i=1 s — Qg
+1 (1x — Qrs— Qf )
2 S F.S F.S QF.5+Q%+'S

I

( ; Ci(Qrs) + <T + Z Ci) Qrs + (T)(Q;"r.s)]
1

i= i

i=1

1 +
+m <§ <QF.S + %) —Qps — Q;:.s>

(16)

=| P(Qrs + QfFs) —

QFS) 1
Qrs +——
< 57 bs — as

4.2.Solution Approach
Here, the steps involved in the solution approach are given below:

Step 1. Given the parameters, check for the convexity of the maximization problem modeled in (12)
using the first partial derivative, the second partial derivative, and the Hessian of the second partial
derivative of the objective function with respect to the decision variables.

Step 2. If the convexity does not hold, then a meta-heuristic solution algorithm is needed to solve the
problem in order to find a near optimal solution. Otherwise, go to Step 3.

Step 3. Find an initial feasible point using a penalty function method, i.e., a point that satisfies the
first two constraints. The penalty function method ignores the objective function entirely by replacing
the constraints for the objective function.

Step 4. Transform the constrained optimization problem in (12) to an unconstrained nonlinear
optimization problem using a barrier method. Here, the barrier method is employed to avoid
approaching an infeasible point (Bazaraa et al. [26]).

Step 5. Use the sequential unconstrained maximization technique (SUMT) to solve the transformed
problem (Bazaraa et al. [26]). In this method, the initial feasible point iteratively converges to the
optimal solution using the Newton-Raphson method.

Step 6. The solution approach discussed above applies to a deterministic constrained non-linear
optimization problem. However, as the problem modeled in (17) is stochastic, three common
stochastic optimization procedures, namely “wait and see (WS),” “expected value (EV),” and “here
and now” or “resource problem (RP)” are used (Birge and Louveaux [27]).
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5. A Case Study

A case study for a two-level single-period dairy product problem is presented in this section in
order to demonstrate the application of the proposed methodology in real-world environments. The
commodity under investigation is a special dessert produced by a relatively large dairy firm. This
product has only a single-period 17-day opportunity to be sold. The firm needs to prepare the products
along with some raw materials before the beginning of the selling period in order to be able to
immediately produce the products during the period in case of excessive demands. There are 13 types
of raw materials with various consumption rates required to produce the final product. The firm has
a limited available budget to purchase raw materials and to transform them into the product. In short,
similar to the problem modeled in previous sections, a two-level single-period problem is involved in
which the final product is made by combining different raw materials with different consumption
rates within a certain budget. The objective is to find the number of raw materials and final product
needed to be purchased and stocked before the selling period so as to maximize the profit. As demand
prediction plays a major role in single-period problems, the problem is solved under different demand
scenarios of good, fair, and low.

5.1. Data Sources

Based on historical data available for the past 48 periods, uniform distributions have shown table
good fits for the probability distributions of the demands in different scenarios. Table 1 presents the
intervals of these scenarios where as and bs shows the start and the end of the intervals respectively
for each scenario. The raw materials, consumption units, consumption rates, purchase price,
discounted sale price, and holding costs of all raw materials are shown in Table 2. The discounted
price of the product is assumed to be 60% of the selling price, while holding costs of the raw materials
are 2% of their purchase prices. The selling price, shortage cost, holding cost of products, discounted
sale price, and production costs are summarized in Table 3. The production cost includes direct labor
cost, machinery overhead, and operation cost. Shortage cost is considered as lost sale. Since the profit
margin of the product is 10% in this firm, the same is assumed for the shortage cost. Historical data
in this firm shows that only 50% of the customers will wait for the preparation of the products in case
of shortage and the rest will be lost. Thus, u = 50%. Finally, the total available budget for the
procurement and transformation of the raw material before the selling period is 150,000,000 currency
units.

