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A Mathematical Model for Flood Protection
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Many regions in the world are protected against flooding by a dike, which may be either natural
or artificial. We deal with a model for finding the optimal heights of such a dike in the future. It
minimizes the sum of the investments costs for upgrading the dike in the future and the expected
costs due to flooding. The model is highly nonlinear, nonconvex, and infinite-dimensional. Despite
this, the model can be solved analytically if there is no backlog in maintenance. If there is a backlog
in maintenance, then the optimal solution can be found by minimizing a convex function over a
finite interval. However, if the backlog becomes extremely large we show that the model breaks
down. Our model has been used in The Netherlands to define legal safety standards for the coming
decades.
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1. Introduction

Dike height optimization is of major importance to the Netherlands because a large part of the
country lies below sea level and high water levels in rivers can also cause floods. After a devastating
flood in the Netherlands in 1953, Van Dantzig proposed a cost-benefit model to protect The
Netherlands against new floods [6]. His model is considered to be the first real-life application of
Operations Research techniques in The Netherlands.

In 2006, Van Dantzig’s model was improved by Eijgenraam [4]. He showed numerically the
shortcomings of Van Dantzig’s model, which contrary to the new model did not take into account the
growth of economy in the protected area during time.

The submersible part of The Netherlands is divided in more than 50 so-called dike rings. A dike
ring is an area that is surrounded by a dike. Most dike rings consist of several segments that are
characterized by different properties. Eijgenraam’s model focused on a one-segment (or
homogeneous) dike. He found a nice periodic solution of his model and claimed that this solution is
optimal. The proof of this claim in [4] has a flaw, however.

Some attempts were made to generalize Eijgenraam’s model to the case of nonhomogeneous
dikes, i.e., dikes with more than one segment. In such a case, an analytic solutions seems to be out of
reach. As made clear in [5], also some initial numerical attempts to deal with nonhomogeneous dikes
failed.

In some recent papers, we dealt with Eijgenraam’s model and its generalization to the
nonhomogeneous case [1, 2, 3]. In [1, 3], we focussed on a nonhomogeneous extension of
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Eijgenraam’s model for which we developed a mixed integer nonlinear model that could be solved
by CPLEX, while using CONOPT to deal with nonlinearity. In [2], we gave a full analysis of the
homogeneous model of Eijgenraam. The model is a highly nonlinear, nonconvex, and infinite-
dimensional optimization problem. Despite this, we could show that the periodic solution of
Eijgenraam’s model is optimal, provided that there is no backlog in maintenance. We called a dike
healthy in that case; otherwise, unhealthy. We also showed that if a dike is unhealthy, then it is optimal
to upgrade the dike immediately with a specific quantity which makes the dike healthy; after this
upgrade, the dike behaves as a healthy dike, and the optimal upgrade policy is then again periodic.

In this paper, we only deal with homogeneous dikes. We present a simplified and streamlined
proof that if the dike is healthy, then the solution of Eijgenraam’s model is periodic, as we showed
earlier in the (electronic) appendix of [2]. The main focus, however, is on unhealthy dikes. We show
that if the expected damage is too large, in fact extremely large, then the model breaks down, because
then it becomes attractive to split an upgrade at some time in two separate upgrades at the same time.
Since the set-up costs in our model are positive, this is absurd.

It may be clear that our model may also be applicable to other deltas in the world where the ground
is sinking and/or the water level is rising.

2. Mathematical Model for a Homogeneous Dike
Our model uses the following functions and parameters:

dike height at time ¢,

P, e®te—alH:=Ho) : flood probability at time t,

parameter in exponential distribution for extreme water levels (1/cm),
ground level decrease plus water level increase (cm/year),

=V, e¥teS(He=Ho) - |oss by flooding at time ¢ (million euros),

rate of growth of wealth in dike ring (per year),

increase of loss per cm dike heightening (1/cm),

discount rate (1/year).

