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A DC Optimization Algorithm for Clustering Problems
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Clustering problems with the similarity measure defined by the L;-norm are studied.
Characterizations of different stationary points of these problems are given using their difference
of convex representations. An algorithm for finding the Clarke stationary points of the clustering
problems is designed and a clustering algorithm is developed based on it. The clustering algorithm
finds a center of a data set at the first iteration and gradually adds one cluster center at each
consecutive iteration. The proposed algorithm is tested using large real world data sets and
compared with other clustering algorithms.
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1. Introduction

Clustering is an unsupervised partitioning technique dealing with the problems of organization of
a collection of patterns into groups based on similarity. It has applications in medicine, engineering
and business, to name just a few. There are different types of clustering including fuzzy [12, 20] and
hard clustering [17]. Most hard clustering algorithms are either hierarchical or partitional clustering
algorithms. Hierarchical clustering algorithms generate a dendrogram representing the nested
grouping of patterns and similarity levels at which groupings change [18, 20]. Partitional clustering
algorithms find the partition that optimizes a clustering criterion [18]. Here, we are to develop a
partitional clustering algorithm.

The similarity measure is essential in clustering. It can particularly be defined using different
norms. Clustering problems with the similarity measure defined by the squared Euclidean norm are
known as the minimum sum-of-squares clustering problems. There are many algorithms for solving
such problems including heuristics such as the k-means algorithm and its modifications,
metaheuristics such as the simulated annealing, tabu search, variable neighborhood search, genetic
algorithms and optimization algorithms such as the branch and bound, cutting plane and interior point
(see [17, 24, 30] and references therein).

Clustering problems with the L;-norm have attracted significantly less attention than those with
the squared Euclidean norm. In some applications clustering algorithms with the L;-norm produce
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easy interpreting results than those with the squared L,-norm. The former algorithms are more
preferred in high dimensional data mining applications [1] and they are also more robust to outliers
[34].

To the best of our knowledge, clustering problem with the L,-norm was first considered in [13]
(see also [20]). The k-median algorithm was proposed in [28] and the ISODATA algorithm was
introduced in [19]. The X-means algorithm, introduced in [25], allows one to use the L,-norm based
similarity measure. The local search optimization based clustering algorithm is presented [27]. The
optimization algorithm using smoothing techniques was introduced in [7] and the nonsmooth
optimization clustering algorithm was proposed in [6].

Here, we propose a rather different approach for solving clustering problems with the L,-norm.
This approach is based on a difference of convex (DC) representations of clustering functions. None
of the above mentioned algorithms exploits this special structure of the clustering problem. Such a
representation has been used to develop algorithms for the minimum sum-of-squares clustering
problems. The authors of [2] present a modification of the DCA algorithm and the authors of [10]
develop a nonsmooth optimization algorithm for such problems.

We represent the clustering problem as an unconstrained DC programming problem and design
an incremental algorithm using this representation. The main contributions of our work are: (i)
development of optimality conditions for the clustering problem using the DC representation of its
objective function, (ii) a partial smoothing technique for approximation of the clustering functions,
(iii) development of a DC optimization algorithm for finding Clarke stationary points of the clustering
problem with the L,-norm, and (iv) design and numerical evaluation of the DC optimization based
incremental clustering algorithm and its comparison with other clustering algorithms using large data
sets.

The rest of our work is organized as follows. Clustering problems and their DC representations
are given in Section 2. In Section 3, smoothing of cluster functions is discussed. Section 4 presents a
DC optimization clustering algorithm. Numerical results are reported in Section 5 and Section 6
contains some concluding remarks.

The following notations are used throughout the paper: R™ is the n-dimensional Euclidean space
with the inner product (x,y) = Y™, x;y; and the associated norm ||x|| = (x,x)*/?, x,y € R",
B.(x) ={y € R": ||y — x]|| < &} is the open ball centered at x with the radius € > 0, “conv” is the
convex hull of a set. Throughout the paper, vectors are considered as one row and subscripts are used
for their coordinates.

We use the Clarke subdifferential as the main tool to design clustering algorithms. A function
f:R™ = R is called locally Lipschitz on R™ if for any bounded subset X ¢ R™ there exists L > 0
such that |f(x) — f(y)| < Lllx — y||, ¥V x,y € X. The generalized derivative of a locally Lipschitz
function f at a point x with respect to a direction u € R™ is defined to be [15]

f%(x,u) = limsup fO+aw - f(y).
y-x, alo a

The set df (x) = {¢ € R™: fO(x,u) = (¢,u), Vu € R"} is called the Clarke subdifferential of the

function f at x. Each vector & € df (x) is called a subgradient. For convex functions the set df (x)
coincides with the classical subdifferential [15].
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2. DC Programming Approach to Clustering Problems

In this section, we formulate the clustering and auxiliary clustering problems and give their DC
representations.

A function f: R™ — Ris called DC if there exist convex functions g, h: R™ — R such that: f(x) =
g(x) —h(x), x € R™ Here, g —h is called a DC decomposition of f while g and h are DC
components of f (for more details on DC functions, see [3, 16, 29, 31]).

An unconstrained DC programming problem is

minimize f(x) = g(x) — h(x) subjectto x € R" @

In general, df (x) € dg(x) — dh(x). For a point x* to be a local minimizer of problem (1), it is

necessary to have 0 € af (x*) [26].