Scenario Demand Interval
as bs
Scenario 1 (Good) 38,000 55,000
Scenario 2 (Fair) 32,000 53,000
Scenario 3 (Low) 29,000 50,000
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purchasing

i Raw Material Unit consumption rate cost Di Hi
1 T Phosphate Kg 0.00027 10 6 0.2
2 40% bulk cream Kg 0.036594 256 154 5.1
3 PBSS starch Kg 0.0045 469 281 9.4
4 Industrial zero fat milk Kg 0.22572 1,129 677 22.6
5 Gelatin powder Kg 0.0027 674 404 135
6 Pure salt Kg 0.00243 6 4 0.1
7 C-Polar text 6748 Kg 0.0018 134 80 2.7
8 5 layer Peace 0.00185185 22 13 0.4
9 Punched atuminum Peace 1 334 200 6.7
10 Pr'”tff(sprf]%'ime”e Peace 1 1511 907  30.2
11 3.2% fat milk Kg 0.808209 1,010 606 20.2
12 Termtex Latex 5625 starch Kg 0.0018 99 59 2.0
13 C-polar Tex 06716 additive Kg 0.0018 108 65 2.2

Hl D/

P

T

T

28,500

2,850

410 1,300

4,494

5.2.Demand Scenarios

Assuming good, fair, and low demand scenarios, the problem defined in the case study is solved

under the same selling price for each scenario. Then, the scenario-based model is as follows:

maxZs = (@15 + Do5 + D35)

s.t.

(1) 04 =_[

(2) 0, =_[

Oy

I
4 Ci(Qrs) + (T +0rs) < B
i=1

QF,s

0 +
QFs
QFst—

QF,s
(o)

+_’
QF,s m

(5) [Qr.s + ulxs = Qrs)] < fos
v§=123,

QF,s Qrs = 0.

(Income, — Costy) fx(xs)dxg

(Income, — Cost,) fx(xs)dxs

Q;S(lncomeg, — Costz) fx(xg)dxs

(17)
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where @, 5, @, 5, and @3 s are the first, the second, and the third state of profit under the sth scenario,
respectively. As the three scenarios cannot occur at the same time, these scenarios are presented to
show the demand variations and its effect on newsboy optimal solutions.

6. Solution

In order to solve the maximization problem shown in (17) using an exact method, it is necessary
to first prove the convexity using the first and the second partial derivatives. Having the first partial
derivatives of the objective function with respect to the decision variables in Appendix A, the second
partial derivatives with respect to the decision variables are

0’z =(—-P—-H +mn+D")
62QF,S_ " b — Qs

027 ( (P+T) +Z(D H) )) —P‘ G)bsias (18)

azQRS

aQFSaQRS (ZD ZH_(T - P>b — Qs

Then, the Hessian matrix of the second derivatives that is a 2 X 2 matrix with two decision
variables including Qr s and Qf, s is obtained to be

0%Z 07
_ aZQF,S aQF,SaQR,S
Hs = REYA EYA
0 QF,Sa QR,S 02 QR,S
1
Hs = bs — as (19)

1 1
(—P—H' D) D;— Y Hi—(T—m)—P
1 Yi
<ZDi—ZHi—(T—n)—P> 2*[(5(13+T)+;(Di—Hl-)(1—3))—P

i=1 i=1

o

In the above matrix we assume that Hy = [C, ] As shown in Table 4 convexity holds true for

all the three scenarios. Hence, an exact method can be used to solve the unconstrained problem in all
the demand scenarios.
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Scenario Hessian Matrix a;d; — bic
Scenario 1 1 —24760 —26803] ral

(Good) M1 = 55000 — 38000 |—26803 —3804g) 1917 P1c1 = 13156
SC?'QZIT; i H2 = 55000 i 32000 :252283 igggg Tfttn = = CEL
Flow M= gEi0 79000 _aenes _asos] 95~ bics = 10650

The constrained optimization problem shown in (17) is first transformed into an unconstrained
nonlinear optimization problem for which the penalty function and the barrier method are employed.
In this method, the constraints along with their violations are presented in Table 5.

