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Slope-Constrained Monotonic Regression 
 

O. Burdakov1,*, O. Sysoev2 

 

In many problems, it is necessary to take into account monotonic relations. Monotonic (isotonic) 

Regression (MR) is often involved in solving such problems. The MR solutions are of a step-shaped 

form with a typical sharp change of values between adjacent steps. This, in some applications, is 

regarded as a disadvantage. We recently introduced a Smoothed MR (SMR) problem which is 

obtained from the MR by adding a regularization penalty term. The SMR is aimed at smoothing 

the aforementioned sharp change. Moreover, its solution has a far less pronounced step-structure, 

if at all available. The purpose of this paper is to further improve the SMR solution by getting rid 

of such a structure. This is achieved by introducing a lowed bound on the slope in the SMR. We 

call it Smoothed Slope-Constrained MR (SSCMR) problem. It is shown here how to reduce it to the 

SMR which is a convex quadratic optimization problem. The Smoothed Pool Adjacent Violators 

(SPAV) algorithm developed in our recent publications for solving the SMR problem is adapted 

here to solving the SSCMR problem. This algorithm belongs to the class of dual active-set 

algorithms. Although the complexity of the SPAV algorithm is 𝑂(𝑛2), its running time is growing 

in our computational experiments almost linearly with 𝑛. We present numerical results which 

illustrate the predictive performance quality of our approach. They also show that the SSCMR 

solution is free of the undesirable features of the MR and SMR solutions. 
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1. Introduction 

 

A wide range of important applied problems is related to solving monotonic regression (MR) 

problem (see, e.g., [2, 8]). The applied MR problems are often associated with the monotonic data 

fitting, where it is assumed that there is an unknown monotonic response function 𝜒(𝑡) of an 

explanatory variable 𝑡. In this paper, we restrict our attention to the univariate case and suppose that 

𝜒(𝑡) is monotonically increasing, i.e., 

 

𝜒(𝑡′) < 𝜒(𝑡′′),   ∀𝑡′ < 𝑡′′. 
 

In practice, there are available observed values of the explanatory variable 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 and 

the corresponding sequence of observed response values 
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𝑎𝑖 = 𝜒(𝑡𝑖) + 𝜖𝑖,   𝑖 = 1, 2,… , 𝑛, (1) 

 

where 𝜖𝑖 is an observation error. These errors result in loss, for some indices 𝑖, in the expected 

monotonicity 𝑎𝑖 ≤ 𝑎𝑖+1. The MR problem is aimed at restoring the lost monotonicity by finding a 

least-change correction to the observed values. This can be formally stated as the quadratic 

optimization problem: 

 

min
𝑥∈ℝ𝑛

∑𝑤𝑖(𝑥𝑖 − 𝑎𝑖)
2

𝑛

𝑖=1

    s. t.    𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛, (2) 

 

where 𝑤 ∈ ℝ++
𝑛  is a vector of weights. 

 

The most efficient algorithm for solving (2) is a, so-called, pool adjacent violators (PAV) 

algorithm [1, 5, 7]. It belongs to the class of dual active set algorithms [3, 6]. The efficiency and 

popularity of the PAV algorithm result from its linear computational complexity, 𝑂(𝑛). This feature 

is especially important in case of large data sets. 

 

The solution to (2) resembles a step function, and on some intervals of 𝑡, the finite-difference 

approximation of derivatives may have too large values, like in Fig. 1(a) and Fig. 2(a). This poses a 

limitation of using the MR in some applications. To prevent from such too large values, a smoothing 

approach was proposed in [4, 9]. It is based on introducing the penalty term 

 

𝜇∑ (
𝑥𝑖+1 − 𝑥𝑖
𝑡𝑖+1 − 𝑡𝑖

)
2

𝑛−1

𝑖=1

 

 

in (2). Given a data set, the penalty parameter 𝜇 can be chosen, as suggested in [9], by making use of 

Bayesian modeling and a cross-validation technique. Following [4, 9], we denote 

 

𝜇𝑖 =
𝜇

(𝑡𝑖+1 − 𝑡𝑖)
2
 (3) 

 

and formulate the resulting smoothed monotonic regression (SMR) problem as 

 

min
𝑥∈ℝ𝑛

∑𝑤𝑖(𝑥𝑖 − 𝑎𝑖)
2

𝑛

𝑖=1

+∑𝜇𝑖(𝑥𝑖 − 𝑥𝑖+1)
2

𝑛−1

𝑖=1

    s. t.    𝑥𝑖 ≤ 𝑥𝑖+1,   ∀𝑖 ∈ [1, 𝑛 − 1]. (4) 

 

Here and later, the segment of indices {𝑖, 𝑖 + 1,… , 𝑗 − 1, 𝑗} is denoted by [𝑖, 𝑗]. The results of 

smoothing can be observed in Fig. 1(b) and Fig. 2(b). 