2.1. The Clustering Problem with the L{-norm

Assume that a finite point set A = {a?, ...,a™} c R" is given. The hard clustering problem is the
distribution of the points of the set A into a given number k of disjoint subsets A/, j = 1, ..., k, such that

k
Al =@, AINAt=9, jl=1,..,k, j#1, and A= UAJ‘.

j=1
The sets A/, j =1,..., k, are called clusters. The cluster A/ is identified by its center x/ € R™,j =
1, ..., k. The problem of finding these centers is called the k-clustering (or k-partition) problem. The

similarity (or dissimilarity) measure is essential to formulate the clustering problem. We define this
measure between points u, v € R™ using the L;-norm:

n
dy (e, v) = ) fu; = il
i=1

A nonsmooth optimization formulation of the clustering problem is [9, 11]:

minimize f, (x) subjectto x = (x1,..,x¥) € R, (2)
where
fo(x1 xk) =lz min d (xj a). (3)
re m j=1,..k L ’
ae

The problem (2) is called the minimum sum-of-absolutes clustering (MSAC) problem and f; is called
the k-th cluster function.

The function f;, defined in (3), can be expressed as a DC:
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fk(x) = gk(x) - hk(x)! X = (xl' "'ka) € Rnrk! (4)
where
k k
1 i 1 s
@) =) Y diha),  m@ =) max o ) i) ©)
a€eA j=1 a€cA s=1,5#]
Since the function d is nonsmooth in x, both g, and hy are, in general, nonsmooth functions.

Lety € R™ ltisclearthat dd,(y,a) =], ® , ® ...® J,, a € Awhere fori =1, ...,n, we have

1, lfyl > a;,
Ji=1[-11], ify; =a;, (6)
—1, lfyl < a;.

Let, for convenience, (B,C) = B ® C, B,C < R™. Then, the subdifferential of the function g,
defined in (5), atx = (x1, ..., x*) € R™* is:

1
0g,(x) = EZ (adl(xl,a), dd,(x?,a), ...,6d1(xk,a)). 7

a€eA

To compute the subdifferential of the function hy, defined in (5), for a given a € A, consider the
function

k
@.(x) = max Z d,(x%, a),
j=1,..k

s=1,5#j

and define the set

k
R ={j €Lk} ) di,0) = 9o ()

s=1,5#j

The set R, (x) contains indices of clusters to which the point a € A belongs. The subdifferential d ¢, (x)
of the function ¢, at x is:

09 (x) = conv {(€%,...,€771,0,,8%1, &), j € Ry(x), & € dd, (x*,a),t =1,...k t # j}.
This subdifferential can be rewritten as:
g, (x) = conv{(adl(xl,a), v, 0dq (2771, a),0,,,0dy (2711, a), ...,6d1(xk,a)), jE Ra(x)}.

Then, the subdifferential dh;, (x) is expressed as:
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1
Ohi(3) = — " 0pa(x). ®)

a€cA

2.2. The Auxiliary Clustering Problem

The problem (2) is a global optimization problem, its objective function f, has many local
minimizers and only its global or deep local minimizers are of interest. The success of local search
algorithms for solving problem (2) strongly depends on the choice of the starting cluster centers.
Different approaches have been proposed to choose such centers. We apply an approach introduced
in [24]. It involves the solution of the so-called auxiliary clustering problem. Next, we describe this
problem and give its DC decomposition.

Given the solution x1, ..., x*~1, k > 2, to the (k — 1)-clustering problem, for a data point a € 4,

we define nd_; = min{d, (x,a), ...,d; (x*~%,a)} . The function

_ 1 o a n
i) =—> minfil 0,0}, yER ©

a€eA

is called the k-th auxiliary cluster function [4, 24]. This function is nonsmooth and as a sum of
minimum of convex functions it is, in general, nonconvex. A problem

minimize f, (y) subjectto y € R" (10)
is called the k-th auxiliary clustering problem.
The function £, given in (9), is a DC, expressed by

fir ) = G ) — he () (11)
where
_ 1 a _ 1 a
GO == (s + (@), RO) = ) max(riy,di(v,@)) (12)
a€eA a€eA
The subdifferential of the function g, (y) at y can be expressed as:
B 1
09k (y) = 52 dd;(y,a). (13)
a€eA

To write the subdifferential dhy (y), consider the following sets at y:

A(y) ={a€d: i, >d(y )} A,) ={a€Ah: r, <di(y,a)}
A;(y) ={a€ A i, =d(y )}

The set A; (y) contains all the points a € A attracted by the point y, the set 4, (y) contains all the
points which are closer to their own cluster center than the point y, and the set A;(y) contains the
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points which are attracted by the point y and at least one cluster center. Using these sets, the function
hy, defined in (12), can be rewritten as

— 1
RO == D it Y Ao+ Y maxily,doa) |

acd (y) aed,(y) a€d;(y)
Then,
_ 1
R =—| D .+ Y conv(0,dd )} (14)
acd,(y) a€Az(y)

3. Partial Smoothing of Cluster Functions

Nonsmooth DC functions, in general, are not Clarke regular, that is, their directional and
generalized directional derivatives do not always coincide (for the definition of regular functions, see
[15]). For such functions, the subdifferential calculus exists in the form of inclusions and is not always
applicable to calculate subgradients.

