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1. Introduction and Preliminaries 

 

Aggregation functions are indispensable in real-world applications where quantitative evaluation 

data are required to be fused into a single numerical entry. Examples abound and include decision 

making with the help of aggregating scores or preferences with respect to certain alternatives, or 

compressing information by merging multiple origin inputs to simplify recognition and classification, 

and so on, all with applications in artificial intelligence, risk management, decision making, statistical 

inference and many other areas. 

 

Literature on aggregation functions is abundant and we just refer to [2, 9] for basic concepts and 

different types of such functions that have been considered. For the purpose of this contribution, an 

aggregation function is any mapping 𝐴: [0,1]𝑛 → [0,1] which is increasing in every coordinate with 

A(0)=0 and A(1)=1. 

 

 The ordered weighted averaging (OWA) operator have been introduced by Yager [21] as a tool to 

deal with the problem of aggregating multi criteria objectives to form an overall decision function. 

This type of an aggregation function provides a parameterized family of aggregation functions which 

has been studied in many works.  The class of OWA operators includes minimum, maximum, 

arithmetic mean, median and so on [6]. For an overview of results related to OWA operators see [4]. 

The applications of OWA operators can be seen in many areas. The most important area is decision 

making. So far, several works such as [7, 11, 22] have been devoted to applications of OWA operators 

in the decision making and programming problems. 

  

 There are several works in the literature in which OWA operators are used as superior aggregation 

functions in the decision problems. This choice is mainly based on theoretical arguments. The OWA 
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operator shares with other aggregation functions the properties of monotonicity and boundedness. 

From these properties, the property of idempotency can be deduced. If an alternative has the same 

evaluation in all attributes, this same value is also the overall evaluation of the alternative. The OWA 

operator also has the property of symmetry; rearranging values across attributes does not change the 

overall evaluation. This property known as is the main advantage of the OWA operator in literature.  

 

Multi attribute decision making (MADM) methods are either compensatory or non-compensatory 

by nature, and thus allow (or do not allow) weak performance in one attribute to be compensated by 

good performance in other attributes. Using OWA operators, the possibility of compensation can be 

controlled due to the structure of weights by using the concept of orness, that provides additional 

flexibility for decision makers which is not possible in other models. Therefore, since the introduction 

of the OWA operator to MADM problems by Yager [21], OWA operators became the new model for 

aggregating multiple input arguments, presenting a unifying and generalizing formulation for 

uncertain decision making problems [1] and acting as the common method for aggregating 

information in multi attribute decision problems [16]. 

 

As said before, OWA operators can flexibly be used to represent compensatory as well as non-

compensatory preferences, and it can model different degrees of compensation among attributes. 

Formally, this property is represented by the degree of orness of an OWA operator, which was already 

defined by Yager [21]. The orness of an OWA operator (i.e., of a weight vector 𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑛) 

of length 𝑛) is 

 

orness(𝐰) =
1

𝑛 − 1
∑(𝑛 − 𝑖)𝑤𝑖

𝑛

𝑖=1

. 

 

The weight vector 𝐰 = (1, 0, … , 0), which focuses only on the best attribute represents the 

strongest possibility for compensation and has a degree of orness of one. Conversely, the weight 

vector 𝐰 = (0, 0, … , 1) represents a purely non-compensatory model and has an orness of zero. 

Intermediate levels of orness correspond to situations in which some compensation of weak 

performance in one attribute by better performance in other attributes is possible. 

 

Considering the importance of this field, studying OWA operators seems appears to be necessary. 

In this regard, in this paper, we recall the basic facts about OWA operators and review some of its 

generalizations with the view of applications.  

 

OWA operator is defined by  

 

OWA𝐰(𝑥1, … , 𝑥𝑛) = ∑ 𝑤𝑖𝑥𝜎(𝑖)

𝑛

𝑖=1

, (1) 

 

where  𝜎: {1, … , 𝑛} → {1, … , 𝑛} is a permutation satisfying 𝑥𝜎(1) ≥ ⋯ ≥ 𝑥𝜎(𝑛), and 𝐰 =
(𝑤1, … , 𝑤𝑛) ∈ [0,1]𝑛, with ∑ 𝑤𝑖

𝑛
𝑖=1 = 1. 

