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Simulation of Pedestrian Dynamics with Macroscopic
and Microscopic Mathematical Models
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Here, we collect two parts of a research project on the pedestrian flow modeling. Rapid growth in
the volume of public transport and the need for its reasonable, efficient planning have made the
description and modeling of transport and pedestrian behaviors as important research topics in
the past twenty years. First, we present a macroscopic model for the pedestrian flow based on
continuum mechanical balances. Second, we present a new microscopic modelling method to
describe the interaction among pedestrians in conflicting situations. A local navigation based on a
continuous density estimator is adopted for the configuration of pedestrians’ temporary route
choices on the tactical level. On the operational level, a balancing mechanism is installed to ensure
correct execution of the planned position transitions of the pedestrians. A comparison of the test
results of our simulation with a real-world video clip is provided.
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1. Introduction

In a close cooperation with engineers we investigate the mathematical description of pedestrian
movement by

1. data generation with real world experiments for model validation and parameter calibration,
2. development of

(a) microscopic mathematical models,

(b) macroscopic mathematical models.

We managed the experiments with about 300 students of the TU Berlin and recorded the different
constellations of pedestrian streams by a multi-trace recorder as base for generation of individual
tracks and a density estimation.

As microscopic models we discuss grid-based approaches rooted in cellular automata and a second
ansatz with a combination of force-based and graph-based approach. The microscopic models are
discussed in detail, for example, in Chen et al. [3] and L&mmel and Plaue [14].
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Here, we are focused on macroscopic models based on a set of pedestrian-specific coupled partial
differential equations. The first discussed model is based on the mass balance and the considered
guantities are the pedestrian density and fluxes which give information about the velocities of
pedestrian groups.

2. A Compressible Macroscopic Model

This macroscopic approach is based on a set of pedestrian-specific coupled partial differential
equations. The equations are not derived from the Euler-/Navier-Stokes equations known from fluid
and gas dynamics. The specific situation of multi-destination pedestrian crowds with crossing streams
requires the development of appropriately adapted methods. This has been targeted by the use of
simple heuristics.

Typical applications of these approaches include real-world scenarios like airports, shopping
malls, middle to large size buildings, etc., where the participants (i.e., the pedestrians) do not exhibit
an overall unanimity and (may) have different and multiple destinations.

Beyond the modeling of the above-mentioned problems, a particular aim of this project will be the
development, implementation and test of appropriate computer-based simulation models.

2.1. The Transport Equation

Perceiving pedestrian flows as a transport problem, we start with the governing equation that
describes the mass flow as

dp;
6_19l +V- (o) =0, @)

where 9 denotes the time, and i € {1, ..., n} with n being the number of pedestrian “types” or “species”
distinguished by certain properties. The desired velocity would be a frequent example of such a
property. Furthermore, p; is the current density and v; is the current velocity of a species in a given
computational domain.

Since pedestrian dynamics cannot be entirely described as a physical phenomenon, the parts of the
equation can do well with some discussions.

2.2. Measuring Pedestrian Density

mass

In physics, mass density p has units [p] = o However, this does not seem to be the best fit for

mass

the problem considered here. The definition [p] = p— used, for example, in Moussaid et al. [15],

similarly includes “mass” which the authors needed to model inertial effects, but are not included in our
model.

Concerning pedestrian inertial mass, we require the following assumption:


http://dx.doi.org/10.29252/iors.8.2.25
http://iors.ir/journal/article-1-538-en.html

[ Downloaded from iors.ir on 2026-01-30 ]

[ DOI: 10.29252/i0rs.8.2.25 ]

Simulation of Pedestrian Dynamics 27

Due to the smoothness of the controlling fields, we assume that it is not necessary to describe mass
(inducing inertial behavior in the model). This way, we assume that the pedestrians may follow (adapt
speed and heading) to the controlling fields without significant lag by means of internal impetus,
decision and physical strength.

Therefore, one natural way to measure the pedestrian density in this setting is to use [p] =
%, which implicitly relies on a certain amount of homogeneity of the pedestrian crowd in the

considered sample. An even smarter approach is presented in Predtechenskii and Milinskii [17] by
defining the area that a specific pedestrian occupies. This area depends on, for example, whether the
pedestrian is a child, an adolescent or an adult, which cloths the pedestrian wears (Ssummer or winter

cloths), how much luggage the pedestrian carries and so on. This yields an appropriate dimensionless

__ pedestrians’ needed area . . . . .
measure, [p] = T — . Since the area occupied by a pedestrian is not always readily

available as input, we choose the former definition of density as pedestrians per area.