Both the clustering and auxiliary clustering functions are nonsmooth DCs. Their first DC
components are quite simple nonsmooth functions, but the second components in both functions are
more complex. We propose smoothing their first DC components to allow one to get the full
subdifferential calculus.

Note that the direct smoothing of both the clustering and auxiliary clustering functions leads to
more complex functions involving many smoothing parameters. However, the use of DC
representations allows one to use only one smoothing parameter.

We propose to use the hyperbolic smoothing technique to approximate the first DC components
of the clustering functions. Details of this technique can be found in [5, 32, 33].

3.1. Partial Smoothing of the Auxiliary Clustering Function

For given y € R™ and a € A4, the function d, can be rewritten as

n

a1 (,@) = ) 1@ - y) +2max(0,y; - @]

i=1

Applying the hyperbolic smoothing, we get the following approximation of d;:

die,0) = ) (01— ap)? + 72 (15)
i=1
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Here, T > 0 is a smoothing parameter. It is obvious that d,.(y,a) = d,(y,a), for all 7 > 0. The
gradient of d,; at y € R" is

yi— 4 Yn — Qn
Vd ) = ( )y ) "
1:(y, a) ((y, — a)? + 12)1/2 ((r, — ap)? + 12)1/2 (16)
We have the following approximation of the function gy:
A 1 a
%QW)=EE(Gq+du@ﬂD- (17)

a€eA

It is easy to see that g, (y,7) = gk (y), for all T > 0. For a given 7 > 0, the gradient of g, (:,7) at
y € R"is

1
V9,7 = = > Vdie (7, 0). (18)

a€cA

The function £, defined by (11), can be approximated by the following function:

@) = G0 — he(y),  yER™
Proposition 1. For any y € R™, we have 0 < f,(y,7) — fi (¥) < nt.

Proof. It is clear that f,(y, T) — fi, (¥) > 0 for all 7 > 0. From (12) and (17) we have

A ~ 1
0D = @) = — > (1 0,0) — 4 9, 0))

a€eA

= %Zi(((}’i —a)* +1? )%— lyi — ail)

a€cA i=1
< nrt.
[ ]

Next, we study the relationship between gradients of the function g, and the subdifferential of the
function g,.

Proposition 2. Let {y/} c R™ and {;} be sequences such that y/ — ¥, 7; L 0 as j — 0. Let also
D(¥) be a set of limit points of the sequence {Vdu,- (y, a)}. Then,

D(y) € 0d,(¥, ). (19)

Proof. Let £ € R™ be any limit point of the sequence {Vdu,-(yj,a)}- Then, there exists the
subsequence {j,,} such that j, - o0 as p — oo and

&= zgl_r)glo lefjp (yjp,a).
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Let I = {1, ..., n}. Consider the following index sets at the point y = (¥4, ..., ¥,):
Ri(ya)={iely <a} R,(ya)={i€l:y=a}, Rs(ya) ={i €1 y; > a;}.
It is obvious that for any € > 0 there exists § > 0 such that
Ri(¥,a) € R, (y,a), R;(¥,@) € R3(y,a), (20)

forall y € Bs(y). Takeanyi € I. If i € R, (¥, a), then according to (20) there exists p; > 0 such that
i € Ry(y’,a) forall p > p,. It follows from (16) that in this case,

lim _alejp (y]p' a_) =

pe ay;

If i € R3(7,a), then according to (20) there exists p, > 0 such that i € R3(y’r,a), for all p > p,.
Then, (16) implies that

ad”]_p (yjp, a)
lim ——=
peo 9yi
Finally, assume that i € R, (¥, a). If there exists p; > 0 such that i € R,(y’»,a) for all p > ps, then
adl‘[]'p (yjp; a)
lim — =
p—o 63’1

Otherwise, there might exist three subsequences {y’r¢}, {j,.} < {j,}, t = 1,2,3, such that {j, } n

Upo} = Upy} 0 U} = Up,} 0 Ui} = 0and i € Ry (y71, @), i € Ry(y7P2,a), i € Ry(y'Ps, a). Itis
obvious that

adl‘[q (yq' a) _

oy, 0, Vq€E {jpz}-

Therefore, we consider only two other subsequences. For any g € {j,, } U {j,,,}, we have

adqu %, a) _ yl.q —q; _ yl.q —q;
ayi - 2 1 1
q 2)\2 2 2
S —a;) +71 T
(()’l z) q) |yiq _ ai| (1 +— q 2)
(yi - a;)
2
It is clear that any limit of the sequence { qT" )2} belongs to [0, ©) U {co}. Then, all limits of the
i di

2
g

-1/2
sequence <1 + ) are in [0,1], meaning that limits of the sequence

2
vi-a;)
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{adl‘rq (yq' a)
ay;

Lae v

belong to [—1,1]. It follows from the expression (6) of the subdifferential dd,(:,a) that ¢ €
ad,(y,a). |

Corollary 1. Let a € A and y € R™ be given. For any € > 0, there exist 7, = 75(¢) >0 and § =
6(g) > 0 such that

Eearglll(r;_},a)llf - Vdi;(y,a)ll <e,

forall T € (0,74) and y € Bs(¥).