 

  Observe that OWA operators can be characterized also axiomatically as symmetric comonotone 

additive aggregation functions on [0,1]; see [8, 18]. This means monotone functions 𝐴: [0,1]𝑛 →
[0,1] satisfying the boundary conditions 𝐴(𝟎) = 0, 𝐴(𝟏) = 1, which are symmetric, i.e., 

𝐴(𝑥1, … , 𝑥𝑛) = 𝐴(𝑥𝜎(1), … , 𝑥𝜎(𝑛)), for any permutation 𝜎: {1, … , 𝑛} → {1, … , 𝑛}  and any  𝐱 ∈

 [
 D

O
I:

 1
0.

29
25

2/
io

rs
.8

.2
.4

8 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

31
 ]

 

                             2 / 10

http://dx.doi.org/10.29252/iors.8.2.48
http://iors.ir/journal/article-1-540-en.html


50 Kouchakinejad and Šipošová 

 

 

[0,1]𝑛, and comonotone additive, i.e., 𝐴(𝐱 + 𝐲) = 𝐴(𝐱) + 𝐴(𝐲) for any 𝐱, 𝐲, 𝐱 + 𝐲 ∈ [0, 1]𝑛 such that 

(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) ≥ 0, for any 𝑖, 𝑗 ∈ {1, … , 𝑛}. 

  

Recall that OWA operators are also averaging, or equivalently, idempotent aggregation functions  

[9], which means 𝐴(𝑥, … , 𝑥) = 𝑥, for any 𝑥 ∈ [0, 1]. Also, OWA operators are positively 

homogeneous and piece wise linear [9]. However, OWA operators are generally not associative or 

decomposable [6].  

 

As shown in [8], OWA operators can be seen as Choquet integrals [3] with respect to symmetric 

capacities too. It should be noted that dealing with a finite universe 𝑋 = {1, … , 𝑛}, functions 𝑓 ∶ 𝑋 →
[0, 1] can be identified with vectors 𝐱 ∈ [0, 1]𝑛, 𝑥𝑖 = 𝑓(𝑖), 𝑖 = 1, … , 𝑛.  

 

Definition 1.1. [9] A capacity (fuzzy measure) 𝑚: 𝒫(𝑋) → [0, 1] is a monotone set function which 

satisfies in two boundary conditions, 𝑚(∅) = 0 and 𝑚(𝑋) = 1. 

 

Hereafter, we may assume 𝑋 = {1, … , 𝑛}, unless stated otherwise. 

 

Definition 1.2. [9] For a given vector 𝐱 ∈ [0, 1]𝑛 and capacity 𝑚 on 𝑋, the corresponding Choquet 

integral is given by  

 

Ch𝑚(𝐱) = ∑ 𝑥𝜎(𝑖) (𝑚(𝐸𝜎,𝑖) − 𝑚(𝐸𝜎,𝑖−1)) ,

𝑛

𝑖=1

 (2) 

 

where 𝜎: {1, … , 𝑛} → {1, … , 𝑛} is a permutation such that 𝑥𝜎(1) ≥ ⋯ ≥ 𝑥𝜎(𝑛), 𝐸𝜎,0 = ∅, and for 𝑖 =

1, … , 𝑛, 𝐸𝜎,𝑖 = {𝜎(1), … , 𝜎(𝑖)}. 

 

It may happen that the permutation 𝜎 is not unique. This fact does not harm the correctness of (2). 

In fact, (1) and (2) coincide for each 𝐱 ∈ [0, 1]𝑛 if and only if 𝑚(𝐸𝜎,𝑖) does not depend on the 

considered permutation 𝜎 [8]. This means that only cardinality of 𝐸𝜎,𝑖 matters, i.e., 𝑚(𝐸) =

𝑚(𝜎(𝐸)), for any 𝐸 ∈ 𝒫(𝑋) and permutation 𝜎, 𝜎(𝐸) = {𝜎(𝑖)|𝑖 ∈ 𝐸}. Such capacities are called 

symmetric. Now, it is enough to put 𝑤𝑖 = 𝑚(𝐸𝜎,𝑖) − 𝑚(𝐸𝜎,𝑖−1) to see that  

 

OWA𝐰 = Ch𝑚. (3) 

 

Conversely, for any normed weighting vector 𝐰, it is enough to define a symmetric capacity 

𝑚: 𝒫(𝑋) → [0, 1] by 

 

𝑚(𝐸) = ∑ 𝑤𝑖

card(𝐸)

𝑖=1

, 

 

to see the representation (3). 