Constraint Violation
1 I
Z Ci(Qus) + T(Qrs) < B Max (0. Z :(Qs) + T(Qrs) < B)
i=1 i=1
[Qrs + u(xs — Qrs)] < Q;_'S Max (0- [Qrs + u(xs — Qrs)] < %)
QF,S >0 Max(O. —Qp's)
QR,S >0 Max(O. _QR,S)

For the on-hand constrained optimization problem with two “less than or equal” constraints and
two “greater than zero” bounds on the decision variables, the penalty function, p(x), to be minimized
is defined as

2

2
p@) = ) v(gi)+ ) v(x) (20)
j=1

=1

where v(g;(x)) is considered for “less than or equal to” constraints and v(x;) is defined for the bounds
on the decision variable x; (in this case, Qg sand Qs ). Then, the unconstrained minimization
problem in (20) only assumes the penalty function as the objective function, where its least value is
zero if a feasible point is obtained; that is if all constraints are satisfied (Bazaraa et al. [26]).

After transforming the constrained optimization problem into an unconstrained optimization
problem using the penalty function and the barrier function methods described above, the sequential
unconstrained maximization technique (SUMT) is used to solve it (Bazaraa et al. [26]). In short, the
following steps are taken to solve the problem:

i. Select an initial value of r, a reduction rate of r, and an acceptable computational error.
ii.  Find a feasible point that satisfies all the constraints for which the penalty method can be
used.


http://iors.ir/journal/article-1-532-en.html

[ Downloaded from iors.ir on 2025-10-18 ]

A Scenario-Based Nonlinear Programming Model 65

iii.  Build the barrier function and its integration with the main objective function of the problem
so that the problem is solved without constraints.

iv.  Use the feasible point as the starting point and solve the problem by an unconstrained
nonlinear optimization approach such as the Newton-Raphson method.

v.  Monitor the computational error; in case it is less than a certain value, the algorithm stops.

vi.  Reduce r and monitor the error until the stopping condition is met.

Given the constraints put forth for the model shown in (17), the barrier function becomes

1 1 1 1
+—t— (21)

B(QF,S' QR,S'r) =r +
B-YI_,C (QR,S) - T(QF,S) % — Qps — li(xs _ QF,S) Qrs OQgrgs

Then, by integrating the constraints and the objective function, we will have to maximize the
unconstrained non-linear optimization problem in (22) using the Newton-Raphson method, where the
required derivatives are presented in Appendix B.

1 1 1 1

Z(Q,1r) = (B15+ Dys + B35) — + +—t—
maxZ(Q,7) ( 15 2.5 3,5) r B-Y_, Cl-(QR,g) — T(QF,S) % — Qs — #(Xs _ Qp,s) Qrs Qgrgs

(22)

This method starts with an initial reduction rate of r = 1 with the computational error of £ = 0.001
The solution approach discussed above applies to a deterministic constrained non-linear optimization
problem. However, as the problem modeled in (17) is stochastic, three common stochastic
optimization procedures, namely “wait and see (WS),” “expected value (EV),” and “here and now”
or “resource problem (RP)” are used in the following subsections [27].

6.1. Wait and See Method

This method assumes that the uncertainty is replaced with certainty and that the actual values of
the random parameters are known. Obviously, these assumptions do not hold in the real world because
the future cannot be precisely predicted in most cases. In this approach, the problem is solved for
each scenario to obtain Z,,s as the expected value of the profit using

Zys = z ps(Z*5), (23)

