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Ordered Weighted Averaging Operators and their
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The definition of ordered weighted averaging (OWA) operators and their applications in decision
making are reviewed. Also, some generalizations of OWA operators are studied and then, the
notion of 2-symmetric OWA operators is introduced. These generalizations are illustrated by some
examples.
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1. Introduction and Preliminaries

Aggregation functions are indispensable in real-world applications where quantitative evaluation
data are required to be fused into a single numerical entry. Examples abound and include decision
making with the help of aggregating scores or preferences with respect to certain alternatives, or
compressing information by merging multiple origin inputs to simplify recognition and classification,
and so on, all with applications in artificial intelligence, risk management, decision making, statistical
inference and many other areas.

Literature on aggregation functions is abundant and we just refer to [2, 9] for basic concepts and
different types of such functions that have been considered. For the purpose of this contribution, an
aggregation function is any mapping A:[0,1]™ — [0,1] which is increasing in every coordinate with
A(0)=0 and A(1)=1.

The ordered weighted averaging (OWA) operator have been introduced by Yager [21] as a tool to
deal with the problem of aggregating multi criteria objectives to form an overall decision function.
This type of an aggregation function provides a parameterized family of aggregation functions which
has been studied in many works. The class of OWA operators includes minimum, maximum,
arithmetic mean, median and so on [6]. For an overview of results related to OWA operators see [4].
The applications of OWA operators can be seen in many areas. The most important area is decision
making. So far, several works such as [7, 11, 22] have been devoted to applications of OWA operators
in the decision making and programming problems.

There are several works in the literature in which OWA operators are used as superior aggregation
functions in the decision problems. This choice is mainly based on theoretical arguments. The OWA
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operator shares with other aggregation functions the properties of monotonicity and boundedness.
From these properties, the property of idempotency can be deduced. If an alternative has the same
evaluation in all attributes, this same value is also the overall evaluation of the alternative. The OWA
operator also has the property of symmetry; rearranging values across attributes does not change the
overall evaluation. This property known as is the main advantage of the OWA operator in literature.

Multi attribute decision making (MADM) methods are either compensatory or non-compensatory
by nature, and thus allow (or do not allow) weak performance in one attribute to be compensated by
good performance in other attributes. Using OWA operators, the possibility of compensation can be
controlled due to the structure of weights by using the concept of orness, that provides additional
flexibility for decision makers which is not possible in other models. Therefore, since the introduction
of the OWA operator to MADM problems by Yager [21], OWA operators became the new model for
aggregating multiple input arguments, presenting a unifying and generalizing formulation for
uncertain decision making problems [1] and acting as the common method for aggregating
information in multi attribute decision problems [16].

As said before, OWA operators can flexibly be used to represent compensatory as well as non-
compensatory preferences, and it can model different degrees of compensation among attributes.
Formally, this property is represented by the degree of orness of an OWA operator, which was already
defined by Yager [21]. The orness of an OWA operator (i.e., of a weight vector w = (wy, wy, ..., wy,)
of length n) is

n

1
orness(w) = mZ(n — Dw;.
i=1

The weight vector w = (1,0, ..., 0), which focuses only on the best attribute represents the
strongest possibility for compensation and has a degree of orness of one. Conversely, the weight
vector w = (0,0, ..., 1) represents a purely non-compensatory model and has an orness of zero.
Intermediate levels of orness correspond to situations in which some compensation of weak
performance in one attribute by better performance in other attributes is possible.

Considering the importance of this field, studying OWA operators seems appears to be necessary.
In this regard, in this paper, we recall the basic facts about OWA operators and review some of its
generalizations with the view of applications.

OWA operator is defined by

n
OWAw(xl, ey xn) = z Wixg(i); (1)

=1

where  o0:{1,..,n} - {1,..,n} is a permutation satisfying x;(1) == x5@), and w=
Wy, .., wp) € [0,1]", with Y72, w; = 1.

Observe that OWA operators can be characterized also axiomatically as symmetric comonotone
additive aggregation functions on [0,1]; see [8, 18]. This means monotone functions A:[0,1]™ —
[0,1] satisfying the boundary conditions A(0) =0, A(1) =1, which are symmetric, i.e.,
A(xy, s %) = A(X5(1), o r Xo(my), fOr any permutation o:{1,...,n} - {1,..,n} and any x¢€
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[0,1]™, and comonotone additive, i.e., A(x +y) = A(xX) + A(y) forany x,y,x + y € [0, 1]™ such that
(xi - xj)(yi - yj) >0, foranyi,j € {1,..,n}

Recall that OWA operators are also averaging, or equivalently, idempotent aggregation functions
[9], which means A(x,..,x) =x, for any x € [0,1]. Also, OWA operators are positively
homogeneous and piece wise linear [9]. However, OWA operators are generally not associative or
decomposable [6].