 

In [4, 9], we developed an efficient dual active-set algorithm for solving the SMR problem. It was 

called smoothed pool adjacent violators (SPAV) algorithm. Although its complexity was proved to 

be 𝑂(𝑛2), its running time was growing in our computational experiments almost linearly with 𝑛.  

 

The solution to the SMR problem looks smoother than the one for the MR problem. However, it 

still inherits some step-shaped structure of the MR solution, although with definitely shorter segments 

of piece-wise constant values. In the next section, we present a problem whose solution is smooth 
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and it is free of the step-shaped structure. This improvement is obtained owing to introducing a lower 

bound for the slope. 

 

2. Smoothed Slope-constrained MR Problem 
 

Consider an extra requirement to the fitted response which assumes that its slope is bounded below 

by a scalar ∆≥ 0. The value of ∆ is supposed to be chosen for a given data set using, for instance, a 

cross-validation technique as described in Section 4. The restriction on the slope can be written as 

 
𝑥𝑖+1 − 𝑥𝑖
𝑡𝑖+1 − 𝑡𝑖

≥ ∆. (5) 

 

In this case, the value of the smoothing penalty term should be zero when (5) is satisfied as equality. 

Taking this into account, we can formulate our smoothed slope-constrained monotonic regression 

(SSCMR) problem as the following strictly convex quadratic optimization problem: 

 

min
𝑥∈ℝ𝑛

∑𝑤𝑖(𝑥𝑖 − 𝑎𝑖)
2

𝑛

𝑖=1

+∑𝜇𝑖(𝑥𝑖+1 − 𝑥𝑖 − 𝛿𝑖)
2

𝑛−1

𝑖=1

    s. t.    𝑥𝑖 + 𝛿𝑖 ≤ 𝑥𝑖+1,   ∀𝑖 ∈ [1, 𝑛 − 1], (6) 

 

where 𝜇𝑖 is defined by (3), and 

 

𝛿𝑖 = ∆(𝑡𝑖+1 − 𝑡𝑖). (7) 

 

The solution to this problem, 𝑥∗, exists and is unique. Note that problems (2) and (4) are special cases 

of (6) for ∆= 𝜇 = 0 and ∆= 0, respectively. 

 

Denote 

 

𝑥𝑖
′ = 𝑥𝑖 + ∆(𝑡𝑛 − 𝑡𝑖)   and   𝑎𝑖

′ = 𝑎𝑖 + ∆(𝑡𝑛 − 𝑡𝑖),   ∀𝑖 ∈ [1, 𝑛]. (8) 

 

Then, as it can be easily verified, (6) is equivalent to the smoothed monotonic regression problem 

 

min
𝑥′∈ℝ𝑛

∑𝑤𝑖(𝑥𝑖
′ − 𝑎𝑖

′)2
𝑛

𝑖=1

+∑𝜇𝑖(𝑥𝑖
′ − 𝑥𝑖+1

′ )2
𝑛−1

𝑖=1

    s. t.    𝑥𝑖
′ ≤ 𝑥𝑖+1

′ ,   ∀𝑖 ∈ [1, 𝑛 − 1]. (9) 

 

In the next section, we adapt the SPAV algorithm to solving the SSCMR problem. 

 

3. A Dual Active-set Algorithm and Its Properties 
 

We shall refer to 𝑥𝑖 + 𝛿𝑖 ≤ 𝑥𝑖+1 and 𝑥𝑖
′ ≤ 𝑥𝑖+1

′  in (6) and (9), respectively, as constraint 𝑖 ∈
[1, 𝑛 − 1]. Obviously, each of them is active if, and only if, the other one is active. According to [4, 

9], each iteration of the SPAV algorithm is related to choosing an active set 𝑆 ⊆ [1, 𝑛 − 1] and solving 

the corresponding subproblem  
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min
𝑥′∈ℝ𝑛

∑𝑤𝑖(𝑥𝑖
′ − 𝑎𝑖

′)2
𝑛

𝑖=1

+∑𝜇𝑖(𝑥𝑖
′ − 𝑥𝑖+1

′ )2
𝑛−1

𝑖=1

    s. t.    𝑥𝑖
′ = 𝑥𝑖+1

′ ,   ∀𝑖 ∈ 𝑆. (10) 

 

Let 𝑥′(𝑆) denote the unique solution to this problem. It is obtained by solving a system of linear 

equations which originates from the optimality conditions.  