 

Any proper generalization of OWA operators should violate some of the mentioned properties of 

the OWA operators. In the sequel, we restate some of the generalizations. 
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2. Some Generalization  
 

A simple but important generalization of OWA operators has been introduced in [20]. 

 

Definition 2.1. [20] A mapping 𝑀𝐰,𝜆: [0,1]𝑛 → [0,1] is called a generalized ordered weighted 

aggregation (GOWA) operator of dimension 𝑛 if  

 

𝑀𝐰,𝜆(𝑥1, … , 𝑥𝑛) = (∑ 𝑤𝑖𝑥𝜎(𝑖)
𝜆

𝑛

𝑖=1

)

1
𝜆

, 

 

where 𝜆 is a parameter such that 𝜆 ∈ ] − ∞, 0[ ∪ ]0, +∞[. For 𝜆 = 0, 𝑀𝐰,0(𝒙) = ∏ 𝑥𝜎(𝑖)
𝑤𝑖𝑛

𝑖=1  (the so 

called power-root operator). 

 

Two special cases are of great significance. First is the case when 𝜆 = 1, which gives 

 

𝑀𝐰,1(𝑥1, … , 𝑥𝑛) = ∑ 𝑤𝑖𝑥𝜎(𝑖)

𝑛

𝑖=1

, 

 

the standard OWA operator. The other important special case is when 𝑤𝑗 =
1

𝑛
. In this case, we have 

 

𝑀𝐰,𝜆(𝑥1, … , 𝑥𝑛) = (∑
1

𝑛
𝑥𝜎(𝑖)

𝜆

𝑛

𝑖=1

)

1
𝜆

, 

 

which is the generalized arithmetic mean operator. Note that GOWA operators are commutative, 

monotone, idempotent and, as a result, averaging operators [20]. 

 

Recently, a new kind of OWA generalization based on decomposition integrals has been 

introduced [13]. This kind of OWA operator is based on the representation of OWA operators as 

Choquet integrals with respect to symmetric capacities. In the next section, we review them. 

 

2.1. 𝓗-𝐎𝐖𝐀 Operates 

 

Any non-empty set of non-empty subsets of 𝑋 is called a collection. Any nonempty set ℋ of 

collections is called a decomposition system. 

 

Definition 2.2. [5] Let a decomposition system ℋ be fixed. For a capacity 𝑚 on 𝑋, the corresponding 

ℋ-decomposition integral 𝐼ℋ,𝑚 is given by  

 

𝐼ℋ,𝑚(𝐱) = max {∑ 𝑎𝑖. 𝑚(𝐴𝑖)

𝑖∈𝐽

|(𝐴𝑖)𝑖∈𝐽 ∈ ℋ,   𝑎𝑖 ≥ 0,   for each 𝑖 ∈ 𝐽,   ∑ 𝑎𝑖. 1𝐴𝑖

𝑖∈𝐽

≤ 𝐱} . (4) 

 

Alternatively, we can write 
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𝐼ℋ,𝑚(𝐱) = max
𝜁∈ℋ

{ ∑ 𝑎𝑖 . 𝑚(𝐴𝑖)

𝐴𝑖∈𝜁

|𝑎𝑖 ≥ 0,   for each 𝑖 ∈ 𝐽,   ∑ 𝑎𝑖. 1𝐴𝑖

𝐴𝑖∈𝜁

≤ 𝐱} = max
𝜁∈ℋ

𝐼𝜁,𝑚 . 

 

For any collection 𝜁, the functional 𝐼𝜁,𝑚 is positively homogeneous, monotone and piece-wise 

linear, and thus also the functional 𝐼ℋ,𝑚 has these properties. Obviously, it is symmetric whenever 

the capacity 𝑚 is symmetric. In general, it need not be idempotent and neither an aggregation 

function. However, due to the positive homogeneity, the mapping 

 

𝐴ℋ,𝑚 =
𝐼ℋ,𝑚

𝐼ℋ,𝑚(𝟏)
: [0,1]𝑛 → [0, 1] 

 

is an idempotent aggregation function whenever 𝐼ℋ,𝑚(𝟏) > 0. 