Proof. Assume the contrary. Then, there exists g, > 0 such that for any t, > 0 and § > 0, there can
be found 7 € (0,7y) and y € Bs () such that

1§ —Vdi (v, D)l =2 &, VE€ddi(F, )

This means that there exist sequences {y’} and {; } such that y/ — %, 7; 1 0, as j — oo and
”f - lefj(yj,a)” > ¢, VE €0d,(y,a) and j > 1.
This contradicts Proposition 2 and therefore, the proof is complete. ]

Corollary 2. Let {y/} ¢ R™ and {r; } be sequences such that y/ — ¥, 7; L 0, as j - . Let also
Dy (¥) be a set of limit points of the sequence {V g, (y’,7;)}. Then,

Do(¥) € 0gi (D).

Proof. The proof follows from Proposition 2, the expression (13) for the subdifferential dg; and the
expression (18) for the gradient Vg (-, 7). [ ]

Corollary 3. Let y € R™. For any € > 0, there exist 7, = 7y(¢) > 0 and § = 6(¢) > 0 such that

min —Vg.(y, 0| < ¢,
Eeagk(y)llf ACAs]|

forall T € (0,79) and y € Bs(¥).

Proof. The proof follows from Corollary 1, the expression (13) for the subdifferential dg;, and the
expression (18) for the gradient Vg (-, 7). |

Proposition 3. Let T > 0. The generalized subdifferential 8 f, (y, T) of the function f, aty € R™ is

afk()’: ) =V§(y,1)— a}_lk()’)-

Proof. The proof is similar to that of Proposition 2 from [10] and therefore is omitted. ]
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Let y € R™ be any given point. Consider the following set:

V(y) = {v € R™ 3 ({Tj},‘[j 1o,{y’}y/ >y j-o o€ afk(yf,rj)), v = lim vj}.

j—o

Proposition 4. For any ¥ € R"™, we have

V() € 3fi ().

Proof. Let y € R™ be any point. The generalized derivative of the function f, at the point y € R®
with respect to a direction u € R™ is

pfk(z +aw,1) = fi(z,7)

(. 7),u) = limsu

z-y,al0 a B B
_ gz +au,t) — §i(z,7) hp(z+ au, 1) — hy(2)

= limsup - - (1)
z-y,al0 a a

Since for any T > 0 the function g, (-, t) is continuously differentiable, according to the mean value
theorem there exists 6 = 6(z,u, ) € (0,1) such that

g\k(z + au, T) - g\k(zl T)
a

= (Vg (z + Oau, 1), u).

It is obvious that if y € Bs,,(¥) for § > 0, then for a given u € R",u # 0, there exists a; > 0
such that z + 6au € Bs(y), forall « € (0,a;) and z € Bs,4(y). It follows from Corollary 3 that for
any € > 0 there exist 7, > 0 and §; > 0 such that

ng(z + Bau, T) € ag—k(}_]) + Be(on)v

forall r € (0,7¢), z + 6au € Bs (¥) and 8 € (0,1). Then, the convexity of the function g, implies
that

(Vgr(z + Bau, 1),u) < g, (7, u) + €||ull. (22)

Since the function hy, is convex, it is regular and hj (v, u) = h2(y,u),y € R™. This means that for
€ > 0, there exist &, > 0 and §, > 0 such that

hy(z + au) — hy(2) B hy (7 + au) — hy (5)
a a

<sg, (23)

forall « € (0,a;) and z € Bs,(¥). Let §, = min{dy, 6,}. Then, from (22) and (23) we get that for
all 7 € (0,7¢), a € (0,a;) and z € Bs (),

Iz +au,t) — gi(z,71) hy (z + au) — hy,(2) <
a a
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B+ @) — 7
Gt - 4,

This with (21) imply that for any y € Bs (¥) and T € (0, 7o),

h (7 + au) — by (5)

R o)u) < lirgil)lp <g_llc(37; u) — + & (flull + 1))

< gk w) — h W + & (lull + 1)
= fiGw) +e(lull + 1)
< flGw) + e (llull + 1) (24)

Take any v € V(¥). This means that v/ — v, for some v/ € 8f,(y/,7;),7; L 0,5/ > ¥,j > 0. There
exists sufficiently large j, > 0 such that z; € (0,7,) and yl € Bs,(3), forall j > j,. Then, it follows
from (24) that for all u € R™ and j > j,

whw < (67, 5) ) < G + e(llull + 1),
or
(W) < f2F,w) + ellull + 1).

Since € > 0 is arbitrary, we have that (v,u) < f,\?(y, u), for all u € R™. The convexity of the set
df, (¥) implies that v € df, (¥). This completes the proof. n

Corollary 4. Let ¥y € R™ be any point. For any € > 0, there exist 7, > 0 and § > 0 such that

0f(r,0) < 0fi () + B(0y),
forall T € (0,75) and y € Bs(¥).