As shown in [8], OWA operators can be seen as Choquet integrals [3] with respect to symmetric
capacities too. It should be noted that dealing with a finite universe X = {1, ..., n}, functions f : X —
[0, 1] can be identified with vectors x € [0, 1], x; = f(i),i =1, ...,n.

Definition 1.1. [9] A capacity (fuzzy measure) m: P(X) — [0, 1] is a monotone set function which
satisfies in two boundary conditions, m(@) = 0 and m(X) = 1.

Hereafter, we may assume X = {1, ..., n}, unless stated otherwise.

Definition 1.2. [9] For a given vector x € [0, 1]™ and capacity m on X, the corresponding Choquet
integral is given by

n

Chm(x) = Z Xo (i) (m(Ea,i) - m(Ea,i—l)) , (2)

i=1

where o: {1, ...,n} — {1, ...,n} is a permutation such that x(1) = *** = X5(n), E50 = @, and for i =
1.1 Es; ={0(1),...,0(D)}.

It may happen that the permutation o is not unique. This fact does not harm the correctness of (2).
In fact, (1) and (2) coincide for each x € [0, 1]™ if and only if m(E,;) does not depend on the
considered permutation o [8]. This means that only cardinality of E,; matters, i.e., m(E) =
m(a(E)), for any E € P(X) and permutation o, o(E) = {a(i)|i € E}. Such capacities are called
symmetric. Now, it is enough to put w; = m(E,;) — m(E,,;_,) to see that

OWA,, = Ch,y,. 3)

Conversely, for any normed weighting vector w, it is enough to define a symmetric capacity
m: P(X) - [0,1] by

card(E)
mE= ) w,
i=1
to see the representation (3).

Any proper generalization of OWA operators should violate some of the mentioned properties of
the OWA operators. In the sequel, we restate some of the generalizations.
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2. Some Generalization
A simple but important generalization of OWA operators has been introduced in [20].

Definition 2.1. [20] A mapping M, ;:[0,1]" — [0,1] is called a generalized ordered weighted
aggregation (GOWA) operator of dimension n if

1
1

n
A
MW,A(le '"!xn) = (Z WixO'(i)) ’
i=1

where A is a parameter such that A € ] — 00, 0[ U ]0, +oo[. For 2 = 0, My, o(x) = [T} x
called power-root operator).

wi
oa(i

) (the so

Two special cases are of great significance. First is the case when 1 = 1, which gives
n
Mw,l(xll Ly xn) = 2 WiXs (i)
i=1

the standard OWA operator. The other important special case is when w; = % In this case, we have

n 1 N
My 2 (X1, s X)) = Z;x”(i) ,

i=1

™

which is the generalized arithmetic mean operator. Note that GOWA operators are commutative,
monotone, idempotent and, as a result, averaging operators [20].

Recently, a new kind of OWA generalization based on decomposition integrals has been
introduced [13]. This kind of OWA operator is based on the representation of OWA operators as
Choquet integrals with respect to symmetric capacities. In the next section, we review them.

2.1.7€-OWA Operates

Any non-empty set of non-empty subsets of X is called a collection. Any nonempty set H of
collections is called a decomposition system.

Definition 2.2. [5] Let a decomposition system H be fixed. For a capacity m on X, the corresponding
H-decomposition integral Iy ,,, is given by
Iyp i (X) = maxiz a;. m(4;)|(4;)ic) EH, a; =0, foreachi €], Z a1y, < x}. 4)
i€ ie]

Alternatively, we can write
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Iy m(X) = I‘{I‘g_)[( z{ a;.m(4;) |a; =0, foreachi €]/, Z{ a;. 1y, <xp = r{rle%(lq,m.
A€ A€

For any collection ¢, the functional I ,,, is positively homogeneous, monotone and piece-wise
linear, and thus also the functional Iy ,,, has these properties. Obviously, it is symmetric whenever
the capacity m is symmetric. In general, it need not be idempotent and neither an aggregation
function. However, due to the positive homogeneity, the mapping

17-[ m
A = d :
M L m(1)

[0,1]" - [0,1]

is an idempotent aggregation function whenever Iy ,,, (1) > 0.