 

Recall that due to [12], 𝐼ℋ,𝑚(𝟏) = 1, for each capacity 𝑚, whenever the decomposition system ℋ 

is complete (i.e., each non-empty subset 𝐸 of 𝑋 is contained in at least one collection from ℋ) and 

any of its collections is formed by logically independent subsets of 𝑋 (i.e., their intersection is non-

empty). Now, we introduce some decomposition systems and related decomposition integrals.  

 

Example 2.1. [13] Let 𝑋 = {1, … , 𝑛}. 

 

1. Let ℋ(𝑖) = {ℬ|ℬ is a chain in 𝑋 of length 𝑖}, 𝑖 ∈ {1, … , 𝑛}. As shown in [12], these 

decomposition systems yield the only kind of decomposition integrals which are also universal 

integrals in the sense of Klement et al. [10]. Note that 𝐼ℋ(1),𝑚 is the Shilkret integral [19], 

while 𝐼ℋ(𝑛),𝑚 = Ch𝑚 is the Choquet integral [3]. Note that 𝐼ℋ(𝑖),𝑚 is an aggregation function 

for each capacity 𝑚 and 𝑖 ∈ {1, … , 𝑛}. 

 

2. For ∅ ≠ 𝐴 ⊆ 𝑋, let ℋ𝐴 = {{𝐴}}. Then, 

 

𝐼ℋ𝐴,𝑚(𝐱) = min{𝑥𝑖|𝑖 ∈ 𝐴} . 𝑚(𝐴).  

 

and 𝐼ℋ𝐴,𝑚 is an aggregation function only if 𝑚(𝐴) = 1. 

 

Example 2.2. Let 𝑋 = {1, … , 𝑛}. We can introduce collections 𝐺𝑖 = {𝑋} ∪ {𝐴 |𝐴 ⊆ 𝑋, card(𝐴) = 𝑖}, 

for 𝑖 = 0, … , 𝑛 − 1. Now, we can form the union of these collections which are decomposition 

systems, ℋ𝑖 = 𝐺1 ∪ … ∪ 𝐺𝑖. Then, ℋ𝑛−1 = {𝐴|𝐴 ⊆ 𝑋} = 𝒫(𝑋). Note that for ℋ𝑖 we get maximum 

of operators, given by (4), corresponding to 𝐺1, … , 𝐺𝑖. 

 

The symmetry of a considered capacity 𝑚 does not imply the symmetry of decomposition 

integrals; for a counter example, see [13]. In fact, it is also related to decomposition systems. 

 

Definition 2.3. [13] Let 𝜎: 𝑋 → 𝑋 be a permutation on 𝑋. For any non-empty 𝐸 ⊆ 𝑋, denote 𝐸𝜎 =
{𝜎(𝑖)|𝑖 ∈ 𝐸}. For any collection ℬ = {𝐸1, … , 𝐸𝑘}, denote ℬ𝜎 = {(𝐸1)𝜎 , … , (𝐸𝑘)𝜎}. Similarly, for any 

decomposition system ℋ, denote ℋ𝜎 = {ℬ𝜎|ℬ ∈ ℋ}. A decomposition system ℋ is called 

symmetric if and only if ℋ = ℋ𝜎 for any permutation 𝜎 on 𝑋. 
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As an example, decomposition systems ℋ(𝑖), for all 𝑖 = 1, … , 𝑛, are symmetric, but it is not the 

case for systems ℋ𝐴 for 𝐴 ⊆ 𝑋. 

 

Definition 2.4. [13] Let ℋ be a decomposition system on 𝑋 such that 𝑋 ∈ ℬ for some ℬ ∈ ℋ. Then, 

ℋ is called a saturated decomposition system. 

 

Observe that the decomposition systems ℋ(𝑖) are saturated for all 𝑖 = 1, … , 𝑛, but not the systems 

ℋ𝐴 for 𝐴 ⊆ 𝑋. 