Proof. Assume the contrary. Then, there exists €, > 0 such that for any t, > 0 and § > 0, there can
be found 7 € (0,7,) and y € Bs(¥) so that 3f,(y,7) ¢ 3f, () + B, (05,). This means there exist
sequences {r;} and {y/} such that 7; L 0 and y/ -y, as j > oo, and df,(v/,7;) ¢ 0f(F) +
Be,(0,). In turn, this implies that there exists a sequence {v/} such that v/ € 8/, (y/,7;) and v/ ¢
0f (@) + Be,(0,,), for all j > 0. As a bounded sequence {v/} has at least one limit point, without
loss of generality, assume that v/ — v as j — co. Then, v € V(y) and v € 9f,(¥) + B¢, (05,). This
contradicts Proposition 4. [ ]

3.2. Partial Smoothing of the Clustering Function

Applying (15) to d,(x%,a),s =1, ..., k, a € A, we get the following approximation of the first
DC component g;, of the clustering function (4)
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k
1
G0 1) = EZ dy (x5, Q). (25)
a€eAs=1
The gradient of the function g, at x € R™¥ is
Vi (x,7) = iz (MGt ), 0 (%, 7) ) (26)
4 m a ) ) y1a 1) )
a€cA
where
xf —a xrsl —Qan

na(xs,r)=< ),s=1,...,k,aeA.

(G = a)? + T2 (G5 — ) + 1172

Using the function gy, we get the following approximation for the function f;,, defined in (3):

fie(, ©) = G (x, 7) — hye (x).
Proposition 5. For any x € R",
0 < fi(x,7) — fi(x) < knrt.
Proof. The proof is similar to that of Proposition 1. [ ]

Proposition 6. Let x € R™* and {x/} c R™¥, {r;} be sequences such that x/ — %,7; L 0, as j > oo.
Let also Uy (%) be a set of limit points of the sequence {Vgy (x”,;)}. Then,

Up(X) € 0gyc (). (27)

Proof. The proof follows from Proposition 2, the expression (7) for the subdifferential dg, and the
expression (26) for the gradient Vg (-, 7). [ ]

Corollary 5. Let ¥ € R™. For any & > 0, there exist 7, = 7,(¢) > 0 and § = §(¢) > 0 such that

fErglgll?@IIng(x, 1) —=¢ll<e (28)

forall € (0,7,) and x € Bs(¥).

Proof. The proof follows from Proposition 6, the expression (7) for the subdifferential dg, and the
expression (26) for the gradient Vg (-, 7). |

Proposition 7. Let 7 > 0. The generalized subdifferential of the function f, at x € R™¥ is:
0fi (x,7) = Vg (x,7) — Ohy (x).

For a given point x € R™* consider the following set:
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V(x) = {v € R™k: 3 ({Tj},‘[j 10, {x/},x/ 5 x,j > o,v € 6fk(xj,rj)), v = lim vj}.

j—oo
Proposition 8. Let ¥ € R™* be a given point. Then V(X) € af;, ().
Proof. The proof is similar to that of Proposition 4 and is therefore omitted. ]
Corollary 6. At a point ¥ € R™ for any € > 0 there exist 7, > 0 and § > 0 such that

fic(x, 7) © 0fi (%) + Be(On ),

for all T € (0,74) and x € Bs(x).

4. A Clustering Algorithm

Here, we first design an algorithm for solving optimization problems (2) and (10). Then, using
this algorithm we introduce an incremental algorithm for solving the clustering problems.

4.1. An Algorithm for Solving Optimization Problems

First, let us consider problem (10). Take a sequence {Tj} such that z; | 0 as j — co. This problem
is replaced by the following sequence of problems:

minimize f (v, Tj) subjectto y € R", (29)

For each 7; > 0, the objective function in problem (29) is represented as a difference of smooth
and nonsmooth convex functions. An algorithm for solving such problems is proposed in [10]
(Algorithm 3). This algorithm generates a sequence whose all limit points are Clarke stationary points
of Problem (29). Applying this algorithm one can design the following algorithm for solving Problem
(10).

Algorithm 1. An algorithm for solving problem (10).

1: (Initialization). Select any starting point y! € R™, a sequence {Tj} suchthat 7; { 0 as j — o0
and an optimality tolerance ¢ > 0. Setj := 1.

2: Apply Algorithm 3 of [10] starting from the point y/ to find the Clarke stationary point y/**
of Problem (29).

3. Setj:=j+1.If 7; <o thenstop, else go to Step 2.

The convergence of Algorithm 1 is studied in the next proposition.

Proposition 9. Assume that the level set J(y*) = {y € R™: f,(¥) < f, (1)} is bounded and o = 0.
Then, all the limit points of the sequence {yf} generated by Algorithm lare Clarke stationary points
of problem (10).

Proof. First, we show that there exists t, > 0 such that the level sets
T4 ={y eR™ fi(y,0) < /i 0", D}
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are bounded for all 7 € (0, ). Assume the contrary. Then, for any t, > 0 there exists t € (0, 7,)
such that the set 7" (y*,7) is not bounded. This means that there exists a sequence {7, } such that 7, 1
0 as p — oo and all sets T'(y*, 7, ) are not bounded. It follows from Proposition 1 that for any y €

T(y" %),
) < fi(n. %) < fiy'Tp) < O + 1ty (30)
Consider the set 73(y%,7,) = {y € R™ f, (¥) < fr(¥*) + nT, }. It follows from (30) that
7(y*7,) € (¥ 7p) forall p=>1.