 

Given an active set 𝑆, there exist sets of consecutive indices of the form [ℓ, 𝑟] ⊆ [1, 𝑛] such that 
[ℓ, 𝑟 − 1] ⊆ 𝑆, ℓ − 1 ∉ 𝑆 and 𝑟 ∉ 𝑆. These sets are referred to as blocks. Note that a block may be a 

singleton when ℓ = 𝑟. The total number of blocks, denoted here by 𝑚, is equal to 𝑛 − |𝑆|. The block 

partitioning (segmentation) of [1, 𝑛] induced by 𝑆 can be represented as 

 

[1, 𝑛] = [ℓ1, 𝑟1], [ℓ2, 𝑟2], … , [ℓ𝑚, 𝑟𝑚], 
 

where ℓ1 = 1, 𝑟𝑚 = 𝑛 and  𝑟𝑖 + 1 = ℓ𝑖+1 for all 𝑖 ∈ [1,𝑚 − 1].  
 

Each block 𝑖 is characterized by its common value,  

 

𝑦𝑖 = 𝑥ℓ𝑖
′ = 𝑥ℓ𝑖+1

′ = ⋯ = 𝑥𝑟𝑖
′ , 

 

its common weight, 

  

�̅�𝑖 = 𝑤ℓ𝑖 +𝑤ℓ𝑖+1 +⋯+𝑤𝑟𝑖 , 

 

and its weighted average observed value,  

 

�̅�𝑖 =
1

�̅�𝑖
∑𝑤𝑗𝑎𝑗

′

𝑟𝑖

𝑗=ℓ𝑖

. 

 

Denoting �̅�𝑖 = 𝜇𝑟𝑖, we can write the subproblem (10) in the notation introduced above as 

 

min
𝑦∈ℝ𝑚

𝑐 +∑�̅�𝑗(𝑦𝑗 − �̅�𝑗)
2

𝑚

𝑗=1

+ ∑ �̅�𝑗(𝑦𝑗 − 𝑦𝑗+1)
2

𝑚−1

𝑗=1

, (11) 

 

where the scalar 𝑐 does not depend on 𝑦. The optimality conditions for (11) are given by the system 

of linear equations 

 

{
 
 

 
 
�̅�1(𝑦1 − �̅�1) + �̅�1(𝑦1 − 𝑦2) = 0,                                      
⋯                                                                                              
�̅�𝑗(𝑦𝑗 − �̅�𝑗) + �̅�𝑗−1(𝑦𝑗 − 𝑦𝑗−1) + �̅�𝑗(𝑦𝑗 − 𝑦𝑗+1) = 0,
⋯                                                                                              
�̅�𝑚(𝑦𝑚 − �̅�𝑚) + �̅�𝑚−1(𝑦𝑚 − 𝑦𝑚−1).                              

 (12) 

 

Its solution, denoted by 𝑦(𝑆), is unique because the objective function in (11) is strictly convex. 

Given 𝑦(𝑆), the corresponding values of the components of 𝑥 are computed as follows: 
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𝑥𝑗 = 𝑦𝑖(𝑆) − ∆(𝑡𝑛 − 𝑡𝑗),   ∀𝑗 ∈ [ℓ𝑖, 𝑟𝑖], 𝑖 ∈ [1,𝑚]. (13) 

 

The algorithm, as described in [4, 9], starts with any active set such that 𝑆 ⊆ 𝑆∗, where 𝑆∗ is the 

active set for the optimal solutions in (6) and (9). The simplest of the valid choices is 𝑆 = ∅. In each 

iteration, it solves the tridiagonal system of linear equations (12), and then it extends the set 𝑆 by 

additionally making active the constraints in (9) for which the strict monotonicity 𝑦𝑖(𝑆) < 𝑦𝑖+1(𝑆) is 

violated. This, like in the PAV algorithm, assumes merging the corresponding adjacent blocks, which 

is reduced to updating the coefficients that define the linear system (12). The corresponding number 

of arithmetic operations is proportional to the number of new active constraints. In contrast to the 

conventional active set algorithms, SPAV may enlarge the active set with more than one element at 

once. It operates with the block common values 𝑦𝑖, whereas the values of 𝑥𝑗 are computed only at its 

terminal stage. The outlined algorithm can be formally expressed as follows. 

 

Algorithm 1. 

input 𝑎 ∈ ℝ𝑛, 𝑤 ∈ ℝ++
𝑛 , 𝜇, ∆∈ ℝ+

1 , 𝑆 ⊆ 𝑆∗. 
Compute 𝑎′, �̅�, �̅� and �̅�. 

Find 𝑦(𝑆) that solves (12). 

while 𝑦(𝑆) is not strictly monotone do 

Set 𝑆 ← 𝑆 ∪ {𝑟𝑖 ∶ 𝑦𝑖(𝑆) ≥ 𝑦𝑖+1(𝑆)}. 
Update �̅�, �̅� and �̅�. 

Find 𝑦(𝑆) that solves (12). 

end while 

return 𝑥(𝑆) computed by formula (13). 