Recall that due to [12], I3, ,, (1) = 1, for each capacity m, whenever the decomposition system H
is complete (i.e., each non-empty subset E of X is contained in at least one collection from #) and
any of its collections is formed by logically independent subsets of X (i.e., their intersection is non-
empty). Now, we introduce some decomposition systems and related decomposition integrals.

Example 2.1. [13] Let X = {1, ...,n}.

1. Let H® = {B|BisachaininX oflengthi}, i €{1,..,n}. As shown in [12], these
decomposition systems yield the only kind of decomposition integrals which are also universal
integrals in the sense of Klement et al. [10]. Note that I,.«) ,,, is the Shilkret integral [19],
while I m) ,, = Chyy, is the Choquet integral [3]. Note that I, ,,, is an aggregation function
for each capacity mand i € {1, ..., n}.

2. For®=AcX,letd, ={{A}}. Then,
Iy, m(X) = min{x;|i € A}. m(4).
and Iy, m is an aggregation function only if m(4) = 1.

Example 2.2. Let X = {1, ...,n}. We can introduce collections G; = {X} U {A |A € X, card(4) = i},
for i =0,..,n—1. Now, we can form the union of these collections which are decomposition
systems, H; = G; U ...U G;. Then, H,,_; = {A|A € X} = P(X). Note that for ; we get maximum
of operators, given by (4), corresponding to G4, ..., G;.

The symmetry of a considered capacity m does not imply the symmetry of decomposition
integrals; for a counter example, see [13]. In fact, it is also related to decomposition systems.

Definition 2.3. [13] Let : X — X be a permutation on X. For any non-empty E € X, denote E,; =
{o(i)|i € E}. For any collection B = {Ej, ..., Ex}, denote B, = {(E1)q, ---, (Ex) s} Similarly, for any
decomposition system H, denote H, = {B,|B € H}. A decomposition system H is called
symmetric if and only if H = H,; for any permutation ¢ on X.
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As an example, decomposition systems 2@, for all i = 1, ..., n, are symmetric, but it is not the
case for systems H, for A € X.

Definition 2.4. [13] Let H be a decomposition system on X such that X € B for some B € . Then,
I is called a saturated decomposition system.

Observe that the decomposition systems H () are saturated for all i = 1, ..., n, but not the systems
H, forA c X.

Definition 2.5. [13] Let H be a symmetric saturated decomposition system on X, and let m be a
symmetric capacity on X. Then, the functional H-OWA,,: [0, 1]™ — [0, 1], given by

I5tm (%)
H-OWA,(x) = 222,

is called a decomposition OWA operator. Here, w = (wy,...,w,) with w; = m({1}), w, =
m({1,2}) —m{1}), ...,w, = m({1,..,n}) —m{1,..,n — 1}),i.e,

card(E)

m(E) = Z w; E € P(X).
i=1
According to Example 2.1, # ™ generates the Choquet integral. So, H ™-0WA,, = OWA,, is

the standard OWA operator [13].

Example 2.3. [13] Decomposition systems H® and H @ are symmetric saturated and their
corresponding H-OWA,, operators are

f]-[(l)—OWA(Wl'l_Wl)(x, y) = max(w;x, w;y, min(x, y))
and
7'[(2)'OWA(W1,1—W1) (x,y) = OWA @, 1-wy) (x,y) = wy - max(x,y) + (1 — wy) min(x, y),
respectively.

This class of aggregation functions has the properties of symmetry, positive homogeneity,
idempotency, piecewise linearity, and monotonicity in weights. H'-based generalization of OWA
operators consist of well-known aggregation functions such as standard OWA operators in special
case, arithmetic mean. Also, by this generalization, several new aggregation functions can be obtained
[13].

2.2. OWAE,? Operator

Definition 2.6. [14] Let m: P(X) — [0, 1] be a capacity and let i € {1,2,...,2n — 1}. A product-
based integral I,(,‘l): [0,1]™ — [0, 1] is given by
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1900 = max Z oty (m (Boty) =m0 (Bgs,)) 11 < by <o <l =, ®

when i € {1, ..., n} with convention k, = 0, and is given by

2n—i
19600 = mind > o4y (m (Eosypia) = (Boky,) ) |11 < ki < <kopi S (6)
j=1

when i € {n, ...,2n — 1} with convention

m1n{r|xa(r) = 0} Xon) =0

Kan-iss = )
an-idl +1, otherwise.