SES

where Z*5is the optimum profit in scenarioS obtained by the SUMT algorithm. Tables 6-8
contain the results in consecutive steps of the SUMT algorithm for good, fair, and low demand
scenarios, respectively. In these tables, the Z*S value at the bottom of the last column shown in bold,
which is very close to Z(Q, r) represents the optimal profit. In addition, the optimal quantities of raw
materials and products in each scenario are shown in the last rows of these tables. These figures lead
to the quantities of raw materials to be purchased before the selling period in proportion to their
consumption rates in Table 9. Moreover, the budget requirements are shown in Table 10, where the
budget needed to purchase raw materials and to produce products as well as the total profit obtained
under each scenario are shown.
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Iteration r Raw Material Products Z(Q,7) Z1
1 1 14,444 21,217 10,836,705 10,844,884
2 0.1 14,813 22,225 10,939,387 10,939,307
3 0.01 14,814 22,232 10,939,049 10,939,041

Iteration T Raw Material Products Z(Q,m) Z*2
1 1 14,114 21,650 8,229,281 8,237,694
2 0.1 14,126 21,687 8,238,877 8,239,867
3 0.01 14,156 21,753 8,243,422 8,243,582
4 0.001 14,173 21,798 8,246,034 8,246,062
5 0.0001 14,182 21,824 8,247,482 8,247,487
6 0.00001 14,189 21,842 8,248,472 8,248,473
7 0.000001 14,190 21,845 8,248,626 8,248,626
8 0.0000001 14,194 21,856 8,249,184 8,249,184

Iteration T Raw Material Products Z(Q,7) 73
1 1 13,299 20,426 7,329,573 7,331,652
2 0.1 13,308 20,435 7,331,920 7,332,128
3 0.01 13,308 20,435 7,331,920 7,332,128

Raw Materials Quantity

i Raw Material Unit Scenario 1 Scenario2  Scenario 3
(Good) (Fair) (Low)

1 T phosphate Kg 4.00 3.8 3.6

2 40% bulk cream Kg 542.47 519.4 487.0

3 PBSS starch Kg 66.71 63.9 59.9

4 Industrial zero fat milk Kg 3,346.09 3,203.9 3,003.8

5 Gelatin powder Kg 40.02 38.3 35.9

6 Pure salt Kg 36.02 34.5 32.3

7 C-polar Tex 6748 Kg 26.68 25.5 24.0

8 5 layer Peace 27.45 26.3 24.6

g Punched aluminumfoil 5 o 14,824.07 141943  13,307.7

116 mm
g ALEY (FEERE Peace 14,824.07 141943 133077
116 mm cup
11 3.2% fat milk Kg 11,980.94 11,471.9 10,755.4
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Raw Materials Quantity

i Raw Material Unit Scenario 1 Scenario2  Scenario 3
(Good) (Fair) (Low)
1o Termtex Latex 5625 Kg 26.68 25.5 24.0
starch
13~ Cpolar Tex 06716 Kg 26.68 255 24.0
additive

Raw Material Cost

i Raw Material Unit Scenario 1 Scenario 2 Scenario 3
(Good) (Fair) (Low)
1 T phosphate Kg 38.40 36.8 34
2 40% bulk cream Kg 138,958.50 133,054.8 124,745
3 PBSS starch Kg 31,279.52 29,950.6 28,080
4 '”dus”r'nai'liem e Kg 377639499 36159533 3,390,117
5 Gelatin powder Kg 26,982.92 25,836.5 24,223
6 Pure salt Kg 218.15 208.9 196
7 C-Polar Tex 6748 Kg 3,578.64 3,426.6 3,213
8 5 layer Peace 599.88 574.4 539
g  Punched aluminum Peace 4,952297.80  4741,897.4 4,445,739
foil 116 mm
qg  COIEE RS Peace 2240087515 214491649 20,109,543
116 mm cup
11 3.2% fat milk Kg 12,103,882.60 11,589,644.2 10,865.805
Termtex Latex 5625
12 o Kg 2,641.65 2,529.4 2,371
13 C-Polar Tex 06716 Kg 2,881.80 2,759.4 2,587
additive
Consumed Budget for Raw Materials 43,440,629.98 41,595,037.16 38,997,192
Consumed Budget for Products 99,910,608 98,220,864 91,834,890
Total Consumed Budget 143,351,238 139,815,901 130,832,082