 

This algorithm inherits the main properties of the SPAV algorithm. Algorithm 1 can be viewed as 

a dual active-set algorithm, because it aims at attaining primal feasibility while maintaining dual 

feasibility and complementary slackness. This does not require manipulation of the dual variables. 

The number of iterations, in the worst case, is 𝑛, and the cost of each iteration is proportional to 𝑚. 

Thus, the complexity of Algorithm 1 is 𝑂(𝑛2). Since the actual number of its iterations, as it was 

observed in [4, 9] by the numerical experiments for the SPAV algorithm, is usually a very small 

fraction of 𝑛, the computational time of running Algorithm 1 grows in practice in proportion to 𝑛. 

 

4. Numerical Experiments 

 

The presented results of numerical experiments here are aimed at illustrating the predictive 

performance quality of our approach. We considered the following two monotonic response functions 

 

𝜒1(𝑡) = 𝑡
3   and   𝜒2(𝑡) = 1.2𝑡 + sin(𝑡). 

 

For each of these functions, a data set of 𝑛 = 500 observations were generated using formula (1). 

The observed values of explanatory variables 𝑡𝑖 were uniformly distributed in the intervals [0.5, 2] and 

[0, 15] for 𝜒1 and 𝜒2, respectively. In the both cases, the observation error 𝜖𝑖 was normally distributed 

with zero mean, while the standard deviations were 3 and 1, respectively.  

 

All components of the vector of weights 𝑤 were ones. The parameters 𝜇𝑖 in the SMR and SSCMR 

problems were calculated by formula (3). The parameters 𝛿𝑖 in the SSCMR problem were calculated 

by formula (7).  
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In the SMR problem, the value of 𝜇 was produced, for each data instance, by the cross-validation-

based technique especially designed in [9] for this problem. This gave us 𝜇 = 0.0142 and 𝜇 = 0.0320 

for the 1st and 2nd data sets, respectively. 

 

To choose the parameters 𝜇 and Δ in the SSCMR problem, we made use of the reduction of this 

problem to the SMR problem (9) formulated for the data set in which 𝑎𝑖
′ is defined by (8). This allowed 

us to apply, for any fixed value of Δ, the aforementioned cross-validation technique for finding the value 

of 𝜇(Δ) that provided the best, over 𝜇, cross-validation score. In the case of the 1st data set, the search 

over Δ for the best cross-validation score provided by 𝜇(Δ) resulted in Δ = 2.7 and 𝜇 = 0.0104. For 

the 2nd data set, we similarly obtained Δ = 0.6 and 𝜇 = 0.0049. We compared the results obtained for 

Δ chosen as described above with the results obtained for Δ equal to the minimal slope of the underlying 

response functions, which were Δ = 0.125 and Δ = 1.2 for 𝜒1 and 𝜒2, respectively. 

 

  
𝑡 𝑡 

(a) (b) 

  
𝑡 𝑡 

(c) (d) 

Figure 1. Results of regression on a data set (black dots) of the size 𝑛 = 500 generated for 𝜒1(𝑡) 
(black line). Solutions: (a) MR (red line), (b) SMR (blue line), (c) SSCMR for Δ equal to the 

minimal slope (yellow line), (d) SSCMR for the cross-validation-based choice of Δ (green line). 

 

The two data sets were processed by the PAV algorithm, the SPAV algorithm and Algorithm 1. The 

monotonic interpolation of the fitted values was made by making use of the prediction model proposed 

in [9]. The results are presented in Fig. 1 and Fig. 2 for 𝜒1 and 𝜒2, respectively. These figures show that 

the SMR solution is smoother as compared to the MR solution, although the graph of the former still 

has some flat segments (shorter than in the case of the MR solution). The SSCMR solution provides a 
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further smoothing, and it is free of flat segments. For the two alternative choices of Δ, the SSCMR with 

the cross-validation-based choice produces curves which look, in general, closer to the curves of the 

corresponding monotonic response functions, with a possible exception of the boundaries. 

 

  
𝑡 𝑡 

(a) (b) 

  
𝑡 𝑡 

(c) (d) 

Figure 1. Results of regression on a data set (black dots) of the size 𝑛 = 500 generated for 𝜒2(𝑡) 
(black line). Solutions: (a) MR (red line), (b) SMR (blue line), (c) SSCMR for Δ equal to the 

minimal slope (yellow line), (d) SSCMR for the cross-validation-based choice of Δ (green line). 

 

5. Conclusions 

 

Compared to the results of [4, 9], here we made a further progress in getting rid of some 

undesirable features of the MR solution. The improved fitted response was obtained in a numerically 

efficient way by adapting the SPAV algorithm to solving the SSCMR problem. 

 

We focused on the SSCMR problem associated with a complete (linear) order of observations. It 

admits a natural extension to the case of partial order. We plan to develop algorithms for solving the 

extended SSCMR problem. 
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