Observe that if i = n, then from (5) or (6), we have I,S’f) = Ch,,,. Also,

I,(,f)(x) = max{x,(1).-M(Es 1), - Xo)- M(Egn )},
which is the Shilkret integral.

Considering normed weighting vector w € [0, 1]™, vector of cumulative weights assigned to w is
vector v € [0,1]", where, v; = wy, v, = Wy + Wy, ..., Uy = Wy + -+ wy,. Now, we can define a

generalization of OWA operators based on I,(,?.

Definition 2.7. [14] Let w € [0, 1]™ be a normed weighting vector and let v € [0, 1]™ be the related

cumulative weighting vector. For i € {1, 2, ...,2n — 1}, the OWA generalizations OWA(V?: [0,1]™
[0, 1] are given by

n
OWAS?(X) = max 2 X (k) vk] ij_l) 1<k <--<k;<ng

when i € {1, ...,n}, and is given by

2n—i
oWAY (x) = min Z x(k]_).(vk,.ﬂ_l - vkj_l) 1=k, <<k <n},
j=1

wheni € {n,...,2n — 1}
Observe that OWAE;‘) = OWA,, is the standard OWA operator and
owAY < owa®? < ... < owAl" Y,

Note that each OWAff,) is symmetric, positively homogeneous and translation invariant.
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Example 2.4. [14] Consider capacity m(A) :%, constant weighting vector w = (%%)
cumulative vector v = (1,3, E) and input vector x = (1,E, o — 0). Then,
nn n n—-1 n—-1

I
owaP (x) = max{ L€ {1,...,n}},

n—1n
n 3k
— n el
3n—-1)’
oWA? (x) = n(+ L )
_, otherwise,
3n

1
oWA (x) = 5

2.3. 2-symmetric OWA Operators

We prepare now a new generalization of OWA operators. In our approach, we generalize the
symmetry of a capacity m into 2-symmetry; see [15].

Definition 2.8. A capacity m: P(X) — [0,1] is 2-symmetric whenever there is a set I < X such that
forany E € X, m(E) depends on card(E N I) and card(E \ I) only.

Obviously, if I = @ or I = X, then the related 2-symmetric capacity m is a standard symmetric
capacity. Denote card(I) = k. Clearly, k € {0,1, ..., n} and for k € {0,1,...,n — 1} (i.e., I is a proper
subset of X), m can expressed by means of a monotone function as

m(E) =h ((card(E N 1I),card(E \ 1))),

where h:Dy - [0,1], Dy = {(i,/)|i €{0, .., k},j € {0,...,n—k}}, h((0,0)) =0 and h((k,n—
k) =1.

Now, we present the definition of 2-symmetric OWA operator.

Definition 2.9. Let m: P (X) — [0,1] be a 2-symmetric capacity. Then, the related Choquet integral
Ch,, : [0,1]™ - [0,1], given by

n

Chan () = ) g0 (R((1 = 1) = A((G = 1), G = D = G = D)),

i=1
is called a 2-symmetric OWA operator.

Also, 2-symmetric OWA operators can be obtained in a different way. Take a subset I of {1, ..., n},
I = {iy, ..., i}, and its complement I¢ = {j,, ..., jn—x}. We have the following definition.
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Definition 2.10. An aggregation function A: [0,1]™ — [0,1] is called 2-symmetric whenever for each
x € [0,1]™, we have A(x) = A(x,) for any of four permutations o € {a, 8, y, 6} such that

a(il) = iZ'a(iZ) = i3' ""a(ik—l) = ikﬁa(ik) = il'

ﬁ(ll) = iZ'ﬁ(iZ) = il!ﬁ(i3) = i3' 'ﬁ(lk) = ik'

YU =J2,v02) = Jjzr s YUn-k=1) = Jn-to ¥ Un-i) = j1,
(1) =J2.602) =j1,6(3) = Jjz r 6(Un-k) = Jn-k-

Due to [17], this means that A(x) = A(x,) for any permutation ¢ such that ¢(i) € I foranyi € I
anda(j) € I¢ forany j € I€.

Now, we can define 2-symmetric OWA operator 2-OWA as a 2-symmetric comonotone additive
aggregation function. Due to comonotone additivity, clearly it is a Choquet integral with respect to a
capacity m, m(E) = 2-OWA(1g), and this capacity is 2-symmetric in the sense of [15]. As also the
opposite claim is true, we have the following theorem.