 

Definition 2.5. [13] Let ℋ be a symmetric saturated decomposition system on 𝑋, and let 𝑚 be a 

symmetric capacity on 𝑋. Then, the functional ℋ-OWA𝐰: [0, 1]𝑛 → [0, 1], given by  

 

ℋ-OWA𝐰(𝐱) =
𝐼ℋ,𝑚(𝐱)

𝐼ℋ,𝑚(𝟏)
, 

 

is called a decomposition OWA operator. Here, 𝐰 = (𝑤1, … , 𝑤𝑛) with 𝑤1 = 𝑚({1}), 𝑤2 =
𝑚({1, 2}) − 𝑚({1}), …, 𝑤𝑛 = 𝑚({1, … , 𝑛}) − 𝑚({1, … , 𝑛 −  1}), i.e., 

 

𝑚(𝐸) = ∑ 𝑤𝑖

card(𝐸)

𝑖=1

, 𝐸 ∈ 𝒫(𝑋). 

 

According to Example 2.1, ℋ(𝑛) generates the Choquet integral. So,  ℋ(𝑛)-OWA𝐰 = OWA𝒘 is 

the standard OWA operator [13]. 

 

Example 2.3. [13] Decomposition systems ℋ(1) and ℋ(2) are symmetric saturated and their 

corresponding ℋ-OWA𝐰 operators are 

  

ℋ(1)-OWA(𝑤1,1−𝑤1)(𝑥, 𝑦) = max(𝑤1𝑥, 𝑤1𝑦, min(𝑥, 𝑦)) 

 

and 

 

ℋ(2)-OWA(𝑤1,1−𝑤1)(𝑥, 𝑦) = OWA(𝑤1,1−𝑤1)(𝑥, 𝑦) = 𝑤1 ∙ max(𝑥, 𝑦) + (1 − 𝑤1) min(𝑥, 𝑦), 

 

respectively. 

 

This class of aggregation functions has the properties of symmetry, positive homogeneity, 

idempotency, piecewise linearity, and monotonicity in weights. ℋ-based generalization of OWA 

operators consist of well-known aggregation functions such as standard OWA operators in special 

case, arithmetic mean. Also, by this generalization, several new aggregation functions can be obtained 

[13]. 

 

2.2. 𝐎𝐖𝐀𝐰
(𝒊)

 Operator 

 

Definition 2.6. [14] Let 𝑚: 𝒫(𝑋) → [0, 1] be a capacity and let 𝑖 ∈ {1, 2, … , 2𝑛 − 1}. A product-

based integral 𝐼𝑚
(𝑖)

: [0, 1]𝑛 → [0, 1] is given by 
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𝐼𝑚
(𝑖)

(𝐱) = max {∑ 𝑥𝜎(𝑘𝑗). (𝑚 (𝐸𝜎,𝑘𝑗
) − 𝑚 (𝐸𝜎,𝑘𝑗−1

)) | 1 ≤ 𝑘1 < ⋯ < 𝑘𝑖 = 𝑛

𝑛

𝑗=1

}, (5) 

 

when 𝑖 ∈ {1, … , 𝑛} with convention 𝑘0 = 0, and is given by 

 

𝐼𝑚
(𝑖)(𝐱) = min { ∑ 𝑥𝜎(𝑘𝑗). (𝑚 (𝐸𝜎,𝑘𝑗+1−1) − 𝑚 (𝐸𝜎,𝑘𝑗−1

)) | 1 ≤ 𝑘1 < ⋯ < 𝑘2𝑛−𝑖 ≤ 𝑛

2𝑛−𝑖

𝑗=1

}, (6) 

 

when 𝑖 ∈ {𝑛, … ,2𝑛 − 1} with convention  

 

𝑘2𝑛−𝑖+1 = {
min{𝑟|𝑥𝜎(𝑟) = 0},   𝑥𝜎(𝑛) = 0

𝑛 + 1,                      otherwise.
 

 

Observe that if 𝑖 = 𝑛, then from (5) or (6), we have 𝐼𝑚
(𝑛)

= Ch𝑚. Also,  

 

𝐼𝑚
(1)(𝐱) = max{𝑥𝜎(1). 𝑚(𝐸𝜎,1), … , 𝑥𝜎(𝑛). 𝑚(𝐸𝜎,𝑛)} , 

 

which is the Shilkret integral. 