In order to investigate the effect of demand prediction on the total profit obtained, realized actual
demands are also considered to follow the good, fair, and low scenarios. In other words, the question
“what happens to the profit in each scenario if good, fair, and low scenarios of the actual demand
happen?” is answered here. As expected, the results shown in Table 11 indicate that the highest profits
in all the scenarios are realized if the good scenario for the actual demand is realized. This
investigation enables the newsvendor to estimate the profit reduction in case of fair and low demands
so that she would be able to predict the demand using a better approach more precisely. Then,
assuming an identical likelihood of the occurrence of the demand scenarios, i.e. p; = 1/3, the long-
term (expected) profit obtained using the WS method becomes Z,,; = 8.839.234, based on (23).
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Realized Demand

Scenario ]
Good Fair Low
Scenario 1 (Good) 10,939,041 8,258,900 7,451,800
Scenario 2 (Fair) 10,789,000 8,249,184 7,395,700

6.2. Expected Value Method

In most cases, finding an answer based on the explicit use of random parameters is difficult and
time-consuming. Moreover, obtaining a complete information on the parameters being used is costly
and sometimes impossible. Thus, it is occasionally preferred to use the expected value of a random
parameter to obtain a simpler solution as a certain equivalent. The EV method employed in our work
takes the mean of the random demand and inserts it in the optimization problem to find the optimal
solution. In this method, the average of the lower (@) and the upper (b) bound of the uniform
distribution of the demand in the three equally likely scenarios are first obtained using (24):

1
a ==(29000 + 32000 + 38000) = 33000
3 (24)

-1

b 5(50000 + 53000 + 55000) = 52667.
Then, the bounds are used in the SUMT algorithm to find the optimal solution (Z*) iteratively.

Table 12 contains the results for different iterations, where (Z*) becomes 8,709,068 in the 7th

iteration at the bottom of the table. In this case, the optimal solution obtained using the EV method is
shown in Table 13.

The budget requirement for the above solution is shown in Table 14, where the budget needed to
purchase raw materials and to produce products as well as the total profit obtained are shown. Then,
one should determine how much profit the newsvendor will gain if she uses the EV solution when
the good, fair or low scenario is realized. To this aim, a similar approach employed for the WS method
is taken here. The results are summarized in Table 15, where the long-term profit obtained using the

EV method becomes Z,;, = 8.712.700, based on (23).

Iteration r Raw Material Products Z(Q.7) ()
1 1 14,074 21,720 6,689,445 8,698,326
2 0.1 14,090 21,777 8,700,411 8,701,582
3 0.01 14,112 21,835 8,704,587 8,704,776
4 0.001 14,125 21,872 8,706,711 8,706,743
5 0.0001 14,133 21,893 8,707,891 8,707,897
6 1.00E-05 14,137 21,905 8,708,495 8,708,496
7 1.00E-06 14,141 21,916 8,709,068 8,709,068
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. . i Raw Materials
i Raw Material Unit

Quantity
1 T phosphate Kg 3.82
2 40% bulk cream Kg 517.49
3 PBSS starch Kg 63.64
4 Industrial zero fat milk Kg 3,191.99
5 Gelatin powder Kg 38.18
6 Pure salt Kg 34.36
7 C-Polar Tex 6748 Kg 25.45
8 5 layer Peace 26.19
9 Punched aluminum foil 116 mm Peace 14,141.36
10 Printed poly z%rene 116 mm Peace 14.141.36
11 3.2% fat milk Kg 11,429.17
12 Termtex Latex 5625 starch Kg 25.45
13 C-Polar Tex 06716 additive Kg 25.45
~ Table14. Budget consumed using the EV method
i Raw Material Unit Raw Material Cost
1 T phosphate Kg 36.63
2 40% bulk cream Kg 132,558.92
3 PBSS starch Kg 29,838.98
4 Industrial zero fat milk Kg 3,602,477.23
5 Gelatin powder Kg 25,740.25
6 Pure salt Kg 208.10
7 C-Polar Tex 6748 Kg 3,413.83
8 5 layer Peace 572.25
9 Punched aluminum foil 116 mm Peace 4,724,225.11
g TRl ;t}ge”e LA T Peace 21,369,227.20
11 3.2% fat milk Kg 11,546,451.46
12 Termtex Latex 5625 starch Kg 2,519.99
13 C-Polar Tex 06716 additive Kg 2,749.08
Consumed Budget for Raw Materials 41,440,019.02
Consumed Budget for Products 98,490,504
Total Consumed Budget 139,930,523
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Scenario EV
Scenario 1 (Good) 10,909,000
Scenario 2 (Fair) 8,253,000
Scenario 3 (Low) 7,376,100