In our model, we use normalized densities: p; , p € [0,1] withp = ¥, p;. A value of p = 1 would

for instance mean 5.4 %, according to Weidmann [22], and up to 10 222851305 o ccording to

other sources (see, e.g., Schadschneider et al. [21] for a discussion).

2.3. Transport Velocity

The primary goal is to find a sensible functional relation v; = v;(p;, ..., p,) that yields a nonlinear
system for realistic cases.

In the literature, one frequently discriminates between a planned (e.g., “external” in Cristiani et al.
[5] or “tactical” in Schadschneider et al. [21]) and an instantaneous (e.g., “intelligent” in Cristiani et al.
[5] or “operational” in Schadschneider et al. [21]) velocity. In our opinion, this differentiation makes
sense in the context of categorizing the cause of an action taken by a pedestrian.

Our approach is slightly more pragmatic and accounts for three different types of decisions.
Pedestrians

(1) choose a direction they wish to go,
(2) choose a speed for walking in the chosen direction based on local conditions,
(3) alter speed and walking direction in order to locally avoid densely populated areas (prefer the
direction of —Vp).
Therefore, we decompose the velocity as follows:
V; = alVd: - binl, (2)
where

V € [0,1] is a normalized speed determined by a fundamental diagram (see Section 2.6),

d! is a unit vector field pointing into the direction of the desired heading,


http://dx.doi.org/10.29252/iors.8.2.25
http://iors.ir/journal/article-1-538-en.html

[ Downloaded from iors.ir on 2026-01-30 ]

[ DOI: 10.29252/i0rs.8.2.25 ]

28 Barwolff, Chen and Schwandt

d! is a directional vector field for local correction (not necessarily of unit length; see below) (since it
depends on the total density p, it is common to all pedestrian species),

a; and b; are constants: a; stands for the absolute value of the wished velocity and b; is a measure for
avoiding regions of high density,

W =1 —V reflects the operational shift from wanting to reach the desired target to reacting to local
encounters with other pedestrians at high densities.

Summarizing this, the term a;Vd! stands for the gradient driven part of the velocity and b;Wd!
decries the influence of high density regions on the velocity of pedestrians.

A model for two pedestrian species with just the a;V'd! term present has been investigated in Berres
et al. [1] with a focus on discussing the mathematical foundation. This investigation highlights some
shortcomings of the model with respect to the simulation of real-world scenarios. The authors suggest
to introduce (cross) diffusion terms in order to solve these problems. Since the meaning of these terms
in the context of real-life applications seems to be obscure, here we prefer to introduce the b; W d! term.

2.4. Desired Heading

The term d% describes the pedestrian’s choice of a walking direction, and is based on spatial
information from the vicinity and the global environment of the pedestrian:

2P @) =10 (), 3)
5:9) = ) o (9), @
V,(9)

&) () = {1V @)’ if V()] # 0,

random unit vector, if |[V¢;(9)| = 0.

With the formula (4) we add the different potentials coming from global influences, like the shape
of the considered domain or local influences, like the local density.

The subscript j of ¢]@ (9) denotes the influence type (for example, global, local, etc.), and the
superscript i denotes the considered species.

Therefore, according to the assumption of continuous influences, d{ is based on source and boundary
terms of j (partially) solved Poisson equations for each pedestrian species i (reflecting j different

influencing factors). The aj(i) are constant weights, and the f].(i) (9) are source terms derived from

spatially distributed information—for example, the density p;, (1) of some pedestrian species. This kind
of flow, the direction of which is derived from a potential, has been investigated in Hughes [9].

The parameters in the above equations have to be chosen very specifically, and finding appropriate
settings is an open task for the application of this model.
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With a special choice of the right hand side of (3), we can model global or local influences by
potentials. A detailed discussion of this point is given in Huth et al. [10].

2.5. Introducing the Gradient Term

There are a number of possible approaches to introduce a gradient term. Notable are the following
two:

Vp(®,x)
d'(®) =4 1Vp(d,x)|’ if [Vp (9, x)| > 0, 5
% 0. if V08, )| = 0,
p(d,x)
d') = |vp@, o TIVPEOI> 1, o

Vp(¥9,x), otherwise.