SN SSRIT

The expected loss at time t is then
S; = PV, = Pye®te=a Hi=Ho) . 7 o¥tel(Hi=Ho) — G oPite=0he
where
So = PoVy, Bi=an+vy, 0=a-{ h; = H — H,.

We assume that upgrades of the dike take place at moments ¢t,, k = 1,2, ... . The value of the
upgrade at moment t;, is denoted as u,. We require that

Uy > 0, tk+1 > tk = tO = 0, k> 1. (1)
The height at moment ¢, (including u;,) is denoted as k. We then have

ho =0, hk = hk—l + Uy, k= 1. (2)
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Figure 1. Graph of h;

We define infinite sequences u, h and 7 as follows:
w = (Ug; ug; Usz; -0,
h = (hy; hy; hs; ...),
T = (tl, tz; t3; )

It is clear that if we know u, then h follows from (2), and vice versa. So, we may consider the total
costs as a function f(u, t) of u and 7 alone. One has

flu,t) =1(u,t) + A(u, 1),

where I(u, 7) represents the total investment costs, and A(u, 7) is the total expected damage. The
costs for an upgrade of the dike with u,, at t = t;, are given by

D (uy,)e?Me=0tk, D(uy) = ¢ + buy, 3)

where the factor e ~%t« takes care of discounting future costs to present costs. We may now write

1w,7) = ) Dwerht,
k=1

0 th ) th
A, 1) = Z f S.eltdt = Z f SoePite=0H=Ho) o =5t gt
k=1"tk-1 l=1"tk-1

oo

= z & eﬁtk — eﬁtk—l]e_ghk—l’
k=1 B

where § = 8; — 6 and where we used that the height of the dike in the interval [t,_4, t;) equals hj_;.
We call the pair (u, t) admissible if (1) and (2) are satisfied. Our aim is to find an admissible pair
(u, t) that minimizes f (u, 7).

It will be assumed that
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S>0, b=0, ¢>0, A1=20, &6>0, 6>0  B=#0,
thereby we may use that
B+85>0, 05 — A >0, A+b>0, 4)
because these inequalities are satisfied for all dike rings in The Netherlands. The assumption 8 # 0
is only made to simplify the presentation; the arguments used below can easily be adapted to the case
where 8 = 0.

Note that if K is any positive constant and we redefine b, ¢ and S, according to b: = Kb, ¢ = Kc
and S, := KS,, then the values of I(u, t) and A(u, t) are multiplied by K. So, by taking K = 1/c, we
may normalize the problem such that ¢ = 1.

3. First Order Optimality Conditions with Respect to ¢t

By computing the partial derivative of f(u, ) with respect to t;, we obtain

of (u, 1)
oty

= —5D(uk)e}“hk—5 tk 4 So ePtk—0hk—1 _ Soeﬁtk_mlk_

Hence, the pair (u, 7) is stationary with respect to t;, if and only if
8D (uy,)eM=0tk = §, ePtk=Ohi-1 — § eBtk=bhk | > 1, (5)

Because of (2), this condition can be written as

8D (uy)e AHOM—=(B+8)t = g (ebur — 1), (6)
We define
6D (x)
=In———- > 0. 7
o(x) e ¥ (7

By taking logarithms of both sides of (6) the condition for stationarity with respect to t;, becomes
o) = B+ 8Oty —(A+60hy,, k=1 (8)

As we already established, if u is known, then h can be computed. The above relation reveals that
then also the sequence 7 can be computed, because since § + § > 0 we may write

_o(u)+(A+0) hy
.= . (9)
g+

Hence, a stationary pair (u, ) is completely determined by its sequence u. Therefore, we call the
sequence u a stationary sequence if the corresponding (u, 7) is stationary. Similarly, u is said to be
admissible (optimal) if (u, T) is admissible (optimal).
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In the sequel, we also use the function

D(x
K(x) := 9x( )1, x> 0. (10)
It is related to the function o(x) via
6D (x)
S, 0™ = i Sk (x). (11)

This yields a second way to characterize stationarity with respect to t;, namely,

Soe POtk = §ic(uy)e @D, (12)

4. First Order Optimality Conditions with Respect to u,

Since h, = Y¢_, u, we have

%_{1, if €=k,
ou, 0, if£<k.