Leey 8,712,700

6.3. The Here and Now Method

The here and now or the resource problem (RP) method offers a practical real-world approach to
solve stochastic optimization problems. In this method, the feasible region of the problem is identical
in all scenarios and the solution is treated as the real-world answer to the problem. The main drawback
of this method is that when the problem becomes relatively large, it can be hardly solved.

The optimization problem to be solved by the RP method for the model shown in (17) is:

1 1 1
maxZ = §(®1_1 + @2,1 + @3,1) + §(®1,2 + @2,2 + @3'2) + § (@1'3 + @2,3 + ®3'3)
s.t.

1
(1)) €@ +T+0r) < B
i=1

(@) [Qr + u(EGxy) — Qn)] < 3— (25)
(3) [0r + u(E(xy) — Qp)] < %
(4) 105 + u(ECxs) — Q)] <22

4

QF: QR > 0'

where E(xs), S = 1, 2,3 is the expected demand in sth scenario. Equation (25) is used to place all
the scenarios into the recourse problem, i.e., all the scenarios are considered in one model. Besides,
the objective function consists of three parts, each related to a scenario. Moreover, as the demand is
a random variable, the constraints containing this variable repeat for each scenario. For instance, the
second constraint in (17) involves the demand variable is repeated in (25).

Solving the problem modeled in (25) using the SUMT algorithm results in the optimal profit as
shown at the bottom of Table 16.

Iteration r Raw Material Products Z(Q.71) (Z%)
1 1 12,786 19,610 8,729,316 8,729,206
2 0.1 12,796 19,610 8,730,416 8,730,416
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Consequently, the optimal quantities of the raw materials based on their consumption rates are
reported in Table 17. In addition, the budget required to purchase raw materials and to produce
products as well the profit obtained are presented in Table 18. The results in Table 18 show that if the
newsvendor decides to use the plan obtained by the RP method, her long-term profit will be equal to
Zpp = 8.730.416 units.

i Raw Material Unit Raw Materials Quantity
1 T phosphate Kg 3.45
2 40% bulk cream Kg 468.26
3 PBSS starch Kg 57.58
4 Industrial zero fat milk Kg 2,888.31
5 Gelatin powder Kg 34.55
6 Pure salt Kg 31.09
7 C-Polar Tex 6748 Kg 23.03
8 5 layer Peace 23.70
9 Punched aluminum foil 116 mm Peace 12,796.00
10 Printed poly g%rene 116 mm Peace 12.796.00
11 3.2% fat milk Kg 10,341.84
12 Termtex Latex 5625 starch Kg 23.03
13 C-Polar Tex 06716 additive Kg 23.03
~ Table18 Budgetrequirement usingthe RP method
i Raw Material Unit Raw Materials Cost
1 T phosphate Kg 33.14
2 40% bulk cream Kg 119,947.73
3 PBSS starch Kg 27,000.20
4 Industrial zero fat milk Kg 3,259,750.19
5 Gelatin powder Kg 23,291.41
6 Pure salt Kg 188.31
7 C-Polar Tex 6748 Kg 3,089.05
8 5 layer Peace 517.81
9 Punched aluminum foil 116 mm Peace 4,274,778.91
g TSRl (S;L);)rene LUl Peace 19,336,233.94
11 3.2% fat milk Kg 10,447,962.59
12 Termtex Latex 5625 starch Kg 2,280.25
13 C-polar Tex 06716 additive Kg 2,487.54
Consumed Budget for Raw Materials 37,497,561.07
Consumed Budget for Products 88,127,340
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i Raw Material Unit Raw Materials Cost