Concerning (5), it has to be noted that d'(9, x) is not necessarily continuous with respect to x at
points, where |Vp(99, x)| = 0. Another problem obviously present with this term is that it may show
large scatter where the density is high. This can lead to the violation of the condition p;, p € [0,1],
because of numerical overshooting. Another risk is the numerical oscillation of the solution (which
might be interpreted as remaining erratic pedestrian activity at high densities in certain situations). This
term might be viewed as carrying some random disturbances as discussed in Helbing et al. [7] or
Radzihovsky and Clark [18], which produces less effective motion (stronger clogging tendency due to
the “freezing by heating effect”, discussed there). The measurement of the mobility there did not show
an increase of flux with more “thermal” motion at all. This is due to the inhibition of lane formation
because the effect of lane formation yields an enhancement of flux. The observed “freezing by heating
effect” has been considered for modeling panic situations, where it might well make sense. However,
such scenarios are beyond the scope of this paper.

The gradient term defined by (6) is more likely to be the rule applied by pedestrians under normal
conditions, because it is more efficient than the term given by (5).

Another argument in favor for (6) is given by the fact that the key idea of the macroscopic approach
is to average the behavior of several pedestrians, and thus to smooth out random disturbances caused
by single pedestrians at sufficiently large scales.

2.6. Walking Speed and Fundamental Diagram

A uni-directional flux can be defined by | = p;V(p4, ..., pr)d;. For the case of ] = pV(p)d, the
three quantities are related by a fundamental diagram. Fundamental diagrams have been determined by
a number of authors, with a relatively wide range of different results that cannot be used to deduce a
general law. According to Schadschneider et al. [21], the values found in the literature for the maximum
pedestrian density, where movement is possible at all, vary from 3.8/m? to 10/m2. Another
controversially discussed issue is how V' depends on whether movement is uni-directional or multi-
directional. For more details, see Huth et al. [11] and [12].
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Despite the issues described above, we have evaluated the impact of different fundamental diagrams
on guantitative and qualitative properties of the solutions. The differences are large enough to indicate
the need for a better approximation in this respect. The fundamental diagrams we have tested are

Vip) =1—p, V(p) = (1 —=p)? V(p) =1-p?
V(p) =1 —exp(—1.913/5.4(1/p — 1)). ©)

Note that, compared to Weidmann [22, p. 65], (7) employs the normalization conditions V € [0,1]
and p € [0,1].

2.7. Simulation Example —90° Encounter

The above discussed boundary value problem completed by appropriate boundary conditions (see
Huth et al. [10]) is solved using the Finite-Volume package OpenFOAM. Fig. 1 shows the results of
two pedestrian streams crossing with an angle of 90°. A formation of dynamically reconfiguring clusters
can be observed.
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Figure 1. Time steps 5, 10, 20, 40, 60 and 80 of the simulation of a 90° encounter of two species.
Shown are density and flux of one species coming from left. The length of the arrows indicates
flux strength, the grade of darkness indicates the density of the species. The crossing species
coming from bottom is located in the light gray or white regions of the area.
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3. Microscopic Modelling

Pedestrian dynamics as an interdisciplinary research field studies the human social behavior from
a mathematical (or engineering) perspective. In the microscopic category, the social force model
Helbing et al. [6], defined in a continuous space, has been a forerunner. In this model, the interaction
among the pedestrians is considered to be the result of physical forces in the context of human social
behavior. The social force model, when applied to describe the local interaction among the
pedestrians, can be combined with further simulation components such as cognitive modelling,
proposed by Moussaid et al. [15]. In the same microscopic category, cellular automata (CA) models
were presented by Burstedde et al. [2], KelRel et al. [13], Schadschneider [19] and their extensions
were established on discrete geometric structures, to be more exact, on homogeneous grids. The state
evolution of the grid cells can thus be used to describe the system dynamics respecting the pedestrians.

A differentiation of the pedestrian behavior has been elaborated in Hoogendorn and Bovy [8]. At
the highest level, which is called the strategic level, pedestrians’ activity patterns concerning concrete
route planning and signals indicating departure and arrival are studied. On the tactical level, activity
scheduling and temporary route choice become the concern. On the operational level, walking
behavior of the pedestrians as the result of local interaction among them are studied. Incidents on the
strategic level are considered as a priori knowledge in the current text. Our study will concentrate on
the intermediate level and the lowest level.