Since the set 7'(y*,7,) is not bounded, the set 73 (y*,7,) is also not bounded for all p > 1. This
implies that the set J(y1) is not bounded which contradicts the assumption of the proposition.
Therefore, there exists j, > 0 such that the sets T(yl,rj) are bounded, for all z;,j > j,, and the
algorithm finds the Clarke stationary point y/** of Problem (29) in Step 2. Then,

0, € 3f (1, 1)), (31)

Since y/ € 7'(y*,7;) for all j > jo, and the sets 7'(y*,7;) are bounded, then the sequence {y/} has
at least one limit point. Let ¥ be a limit point of the sequence {yf}. This means that there exists a
subsequence {yt} of the sequence {y/} such that {y/i} » ¥, as i - co. It is obvious that 7;, — 0, as
{ — oo. Then, it follows from Corollary 4 that for any & > 0, there exists i, > 0, j;, > jo + 1, such
that

O 071,71 € 0fi (D) + B:(0,) Vi > iy,

Taking into account (31), we have 0, € df () + B.(0,). Since ¢ is arbitrary, we get that 0, €
df, () and therefore, ¥ is the Clarke stationary point of Problem (10). ]

Algorithm 1 can be modified to solve problem (2). In this modification we replace the starting y*
in Step 1 by x* € R™¥, the sequence {y/} by the sequence x/ c R™k and problem (29) in Step 2 by
the following problem:

minimize f, (x,7;) subjectto x € R™ .

The convergence of this modified algorithm is given in the next proposition.

Proposition 10. Assume that the level set J(x1) = {x € R™*: f, (x) < fi,(x1)} is bounded for a
starting point x* € R™* and o = 0. Then, all the limit points of the sequence {x/} generated by the
modified Algorithm 1 are Clarke stationary points of problem (2).

Proof. The proof can be easily obtained form the proof of Proposition 9 by applying Proposition 5
and Corollary 6 instead of Proposition 1 and Corollary 4, respectively. ]


http://dx.doi.org/10.29252/iors.8.2.2
http://iors.ir/journal/article-1-537-en.html

[ Downloaded from iors.ir on 2026-02-02 ]

[ DOI: 10.29252/i0rs.8.2.2 ]

16 Bagirov and Taheri

4.2. Incremental Clustering Algorithm

Algorithm 1 is a local search algorithm and its success in finding global or near global minimizers
of problem (2) strongly depends on the choice of the starting cluster centers. Different algorithms
have been developed to generate starting cluster centers [11, 14, 21, 23, 32]. One such algorithm is
based on an incremental approach which has been extensively used to design clustering algorithms
[4, 7, 8, 24]. In these incremental algorithms, a data set is static and clusters are computed
incrementally. Next, we briefly describe the incremental algorithm (for more details, see [7, 8, 24]).

The incremental clustering algorithm starts with the calculation of the center for the whole data
set. Assume that the solution (x?, ...,x"‘l) to the (k — 1)-partition problem is at hand. In order to

solve the k-partition problem we apply the special procedure introduced in [24] to generate a set Si
of starting points for the k-th cluster center. Then, Algorithm 1 is applied to solve problem (10)
starting from each point of Si. As a result, we obtain a new set S of points which are stationary for
problem (10). These points provide more decrease of the clustering function value than their starting
points from the set S%. In the next step of the incremental algorithm, each point from the set S is
added to the set of k — 1 cluster centers from the previous iteration to obtain a starting point for
solving the k-partition problem (2). This means that we will get a set of stationary points of the k-
partition problem. The best solution among these stationary points is chosen to be a solution of the k-
partition problem. The incremental algorithm terminates when the required number of clusters are
computed.

The incremental algorithm, in addition to the k-partition problem, solves also all the intermediate
[-partition problems, where [ = 1, ...,k — 1. Such an algorithm allows one to find a good quality
solution to the nonconvex clustering problem. However, there is no guarantee that this algorithm will
always find global solutions of these problems. Since an optimization algorithm based on DC
representations of the clustering and auxiliary clustering functions is used within the incremental
algorithm, we call the proposed algorithm as IDCClust (Incremental DC Clustering).

5. Numerical Results

To test the IDCClust algorithm and to compare it with other clustering algorithms, numerical
experiments with a number of real-world data sets were carried out. We used the following two
algorithms for comparison:

1. An algorithm for clustering with the L,-norm based on smoothing techniques (SMOOTH), as
proposed in [7].
2. The multi-start k-medians algorithm (MS-KMD).

The IDCClust algorithm contains a special procedure to generate the starting cluster centers and the
implementation of this procedure is discussed in [24]. This algorithm also uses a minimization algorithm
from [10], where details of its implementation are given. The implementation of the SMOOTH
algorithm is described in [7]. In MS-KMD, the initial cluster centers are randomly generated among
data points. In each data set, this algorithm is allowed to use CPU time and the distance function
evaluations more than those used by the IDCClust algorithm.

All algorithms were implemented in Fortran 95, compiled using the g95 compiler and the
calculations were carried out on a 2.90 GHz Intel Core i5-3470S machine with 8 GB of RAM. We used
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12 data sets in numerical experiments, with brief description as given in Table 1. Their detailed
description can be found in [22, 26]. Data sets contain only numeric attributes and do not have missing
values. In these data sets, the number of attributes ranges from 2 to 128 and the number of data points
ranges from hundreds (smallest 150) to hundreds of thousands (largest 434,874).

The following notations are used to present computational results:

m is the number of observations (data points);

n is the number of attributes;

k is the number of clusters;

frest (Multiplied by the number shown after name of data set) is the best known value of the
cluster function (3) (multiplied by m) for the corresponding number of clusters;

The sign “-’shows that an algorithm failed to compute clusters in the given time frame.