Using this we get, for k > 1,

M — belhk_(gtk + ZAD(uf)eAh{’_att’ —_ Z % eﬁtt’ — eBt{’—l)e_Gh{’—ll

ou
k =k T2k B

It follows that stationarity with respect to u, is equivalent to

0S,
B

f=k+1

beMik—6tk 4 ZAD(ug)eAh*’_Ste = ePte — eﬁtf’-l) efhe-1, | >1. (13)
f=k

This, in turn, can also be written as

o] (00}
0S
bet Mue+1=68tkrs 4 2 A D(u,)ete5te = Z 220 (ehBte _ eﬁte—1) efhe-1 | > 0.
f=k+1 {=k+2

Subtracting these equations from each other, we get

berMi—0tk 4 AD(uk)eAhf_‘gtk — b eMrs1=8tir1 — %(eﬁtkﬂ — Pt )e—ehk, k>1.

It will be convenient to introduce the notation

A(uy) = b + AD(uy,). (14)
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After rearranging terms, we then obtain

A(uk)eﬂhk—stk + _950 eBte=0hi — phoAhit1=8tkys o _850 eBtit1=0hit1 o 0Ky

Now, using (12) twice, i.e., stationarity with respect to t;, and t;,,, we get

A(uk)elhk—f”k + @K(uk)elhk—‘s’fk = peMiks1—6trs1 4 6_6K(uk+1)e/1hk+1—5tk+1eeuk+1.
B B

After multiplying both sides by e ~* we get

06 66
(A(uk) + Fk(uk)> e Otk = (b + Fk(ukﬂ)ee“kH) e M1~ 0tkt1 k> 1.

In order to eliminate t,, (and t,..;) we introduce parameters § and g according to

5::m, q:S(lﬁ'g)—ﬂ.

Then, we may write, by using (12) once more,

5 (Sre(w) s .
e 0tk = (eB+OU) " = <—S k e(eﬂ)hk) = (?0) k(up)Oe @D | > 1,
0

Hence, we obtain

8 -
e~ Otks1 ~ (% K (U qq) "0 e~ @D ~ K(uk+1)—ge—(q+l)uk+1
eS8tk 5 - - K(ug) 8
(%) K(uk)“se‘(q”)hk (i)

Substitution into (15) yields

— 06 — 06
()~ [A(uk) +—x<uk)] = k(epr) S0 [p +—K<uk+1)e9uk+1], k> 1.

B 5

To simplify the notation, we introduce functions L(x) and R(x), with x > 0, as

05
L(x) = A(x) + Fx(x),

05
R(x):=e % (b + ?K(x)eex),
as well as functions L(x) and R(x) according to

L) =k(x)OLkx), RX):=k(x)SRX).

73

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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Then, we may rewrite the condition for stationarity with respect to u;, in the following compact form:
L) = R(ug+1), k=1 (22)

As will become clear in Section 6, this relation implies that for every entry u, in a stationary
sequence u its successor u,; can attain only two values. Before dealing with this surprising fact,
we show in the next section another remarkable result, namely that the objective value f(u, 1) is
completely determined by the value of the function R in u,, the first entry of the sequence wu.

5. Objective Value at a Stationary Point

Taking the sum of all stationarity conditions (5) for t; (k = 1), we get

o

Z SD(uk)eAhk—tStk = Z(Soeﬂtk_ehk_l — Soeﬁtk_ehk),

k=1 k=1

This yields a linear relation between I (u, ) and A(u, ) at a stationary point as follows:

6l(u, 1) = Z Sy ePtic =Ohi-1 _ Z SpePti-1=6hk-1
k=1 k=2

= SyePto=0ho 4 2 So [eﬁtk — e[)’tk—1]e—9hk—1
k=1
= So + BA(w,7), (23)

where we used t, = hy, = 0. On the other hand, the stationarity condition for u, in (13) yields

belhl_gtl + z AD(uf)eAh{’_att’ = Z% eﬁtt’ — eBtt’—l)e_Ght’—l
£=1 £=2 '8

=0 (A(u, T) — %eﬁtl_eho + %eﬁto—eho)
Al Ahy—st, 0u, 4 950
=0A(w7) - Fk(w)e 170hgft 4 E

where we used hy = t, = 0 and h; = u;. Thus, we obtain a second linear relation between I(u, 7)
and A(u, ), namely,

06 65,
—A(u,7) + 0A(u,7) = beri—8t1 4 Fk(ul)elhl_&legul — ?0
06 05,
=|b+—xk(u )eeul) eAi—6t; _
( B B
= equlR(ul)elhl_atl — %
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Using (17), with k = 1, and also h; = u, we obtain

So\? _ So\° .
eM1=8t1 — oAhy (FO) K(ul)—Se—(qHL)ul — <§) K(ul)—é‘e—qul_

Substituting this, we find

5
A1) + 6A(u,T) = (%) R(uy) — %. (24)

As a consequence, we now have the following two linear relations between I(u, ) and A(u, 7):
(23) and (24). The determinant of the coefficient matrix equals 6 — A8, which by (4) is positive.
Hence, the system has a unigue solution, namely,

)
(05 — BA)A(WT) = ASy + 6 (%") R(uy) — 6{2,50.
So\?
(65 - DI D) = () Rew).
By taking the sum at both sides, we obtain
So\? 56 — AB)S
(05 = p2f ) = 6+ 0) (L) Ry - LR

The definition (16) of g implies

A+0) . _SQ+0)—-AB+8) _65-28

q=(§(l+9)—/1=6ﬁ+5 Y TR

Hence, it follows that at a stationary point the objective value is given by

_1/80\° So
Flu) = 5(?) R(ur) =% (25)

It comes as a surprise that the objective value at a stationary point is completely determined by u,
and is a positive constant times R (u,) minus a constant. Hence, it remains to find a stationary point
for which R(u,) is minimal. As we show in the next section, this is possible thanks to some very nice
properties of the functions L(x) and R(x).

Before proceeding to the next section, an important observation is that (25) indicates that if § >

0, then R(u,) must also be positive, since otherwise one would get a negative value for the total cost
f(u, t), which would be absurd. Indeed, more generally one has

BR(x) > 0, x> 0. (26)

For the proof of this inequality we refer to (52) in Appendix A.
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L) =R - A ™ __
R = A — — e

0 v v

Figure 2. Typical form of the graphs of L(x) and R(x)

6. Optimality of the Periodic Solution

By way of example, Fig. 2 shows the graphs of £L(x) and R(x) for one of the dike rings. One can
show (cf. Appendix A) that these functions always share the following four properties:

Prop. 1: The equation L(x) = R(x) has exactly one solution, which is denoted as v.
Prop. 2: L(x) and R(x) are bounded from below and minimal for the same value v < v.
Prop. 3: L(x) and R(x) are monotonically decreasing for x < v and increasing for x > V.
Prop. 4: One has L(x) < R(x) ifx <vand L(x) > R(x) if x > v.

The equation £(x) = R(x) is equivalent to L(x) = R(x). Hence, v is defined by

D(v)
e —1

66 AT B B
A(v) +FK(V) =e4 (b + Fk(v)eg ) k(v) =

As Prop. 1 above states, this nonlinear equation determines v uniquely.

The sequence u = (uy; uy; us; ... ) is stationary if and only if L(uy) = R(uy4,) foreach k > 1.
This certainly holds if u = (v;v;v;...). We call this the periodic sequence. It may be understood
from Fig. 2 that there exist infinitely many other stationary sequences. Recall from (25) that a
stationary sequence u is optimal if and only if R(u,) is minimal.

Lemma 6.1. If u, occurs in a stationary sequence, then L(uy) = L(v).