3.1. Operational Level

Our approach is defined on a square grid similar to the geometric structures in the CA models. In
discrete form, position transition can be thus written as (dx, dy) with dx, dy € Z, measured in the
grid cell length. In case dx,dy € {—1,0, 1}, the position transition is referred to as an elementary
step. The pedestrians to be simulated are sometimes called particles.

Most existing CA models assume a maximum discrete speed of v, = 1, that is, in a simulation
cycle, only elementary position transitions (sometimes the diagonal moves dx,dy € {—1,1} are
excluded in addition). CA models construct, dynamically for each particle, a so-called transition
matrix which indicates the particle’s preference of the elementary steps at the current moment:

P-+ Do+ DP++
P = <P—,0 Poo P+,0 ),
P-—- Po- D+-

with subscripts of p addressing the possible elementary steps, where 1 and —1 are shortened to signs.
The transition matrix items are to be normalized to sum up to 1. In case of a potential conflict with
other particles, a solution will be sought by weighing the corresponding transition matrix items. An
underlying disadvantage of this construction is that, when a particle has more possible elementary
step choices, its transition matrix items will have lower weights, consequently in competition with
others — these may or may not have many possible elementary step choices — targeting a specific
destination grid cell position, it will have a smaller chance to be favoured in the conflict resolution.
Despite the similar geometric structure, our grid-based approach is completely different. On the
operational level, position transitions of the particles in a simulation cycle will be decomposed into
elementary steps of the individual particles. This decomposition should be carried out accurately,
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whenever possible. While elementary step execution of the particles is reciprocal, the elementary step
choices should be performed in a balanced manner for all the particles in a simulation cycle.

3.2. Balancing Elementary Steps

Our previous work Chen et al. [3] offered a general solution for v,,,x > 1. Respecting an arbitrary
position transition (dx, dy), the number of the elementary steps needed to realize it will be called its
topological length. We request that, in the ideal case, topological length and geometric length of an
arbitrary position transition should be equal.

Without loss of generality, we consider the case dx, dy > 0. On the operational level, the possible
elementary steps can be confined to one step in grid cell in the x-direction, one step in the y-direction
and one diagonal step in both directions. We assign probability numbers p,, p,, px, € [0, 1] to these
elementary steps which sum up to 1:

Px t Py t Pxy = 1. (8)
(Ar Ay)
g T
P
s gl
- / /
. Wy "f}\i’-"-‘i :-’/ =
1 > 4
py{ e pxyf,\t/ /\m
-1 -~
- -
- -
- ,-"/
— L
(00) 4
I Axr I

Figure 2. Neutralization of the topological length of a diagonal elementary step. Current
elementary steps are associated with probabilities p,, p, and p,,,, respectively.

Imposing the equality of topological length and geometric length, we have

(L + L) +py(1+ 1) +pey(T+ 1) =1, (9)

in which the geometric lengths of the current position transition and the rest position transitions after
a corresponding elementary position transition will be written as

[ =4/(dx)? + (dy)?,
L = /(dx — 1)2 + (dy)?,
I, =/(dx)2 + (dy — 1)?,
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lxy = \/(dx - 1)2 + (dy - 1)2;

see Fig. 2. In addition, we request that the likelihood to carry out an axis-parallel elementary step should
correlate with the geometric lengths of the components dx and dy, and in this sense, we have the next
bounding condition:

Py - dx = py - dy. (10)
Solving (8) - (10), we have
I =1y —1
px )
Ay Ay

Lo+ 5oty — (1+72) Ly

Ay
py = _px;

An elementary step can be performed accordingly. It is to be noted that an elementary step choice
may or may not be performed successfully, depending on the grid cell occupancy by the other
particles in the system geometry.

3.3. Balancing Collection Position Transitions

To perform the elementary step choices for all the particles on a balanced basis, the simulation
cycle will be divided into m equal intervals (m = vp,,%). An individual particle at a current discrete
speed v (0 < v < Ypax Vmax @nd v not necessarily integers) is expected to perform v successful
elementary steps by which the planned position transition in the simulation cycle with a geometric
length of v can be realized. Chen et al. [4] proposed the following procedure.

procedure OPERATE:
parameter: a collection of particles;

mark all particles as “unprocessed”;
initialize local variable for each particle a < 0;