Total Consumed Budget 125,624,901

6.4. Significance of the Solutions Obtained

The long-term profits obtained using the above-mentioned methods are summarized in Table 19.

Method Profit
Wait and See (Zys) 8,839,234
Expected Value (Zggy) 8,712,700
Recourse Problem (Zgp) 8,730,416

The significance of the results obtained using the three solution methods is tested in this section
using the expected value of perfect information and the value of the stochastic solution. The expected
value of perfect information (EVPI) shows to what extent information shortage can be effective. It is
calculated by

For the two-level single-period inventory control model of the present study, EVPI is

EVPI = Zy,s — Zpp = 8,839,234 — 8,730,416 = 108,818 (27)

Note that a lower value of EVPI shows that the acquisition of information about the future does
not entail significant impact, while a higher EVPI shows that ignoring the significance of perfect
information will be very costly. In other words, this parameter shows how much can be spent on
acquiring perfect information. As a result, if the newsvendor of the investigated problem neglects the
uncertainty involved and procures raw materials and final product according to mean demand, she
will be imposed a cost of 108,818 units in each period in the long run.

The value of stochastic solution (VSS) is another useful measure defined by

VSS = ZRP - ZEEV' (28)
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It shows how much can be saved if the stochastic programming solution is used instead of a certain
programming problem solution such as the expected value method. In other words, VSS represents
the cost of neglecting uncertainty in decision making. A lower value of VSS indicates that the solution
provided by the expected value method is a good approximation of the real solution of the problem.
The value of VSS for the problem at hand is obtained to be

VSS = Zpp — Zppy = 8,730,416 — 8,712,700 = 17,716 (29)

This means that 17,716 units can be saved if the newsvendor uses the RP method instead of the
EV method.

7. Conclusions and Future Research

A two-level single-period problem with budget constraint under three different demand scenarios
was investigated. The newsvendor needs to prepare raw materials and products just before the selling
period. Production is allowed during the period for those customers who can wait for their unsatisfied
demands by transforming the prepared raw materials into products during the period. It was assumed
that the demands of those customers who cannot wait are lost. Inventory control models were first
developed for this problem based on three different states of demand to estimate the newsvendor’s
profit in each state. Then, the budget constraints and the consumption rates of raw materials were
taken into account assuming three demand scenarios of good, fair and low. It was next shown that the
developed nonlinear optimization problem could be solved using an exact method. Thereafter, an
initial feasible point was obtained using a penalty function method and then, the problem was
converted to an unconstrained nonlinear optimization problem using a barrier method, based on which
the initial feasible point iteratively turns to an optimal solution using the Newton-Raphson method.
A real-world case study was presented to illustrate the proposed methodology. Based on some
analysis carried out under various conditions, we showed how the newsvendor can learn the effect of
demand prediction on her profit.

The mathematical formulation proposed here can be easily extended and used for a multi-product
single-period two-level newsvendor problem using a new index for each product in all the necessary
parameters. However, the solution approach might be different. This will be considered in our future
research. Moreover, while uncertainty was merely assumed for demand, investigating some other
uncertainties for other parameters of the problem is left for future. In addition, analyzing the impact
of non-conforming product returns on the expected profit obtained as well as price sensitivity analysis
are other interesting topics for future studies.
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Appendix A: First derivatives of the objective function with respect to the decision variables
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Appendix B. Derivatives for the Barrier function
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