Proof. Let u; occur in a stationary sequence. We need to show that L(u;) = L(v). Suppose on the
contrary that L(u;) < L(v). Since L(x) is monotonically increasing for x > v, by Prop. 3, and v >
v, by Prop. 2, we necessarily have u;, < v. Since u,, occurs in a stationary sequence, and its successor
Uy 41 Satisfies R(ug4q) = L(uy) < L(v) = R(v), where we used Prop. 1. So, we have R(uy;q1) <
R(v). For the same reasons as for L, this implies uy.,., < v. Since L(x) < R(x), for all x < v, by
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Prop. 4, it follows that L(uy41) < R(ugy1) = L(ug). Thus, we have shown that L(u;) < L(v)
implies L(u,41) < L(ug), and as a consequence, also L£(ug41) < L(v). This implies that the £-
values of the successors of u,, in the sequence u form a strictly decreasing sequence. This sequence
is bounded below by L£(¥), by Prop. 2. Hence, the sequence must converge. A similar argument
applies to the sequence of the values R(u; ). Due to R(uy41) = L(uy), for each k, the limits of the
two sequences must be equal. But this is impossible, since the limit occurs in the interval where
L(x) < R(x). This contradiction proves the lemma. ]

Lemma 6.2. If u;, occurs in a stationary sequence, then R(u;) = R(v).

Proof. If u; > v, then we have R(u;) = R(v), because R(x) is increasing for x > v. On the other
hand, if u;, < v, then R(uy) = L(uy), by Prop. 3. By Lemma 6.1, we have L(u;) = L(v). Hence,
R(u) = L(v). Since L(v) = R(v), we get R(u;) = R(v), as desired. [ ]
Theorem 6.3. If o(v) + (1 + 6)v = 0, then the periodic sequence is optimal.

Proof. Lemma 6.2 implies that R(u;) = R(v) for every stationary sequence u. According to (25),
this implies the theorem, provided that t,, = 0, for k = 1. Since

A+ 0)h, o(v) A+0
te = o(ug) + Y <g+5y* YK k> 1, (27)
for the periodic sequence, this holds only if o(v) + (1 + 8)v = 0. Hence, the result follows. [ ]

It is worth noting that the value of v does not depend on S,; neither does the length of the interval
between two successive updates. The length of this interval is denoted as p, and according to (27), it
is given by

A+0
=— . 28
P=5ys” (28)
In essence only the moment t; of the first update depends on S,, because of its dependence of

o(v). Since p(x) is monotonically decreasing with respect to S, t; decreases when S, increases.

One may easily deduce from (7) and (10), the definitions of o(x) and k(x), respectively, that the
condition in Theorem 6.3 holds if and only if

Sy < Sk(v) e+, (29)

i.e., if and only if the expected damage costs at t = 0 do not exceed the threshold value &x e AtV
So, if the value of t; is negative, then it suggests that there is a backlog in the maintenance of the
dike. If this happens, we say that the dike is unhealthy; otherwise healthy.

It remains to deal with the unhealthy case. In that case, an immediate heightening of the dike is
desirable. So, we then should have t; = 0. It seems natural to expect that to eliminate the backlog in
maintenance a heightening of at least v will be necessary. In the next section, we deal with the
question of finding the value of u, that minimizes f(u, t). As we will see, it seems impossible to find
an analytic solution of this problem. But, we show below that the optimal value of u; in the unhealthy
case can be found by minimizing a strictly convex function on a finite interval.
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7. The Unhealthy Case

In the unhealthy case the constraint t; > 0 in (1) is active. This means that at optimality f(u, 7) is
no longer stationary with respect to t,. But, we still will have stationarity with respect to ¢, if k > 2,
and stationarity with respect to u; for all k > 1. Using this, it is shown in Appendix B that the
objective value at a stationary point is given by

fu 1) = D(ug)ets + -

With u, fixed, by using the same arguments as in the healthy case, it follows that u, = v yields the
smallest value. Due to (21) and (11), we write