[ <m;
whilei > 1
do
process all particles marked “unprocessed” by calling
procedure OPERATE_SINGLE with parameter i;
i<i—1;
enddo

return

The next procedure processes the individual particles separately.
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procedure OPERATE_SINGLE:
parameter: particle (each with a local variable a), i;

if position transition realized
mark particle as “processed”;
else
attempt an elementary step with probability min(?, 1);
if elementary step execution is successful
increment a;
fi
fi

return

Here, the parameter i serves as a time stamp. We see that an unsuccessful elementary step in the
current simulation cycle would lead to a higher probability for a reattempt in the next time interval in
the simulation cycle. Consequently, this yields a solution for the conflicts among the particles on the
operational level. The position transitions of the particles will be realized as much as possible.
Conflict resolution on the intermediate level will be detailed in the following text.

3.4. Tactical Level

On the tactical level, temporary route choices targeting new grid cell positions will be prepared
for the particles in every simulation cycle.

3.4.1. Continuous Density

We will propose a navigation method for the particles to choose their temporary destinations for
the next simulation cycle. The method is based on continuous density estimation. First, we go over
the notion of density estimation.

In an observation area Q. € R? populated with a collection of particles, the global density can be
estimated by counting the number of the particles. In analogy, the local density respecting a given
neighborhood can be calculated. However, discrete local density calculated in such a way has poor
smoothness.

Let d; denote the distance from particle with label i to its nearest neighboring object (this can be
a physical obstacle or another particle) in the whole observation area. The position of this particle
will be written as x;. Let I denote the set of the particle labels. Our previous work Plaue et al. [16]
suggested a continuous density estimator induced by a collection of particles,

_Ixi=x[3

1 1
=_ .e (Ady? 11
p1() HE aayz ¢ (12)
L

with an additional smoothing parameter A (1 > 0). An advantage of (11) is that, with d; — 0 (that is,
the particle crowd becomes infinitesimally dense), it can be approximated by the discrete local density
at position x (consult the original text for the proof).
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On our square grid, we write cell position x = (x,y) in discrete form. In particular, particle
position has the discrete form x; = (x;, y;).Accordingly, distances will be converted into discrete

forms as well. In addition, we set 2 = 2. Now, we apply the definition of continuous density p on
cell positions in discrete form:

1 1 _(Xi—x)2+gyz'—Y)2

pry)==) =—-e 2di : (12)

On a fully populated grid, d; becomes 1 for all i € I.

On the other hand, let us consider the sum

(0.0)

_x?

S = E e 2,
X=—00

Numerical computation shows that the value of S is very close to v2m.* If the fully-populated grid
grows to be infinite, we will have

2
pr(x,y) = g,

whereas the right side has a value very close to 1. This is exactly what one might expect from the
discrete local density estimator mentioned above. Hence, the continuous density calculated in discrete
form (12) will be adopted. An example is provided in Fig. 3.

of{2fs ©.206 2% 0.257 of{Zy9 0.149 0.107 0.224 0{3%6 0(333
0.315  o{3y2 0.275 ©0.232 0.203 0.1a1 of1)s 0.242  0{4)5 0.3%0
o{3k0  ©0.323 o{2)s ©0.209 0.221 ©0.158 0.110 0.173 0.329 0o(3)2

ofapr  ©0.2909 o0.178 o©0.2a1 o{3p2 o0.220 o{1ps o0.108 o0.218  of2h2

P Fam, -
C'K2\95 0.204 0.114 0. 200 C'&Z)T 0.201 0.085 0.082 0.103 0.135

Figure 3. An example of continuous density (expressed in numerical values) in discrete form on a
square grid. Particles (shown in circles) belong to the same group. The boundary of the grid is
considered as obstacles in the evaluation of d;.

The particle label set I can be partitioned into subsets to address different groups of particles. Let
A be the label set of a group of particles. The set of the labels of the remaining particles — or, to be
more exact, the labels of the particles from all foreign groups — can be written as A. For a partition of

4 With eight identical significant figures. Mathematically, it is also possible to derive proper upper and lower
bounds for S.
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1 by exactly two groups A and B, there is simply A = B. The continuous density in discrete form
induced by an arbitrary group A of particles can be written as p, (x, y).

3.4.2. Local Navigation

It is verified by empirical observations that pedestrians tend to follow their own group members
and avoid members of foreign groups. Hence, we define the so-called density overlay as follows:

04(x,y) = pa(x,y) — palx, y). (13)

It is obvious that a grid cell position (x,y) associated with a small density overlay o4 will be
“attractive” for particles of group A. Therefore, on the tactical level, the grid cell position with the
lowest density overlay can be chosen as a temporary destination in the current simulation cycle.