Theorem 2.1. An aggregation function is a 2-OWA operator if and only if it is Choquet integral with
respect to some 2-symmetric capacity m.

Note that one can define p-symmetric aggregation functions in which p > 2.
3. Conclusion

The concept of OWA operators and some of their generalizations were reviewed. Also, the
definition of 2-symmetric OWA operators was introduced.

Acknowledgement

The second author acknowledges support from APVV-14-0013 and VEGA 1/0420/15 research
grants.

References

[1] Ahn, B.S. (2009), Some remarks on the LSOWA approach for obtaining OWA operator
weights, International Journal of Intelligent Systems, 24(12), 1265-1279.

[2] Beliakov, G. Pradera A., and Calvo, T. (2007), Aggregation Functions: A Guide for
Practitioners, Springer, Berlin.

[3] Choquet, G. (1953), Theory of capacities, Annales de I'Institut Fourier, 5, 131-295

[4] Emrouznejad, A., and Marra, M. (2014), Ordered weighted averaging operators, 1988-
2014: a citation-based literature survey, International Journal of Intelligent Systems, 29,
994-1014.

[5] Even, Y. and Lehrer, E. (2014), Decomposition-integral: unifying Choquet and the concave
integrals, Economic Theory, 56(1), 1-26.

[6] Fodor,J. Marichal, J.L., and Roubens, M. (1995), Characterization of the ordered weighted
averaging operators, IEEE Transactions on Fuzzy Systems, 3(2), 236-240.

[71 Fuller, R.(1996), OWA operators in decision making, In: C. Carlsson (Ed.), Exploring the
Limits of Support Systems, TUCS General Publications No. 3, Turku Center for Computer
Science, Abo, 85-104.


http://dx.doi.org/10.29252/iors.8.2.48
http://iors.ir/journal/article-1-540-en.html

[ Downloaded from iors.ir on 2026-01-31 ]

[ DOI: 10.29252/i0rs.8.2.48 ]

OWA Operators and their Generalizations

(8]
(9]
[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

Grabisch, M. (1995), Fuzzy integral in multicriteria decision making, Fuzzy Sets and
Systems, 69(3), 279-298.

Grabisch, M. Marichal, J.L. Mesiar, R., and Pap, E. (2009), Aggregation functions
(encyklopedia of mathematics and its applications), Cambridge University Press.

Klement, E.P. Mesiar, R., and Pap, E. (2010), A universal integral as common frame for
Choquet and Sugeno integral, IEEE Transactions on Fuzzy Systems, 18, 178-187.

Merigo, J.M. (2012), OWA operators in the weighted average and their application in
decision making, Control and Cybernetics, 41(3), 605-643.

Mesiar, R., and Stupnanova, A. (2013), Decomposition integrals, International Journal of
Approximate Reasoning, 54, 1252-1259.

Mesiar, R., and Stupnanov, A. (2016), Decomposition integral based generalizations of
OWA operators, Information Processing and Management of Uncertainty in Knowledge-
Based Systems, Volume 610 of the series Communications in Computer and Information
Science, 3-10.

Mesiar, R., and Stupnanova, A. Yager, R.R. (2015), Generalizations of OWA operators,
IEEE Transactions on Fuzzy Systems, 23(6), 2154-2162.

Miranda, P. Grabisch, M., and Gil, P. (2002), p-symmetric fuzzy measures, International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10, 105-123.

Reimann, O. Schumacher, C., and Vetschera, R. (2017), How well does the OWA operator
represent real preferences?, European Journal of Operational Research, 258(3), 993-1003.
Rotman, J.J. (2005), An Introduction to the Theory of Groups, 4th Edition, Springer, New
York.

Schmeidler, D. (1989), Subjective probability and expected utility without additivity,
Econometrica, 57, 571-587.

Shilkret, N. (1971), Maxitive measure and integration, Indagationes Mathematicae, 33,
109-116.

Yager, R.R. (2004), Generalized OWA aggregation operators, Fuzzy Optimization and
Decision Making, 3, 93-107.

Yager, R.R. (1988), On ordered weighted averaging aggregation operators in multicriteria
decision making, IEEE Transactions on Systems, Man. and Cybernetics, 18, 183-190.
Yager, R.R. (2009), Weighted maximum entropy OWA aggregation with application to
decision making under risk, IEEE Transactions on Systems, Man. and Cybernetics, 39, 555-
564.

57


http://dx.doi.org/10.29252/iors.8.2.48
http://iors.ir/journal/article-1-540-en.html
http://www.tcpdf.org