 

Considering normed weighting vector 𝐰 ∈ [0, 1]𝑛, vector of cumulative weights assigned to 𝐰 is 

vector 𝐯 ∈ [0, 1]𝑛, where, 𝑣1 = 𝑤1, 𝑣2 = 𝑤1 + 𝑤2, … , 𝑣𝑛 = 𝑤1 + ⋯ + 𝑤𝑛. Now, we can define a 

generalization of OWA operators based on 𝐼𝑚
(𝑖)

.   

 

Definition 2.7. [14] Let 𝐰 ∈ [0, 1]𝑛 be a normed weighting vector and let 𝐯 ∈ [0, 1]𝑛 be the related 

cumulative weighting vector. For 𝑖 ∈ {1, 2, … , 2𝑛 − 1}, the OWA generalizations OWA𝐰
(𝒊)

: [0, 1]𝑛 →
[0, 1] are given by 

 

OWA𝐰
(𝒊)(𝐱) = max {∑ 𝑥(𝑘𝑗). (𝜈𝑘𝑗

− 𝜈𝑘𝑗−1
) | 1 ≤ 𝑘1 < ⋯ < 𝑘𝑖 ≤ 𝑛

𝑛

𝑗=1

}, 

 

when 𝑖 ∈ {1, … , 𝑛}, and is given by 

 

OWA𝐰
(𝒊)

(𝐱) = min { ∑ 𝑥(𝑘𝑗). (𝜈𝑘𝑗+1−1 − 𝜈𝑘𝑗−1) | 1 = 𝑘1 < ⋯ < 𝑘𝑖 ≤ 𝑛

2𝑛−𝑖

𝑗=1

}, 

 

when 𝑖 ∈ {𝑛, … ,2𝑛 − 1}. 

 

Observe that OWA𝐰
(𝑛)

= OWA𝐰 is the standard OWA operator and 

 

OWA𝐰
(1)

≤ OWA𝐰
(2)

≤ ⋯ ≤ OWA𝐰
(2𝑛−1)

. 
 

Note that each OWA𝐰
(𝑖)

 is symmetric, positively homogeneous and translation invariant. 
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Example 2.4. [14] Consider capacity 𝑚(𝐴) =
|𝐴|

𝑛
, constant weighting vector 𝐰 = (

1

𝑛
, … ,

1

𝑛
), 

cumulative vector 𝐯 = (
1

𝑛
,

2

𝑛
, … ,

𝑛

𝑛
) and  input vector 𝐱 = (1,

𝑛−2

𝑛−1
, … ,

1

𝑛−1
, 0). Then, 

 

OWA𝐰
(𝟏)

(𝐱) = max {
𝑛 − 𝑗

𝑛 − 1
∙

𝑗

𝑛
| 𝑗 ∈ {1, … , 𝑛}}, 

 

OWA𝐰
(2)

(𝐱) = {

𝑛

3(𝑛 − 1)
,         𝑛 = 3𝑘

𝑛 + 1

3𝑛
, otherwise,

 

 

OWA𝐰
(𝑛)

(𝐱) =
1

2
. 

 

2.3. 2-symmetric 𝐎𝐖𝐀 Operators 

 

We prepare now a new generalization of OWA operators. In our approach, we generalize the 

symmetry of a capacity  m  into 2-symmetry; see [15]. 

 

Definition 2.8. A capacity 𝑚: 𝒫(𝑋) → [0,1] is 2-symmetric whenever there is a set 𝐼 ⊆ 𝑋 such that 

for any 𝐸 ⊆ 𝑋, 𝑚(𝐸) depends on card(𝐸 ∩ 𝐼) and 𝑐𝑎𝑟𝑑(𝐸 ∖ 𝐼) only. 