We notice in (13) that the attraction incurred by one’s own group can be counterbalanced by the
foreign groups. This becomes a disadvantage when high densities are involved. We introduce two
empirical threshold values for group-induced densities 84 and 61 and revise (13) as

1’ 1fPOA(x'}’) = BA_ﬁ
: _ ) pa(x,y) +palx,y), ifpa(x,y) <6zand
o) = pi(x,y) > 6y, (14)
OA (X, }’); OtheI‘Wise.

We take a closer look of (14). In the first case, the induced density by foreign particles is above
the corresponding threshold value 64(x, y), the new overlay value will be 1, which is, as we recall,
the maximum possible density in approximation on the square grid, and thus the current grid cell
position (x,y) becomes absolutely unfavorable for all potential incoming particles. If otherwise, as
in the second case, the induced density of one’s own group p4(x,y) is above the corresponding
threshold value 6,4, the induced density of one’s own group will be considered as a negative element
and we will negate this (which is, the original negative term in (13) in evaluating the overlay).

Similar to the first case, the current grid cell position will be unfavorable as well. In the third case,
when induced density by one’s own group and foreign groups are both under the corresponding
threshold value, the original definition (13) will be applied. In fact, by setting 8, =657 =1
(approximated maximum possible density), (13) becomes a special case of (14).

We notice that o, (x, y) is not a continuous function. On the other hand, in modelling pedestrian
dynamics, the so-called personal space of the pedestrians must be respected. In other words, although
to some extent, pedestrians may be treated as particles, they should not be compressed exceeding a
certain limit. In discrete modelling of pedestrian dynamics, in particular in grid-based methods,
pedestrians are assigned exclusive spaces. The easiest solution is to define the grid cells with a size
resembling that of the exclusive personal space of the pedestrians. A common configuration for the
grid cell size in the existing CA models is 0.4 m by 0.4 m. Pedestrians’ influence on others diminishes
significantly outside the range of this personal space. Recalling that density can be considered as the
inverse of the space, it is not surprising that our density overlay function (14) is not continuous,
although the empirical threshold values 6, and 64 remain to be calibrated.
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3.5. Simulation Results

The system dynamics are defined by the collected state evolution of the particles in the simulation
system. On the tactical level, the simulation cycle is set to have a time length of one second. The
choice of such a time length enables the particles to make or adapt their decisions on the tactical level
in a way similar to real pedestrians. Within a simulation cycle, interaction among the particles
(pedestrians) is considered to be on the operational level.

Each particle will be given a global walking direction (pointing to an exit, etc.). In each simulation
cycle, similar to the cognitive modelling in Section 3, every particle searches for a grid cell position
within a perception area defined by a visibility angle ¢ from its current position at its default speed;
see Fig. 4 for an illustration. A grid position for the next position transition will be selected after
comparing the corresponding overlay values. The visibility angle ¢ has been defined to be 75°. The
size of ¢ has been chosen with consideration of real pedestrians’ possible changes of their walking
directions within a relatively short time span of one second (that is, the length of a simulation cycle)
to adapt themselves to the new environment. No further navigation method will be applied.

'l.'
AN
] #_Il
|
|
/ |
f i
4
—| |

Figure 4. Within its visibility angle ¢ = 75°, particle p on the tactical level faces the choice of a
proper grid cell position by density overlay

On the operational level, each particle will carry out a series of elementary steps through which
its local position transition should be realized. The execution of the elementary steps has already been
detailed in Section 3.1 and 3.2. The balancing mechanism ensures all particles equal chances in
carrying out their elementary steps in the simulation cycle when local conflicts among them are
inevitable.

During the Lange Nacht der Wissenschaften’ (German: Long Night of the Sciences) 2010 a couple
of experiments were conducted in the Mathematics Department building of Technische Universitat
Berlin. The experiments were video-recorded to show the interaction among pedestrians in groups.
In the experiments, participants were given instructions to walk in a certain direction (toward an exit,
etc.).Local position conflicts were resolved by participating pedestrians themselves without guidance
or interference from the experiment organizer.

5 Homepage https://www.langenachtderwissenschaften.de.
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Figure 5. Experiment and the Test Case
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