The error E, is computed as:

E,= M x 100%,

fbest

where f, is the value of the clustering function f;, obtained by an algorithm A. If E, = 0, then an
algorithm finds the best known solution.

Table 1. A brief description of the data sets.

Data sets m n
Iris Plants 150 4
TSPLIB3038 3038 2
Page Blocks 5473 10
Gas Sensor Array Drift 13910 128
EEG Eye State 14980 14
Letter Recognition 20000 16
KEGG Metabolic Relation Network 53413 20
Shuttle Control 58000 9
Pla85900 85900 2
Localization Data for Person Activity 164860 3
Skin Segmentation 245057 3
3D Road Network 434874 3

We computed up to 10 clusters in Iris Plants data set and up to 25 clusters in other 11 data sets. The
CPU time used by the algorithms is limited to 20 hours. Results for cluster function values found by
different algorithms are presented in tables 2 and 3. In these tables, for brevity, IDC stands for IDCClust,
SM for SMOOTH and MS for MS-KDM algorithms.

Table 2 presents results for data sets with m < 20,000. In two smallest data sets, Iris Plants and
TSPLIB3038, all algorithms were equally successful. They were able to find the best solutions with
high accuracies almost in all cases. On the Page Blocks data set, which has no well separated clusters,
the SMOOTH algorithm is the most successful. The IDCClust algorithm is able to find the near best
solutions, and the MS-KMD algorithm fails in most cases. On the Gas Sensor Array Drift data set,
which has the largest number of attributes among all the data sets, the MS-KMD algorithm was the
most successful. Although the SMOOTH algorithm found the best solution, it calculated only seven
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clusters within the 20 hours time period. Outcomes by the IDCClust algorithm were the worst in this
data set.

Table 2. Best cluster function values and errors.

k oest Eipc Esy Eys k Joest Eipc Esy Eys
Iris (x 10%) TSPLIB3038 (x 10°)
2 21670 0.00 0.00 0.00 2 37308 000 0.00 0.00
3 15920 000 0.00 0.00 3 30056 000 0.00 0.0
4 13650 0.00 0.00 0.00 5 22551 0.00 0.00 0.00
5 12460 000 0.96 0.00 7 18932 001 0.02 0.00
6 11530 0.00 0.00 0.00 10 15447 054 0.03 0.00
7 10620 000 0.00 0.00 12 13940 0.75 0.18 0.00
8 10010 000 030 0.00 15 12295 0.03 010 0.00
9 09510 000 0.63 0.0 20 1.0595 0.00 0.02 0.16
10 0.9070 0.00 044 0.00 25 09435 0.18 0.08  0.00

Page Blocks (x 107) Gas Sensor Array Drift (x 10°)
2 0.8414 0.00 0.00 25.28 2 2.2743 0.95 0.00 0.00
3 0.6747 0.00 0.00 0.00 3 1.8987 0.88 0.00 0.00
5 0.4882 0.03 0.00 0.00 5 14508 8.37 0.01 0.00
7 0.3909 0.68 0.00 5.22 7 12371 1.95 0.01 0.00

10 03170 0.16 0.00 1348 10 1.0653 4.76 - 0.00
12 02849 148 0.00 1478 12 09765 6.77 - 0.00
15 0.2662 127 0.00 2294 15 0.8873 7.50 - 0.00
20 0.2193 242 0.00 25.30 20 0.7957 6.15 - 0.00
25 01979 251 000 28.38 25 07313 5.34 - 0.00
EEG Eye State (x 107) Letter Recognition (x 10°)

2 0.5289  0.00 0.00 1546 2 0.4833 0.00 0.02 0.00
3 0.4197 0.00 0.00 0.00 3 0.4576  0.00 5.64 0.04
5 0.2944  0.00 0.00 0.00 5 0.4225 1.61 8.75 0.00
7 0.2493 0.00 0.00 4.93 7 0.4038 1.36 6.71 0.00
10 0.2173 0.00 0.00 13.78 10 0.3778 0.00 8.69 0.23
12 0.2090 0.01 0.00 13.13 12 0.3644 0.00 7.76 0.47
15 0.1966 0.36 0.00 23.10 15 0.3519 0.00 3.80 0.25
20 0.1827 0.03 0.00 22.99 20 03329 0.00 4.45 0.28
25 01740 011 0.00 26.83 25 0.3188 0.00 3.35 0.57

The performance of the IDCClust and SMOOTH algorithms on the EEG Eye State data set was
similar, whereas MS-KDM failed in this data set. The IDCClust and the MS-KDM algorithms
showed a similar performance on the Letter Recognition data set, and the SMOOTH algorithm failed
to find the best or near best solutions in most cases. These results show that optimization based
clustering algorithms are not always efficient in data sets with the large number of attributes, as large
scale optimization problems are required to be solved at each iteration of the incremental algorithm.

Results for the data sets with m > 50,000 are presented in Table 3. The MS-KMD algorithm
demonstrated a good performance on the Pla85900 data set, failed on two other data sets: Shuttle
Control and KEGG Metabolic Relation Network. This algorithm was not applicable to very large
data sets and in such data sets it cannot be considered as an alternative to the other two algorithms.
The SMOOTH algorithm was successful on all the data sets except the KEGG Metabolic Relation
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Network with k = 7,10 and the 3D Road Network with k = 20, 25. Overall, the IDCClust algorithm
demonstrated the best performance on all the data sets withm > 50,000.