 

Obviously, if 𝐼 = ∅ or 𝐼 = 𝑋, then the related 2-symmetric capacity 𝑚 is a standard symmetric 

capacity. Denote card(𝐼) = 𝑘. Clearly, 𝑘 ∈ {0,1, … , 𝑛} and for 𝑘 ∈ {0,1, … , 𝑛 − 1} (i.e., 𝐼 is a proper 

subset of 𝑋), 𝑚 can expressed by means of a monotone function as  

 

𝑚(𝐸) = ℎ ((card(𝐸 ∩ 𝐼), card(𝐸 ∖ 𝐼))), 

 

where ℎ: 𝐷𝑘 → [0,1], 𝐷𝑘 = {(𝑖, 𝑗)|𝑖 ∈ {0, … , 𝑘}, 𝑗 ∈ {0, … , 𝑛 − 𝑘}}, ℎ((0,0)) = 0 and ℎ((𝑘, 𝑛 −

𝑘)) = 1. 

 

Now, we present the definition of 2-symmetric OWA operator. 

 

Definition 2.9. Let 𝑚: 𝒫 (𝑋) → [0,1] be a 2-symmetric capacity. Then, the related Choquet integral 

Ch𝑚 ∶ [0,1]𝑛 → [0,1], given by 

 

Ch𝑚(𝐱) = ∑ 𝑥𝜎(𝑖) (ℎ((𝑖′, 𝑖 − 𝑖′)) − ℎ(((𝑖 − 1)′, (𝑖 − 1) − (𝑖 − 1)′)))

𝑛

𝑖=1

, 

 

is called a 2-symmetric OWA operator. 

 

Also, 2-symmetric OWA operators can be obtained in a different way. Take a subset 𝐼 of {1, … , 𝑛}, 

𝐼 = {𝑖1, … , 𝑖𝑘}, and its complement 𝐼𝑐 = {𝑗1, … , 𝑗𝑛−𝑘}. We have the following definition. 
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Definition 2.10. An aggregation function 𝐴: [0,1]𝑛 → [0,1] is called 2-symmetric whenever for each 

𝐱 ∈ [0,1]𝑛, we have 𝐴(𝐱) = 𝐴(𝐱𝜎) for any of four permutations 𝜎 ∈ {𝛼, 𝛽, 𝛾, 𝛿} such that 

 

𝛼(𝑖1) = 𝑖2, 𝛼(𝑖2) = 𝑖3, … , 𝛼(𝑖𝑘−1) = 𝑖𝑘 , 𝛼(𝑖𝑘) = 𝑖1,              
𝛽(𝑖1) = 𝑖2, 𝛽(𝑖2) = 𝑖1, 𝛽(𝑖3) = 𝑖3, … , 𝛽(𝑖𝑘) = 𝑖𝑘 ,                  
𝛾(𝑗1) = 𝑗2, 𝛾(𝑗2) = 𝑗3, … , 𝛾(𝑗𝑛−𝑘−1) = 𝑗𝑛−𝑘, 𝛾(𝑗𝑛−𝑘) = 𝑗1, 
𝛿(𝑗1) = 𝑗2, 𝛿(𝑗2) = 𝑗1, 𝛿(𝑗3) = 𝑗3, … , 𝛿(𝑗𝑛−𝑘) = 𝑗𝑛−𝑘.          

 

Due to [17], this means that 𝐴(𝐱) = 𝐴(𝐱𝜎) for any permutation 𝜎 such that 𝜎(𝑖) ∈ 𝐼 for any 𝑖 ∈ 𝐼 

and 𝜎(𝑗) ∈ 𝐼𝑐 for any 𝑗 ∈ 𝐼𝑐. 

 

Now, we can define 2-symmetric OWA operator 2-OWA as a 2-symmetric comonotone additive 

aggregation function. Due to comonotone additivity, clearly it is a Choquet integral with respect to a 

capacity 𝑚, 𝑚(𝐸) = 2-OWA(𝟏𝐸), and this capacity is 2-symmetric in the sense of [15]. As also the 

opposite claim is true, we have the following theorem. 

 

Theorem 2.1. An aggregation function is a 2-OWA operator if and only if it is Choquet integral with 

respect to some 2-symmetric capacity 𝑚. 

 

Note that one can define 𝑝-symmetric aggregation functions in which 𝑝 ≥ 2. 

3. Conclusion 
 

The concept of OWA operators and some of their generalizations were reviewed. Also, the 

definition of 2-symmetric OWA operators was introduced. 
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