Table 3. Best cluster function values and errors (continued).

k [oest Eipc Esy Eys k fpest Eipc Esy Eyns
KEGG Relation Network (x 10°) Shuttle Control (x 107)
2 35860 0.12 1.08 0.00 2 0.3891 0.00 0.01 0.00
3 27979 0.27 0.04 0.00 3 0.3443 0.00 0.02 247
4 20779 0.00 1.26 0.00 5 0.3001 058 072  0.00
5 17222 114 2.78 4.93 7 0.2624 0.01 000 114
6 14497 0.00 3.70  13.78 10 02311 0.00 0.03 352
7 13294 0.00 0.73  13.13 12 02172 031 000 214
8 12130 0.14 0.00 23.10 15 01973 134 000 239
9 10765 0.00 0.06  22.99 20 01763 102 000 6.73
10  0.9894 0.00 0.64  26.83 25 01603 0.00 0.00 1051

P1a85900 (x 1019) Localization Data (x 10°)

2 2.0656 0.00 0.21 0.42 2 1.7626  0.00 0.00 -
3 1.6259 0.00 0.14 0.02 3 15151 0.00 0.00 -
5 1.2571 0.12 1.77 0.00 5 1.2717 0.00 0.00 -
7 1.0615 0.00 0.83 0.53 7 1.1044 0.00 0.00 -
10 0.8946 0.00 1.50 0.07 10 0.9612 0.01 0.00 -
12 08169 0.15 1.40 0.00 12 0.9050 0.18 0.00 -
15 0.7330 0.07 1.59 0.00 15 0.8477 0.01 0.00 -
20 0.6362 0.22 1.27 0.00 20 0.7709 0.00 0.07 -
25 05709 0.00 1.40 0.05 25 0.7192 0.00 0.18 -
Skin Segmentation (x 107) 3D Road Network (x 10°)

2 2.3069  0.00 0.00 - 2 3.7950 0.00 0.00 -
3 1.8485 0.00 0.00 - 3 2.6869 0.00 0.00 -
5 1.3539 0.00 0.00 - 5 1.7861 0.00 0.00 -
7 1.0504 0.00 0.00 - 7 1.3790 0.00 0.00 -
10 0.8490 0.00 0.05 - 10 1.0719 0.00 0.00 -
12 0.7565 0.00 0.03 - 12 0.9494 0.00 0.00 -
15  0.6799 0.00 0.03 - 15 0.8248 0.01 0.00 -
20 0.5940 0.00 0.01 - 20 0.7006 0.00 2.35 -
25 05284 0.00 0.00 - 25 0.6243 0.00 1.78 -

Fig. 1 depicts the dependence of the number of distance function evaluations on the number of
clusters for the IDCClust and SMOOTH algorithms. We do not include the MS-KMD algorithm,
since its CPU time and the number of distance function evaluations were fixed beforehand. This
figure demonstrates that in most cases, specially in three largest data sets, the SMOOTH algorithm
required more distance function evaluations than the IDCClust algorithm.

The dependence of the CPU time used by algorithms on the number of clusters are given in Fig.
2 In general, on large data sets, the IDCClust algorithm required less CPU time than the SMOOTH
algorithm. As the number of attributes increased, both algorithms became more time consuming.
However, in this case the SMOOTH requires significantly more CPU time than the IDCClust. This
is due to the fact that the smooth approximations of clustering functions in the SMOOTH algorithm
were more complex than those in the IDCClust algorithm.
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6. Conclusion

An algorithm for solving clustering problems with the similarity measure defined by the L;-norm
was introduced. This algorithm was based on an explicit DC representation of the clustering functions.
These functions were complex honsmooth nonconvex whose smoothing might require a large number
of parameters. However, in the DC representations of clustering functions first the DC components
were simple convex nonsmooth functions which could easily be smoothed using only one smoothing
parameter. Such an approach allowed one to define a partial smoothing of the clustering functions
whose Clarke subgradients could be efficiently computed.

An optimization algorithm for finding Clarke stationary points of clustering problems was
designed and its convergence behavior was studied. An incremental clustering algorithm was
developed using the optimization algorithm. The proposed clustering algorithm was tested and
compared with other clustering algorithms using several real world data sets including those with
large number of data points. Two algorithms, used for comparison, were the multi-start k-medians
algorithm and an algorithm based on smoothing of the clustering functions without using its DC
decomposition. Results demonstrated that the proposed algorithm significantly outperformed the
multi-start k-medians algorithm on large data sets although on small data sets their performances
were similar. The proposed algorithm outperformed the second algorithm on large data sets as well
as on data sets with large number of attributes.

Numerical results demonstrate that the proposed algorithm was efficient for clustering on data sets
containing hundreds of thousands of data points. However, it also had some limitations. The algorithm
was time consuming on data sets having large number of attributes (hundreds and more) and/or with
large number of data points (millions and more). The algorithm for minimization of clustering
functions converged to Clarke stationary points of these functions. The study of algorithms that can
guarantee convergence to inf-stationary points of these functions will be subject of future research.
Calculation of such stationary points may improve the quality of the solution obtained by the
incremental algorithm.

The Fortran source code of the proposed algorithm is available by request from the authors.
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