-6
K(V)_SR(V) = <S£K(V)> R(v) = R(v)e‘gé’(”). (30)
0

S0\’ S0\’
() z02=(3)
Hence, denoting the resulting function of u; as F(u,), we obtain
2 1 ~8o(v)- So g
F(uy) = D(uy)e?™ +ER(v)e e(v)-quy ~ 5 U,

Remarrk 7.1. If the periodic sequence yields t; = 0, then the dike is on the boundary of the healthy
and unhealthy cases. This happens if and only if o(v) + (4 + 8)v = 0. Then, the above value must
coincide with the objective value of the periodic solution. So, we must have

DW)e + e;qv (ﬁ)aye(v) 20 v 3(%0)3@@) - %

We leave it to the reader to verify that this equality holds.

It remains to find the value of u; that minimizes F (u,). In considering this minimization problem,
we should respect the conditions (1) for admissibility of the sequence u = (uq; v;v; ...). Since the
solution is periodic from t = t, on, (1) boils down to the simple condition t, > 0. By (9), and since
u, = v and h, = u; + v, this holds if and only if

oW+ 1+6)(uy +v) > 0. (31)

On the other hand, the dike is unhealthy if and only if o(v) + (1 + 6)v < 0. So, we have

o)+ A+0)v<0<o(w)+ (A+6)(uy +v). (32)

It will be convenient to introduce the number u, defined by the relation

o)+ (A +0)(uyg+v) =0. (33)
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Combining this relation with (32) gives (A + 0)v < (A + 6)(uy +v) < (A + 6)(uy + v), which
implies

0 <uy<uy. (34)

We derive from (11) and (33) that u, is also uniquely defined by
Soe—e(u0+v) — 5K(V)€’1<u0+v). (35)
We are now ready to analyze the behavior of F(u,) and to find its global minimizer, which is
denoted as uj. As we just established, we have uj € (uy, ). We show below that u] belongs to the
finite interval (ug, uy + v] and can be found easily. For this, we need a couple of lemmas, which

require rather tedious proofs. We also feel free in this section to use some results from Appendix A.

We start with computing the first two derivatives of F(u,) with respect to u,. One has

= S
F'(uy) = A(uy)e?r — R(v) e~0eW)—aqua 4 Hfoe_e“l, (36)

= S
F'"(uy) = A[b + A(ug)]e?t + gR(v) e~9e(M-am1 _ g2 Eoe‘eul. (37)

Lemma 7.2. F(u,) is convex for large enough values of u;.
Proof. Since g > 0 and 8 > 0, the last two terms in the expression for F"’ (u,) converge to zero if u,

grows to infinity. If 2 > 0, then the first term grows exponentially fast to infinity. So, if 2 > 0, then
F(u,) is convex for large values of u,. This also holds if A = 0, as we now show. We then have

= S
F'"(uy) = (qe“SQ(V)R(v) — szoe‘”‘l) e~ ",

where r = 8 — q. Now, r has the same sign as 3, as it follows from

05— A8 _0(B+8)— 605+ A+0
 B+6 B+6 “PB+s

This makes clear that if u; grows to infinity, the second term in the bracketed expression converges
to zero if § > 0 and to oo if § < 0. Hence, the bracketed expression goes to o« if § < 0. If 8 > 0,
then we use (52), which implies that # and R(v) have the same sign. Since the bracketed expression

converges to qe‘gQ(V)R(v) in that case, and R(v) > 0, we conclude that F"' (u,) > 0 for large values
of u,. This proves the lemma. ]

Lemma 7.3. F(u,) has at most one point of inflection on the interval (0, o).

Proof. Recall that R(v), B and r are nonzero and have the same sign. Therefore, the expression (37)
for F"" (uy) has the form of the function f(x) defined by

f(x) = 2(A + Bx)e? + Ce™9% — De~ %%,
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where x = u, and the parameters A4, B, C and D have temporary meanings such that
A=0, B =0, CD >0, rD > 0.
Using 8 = q + r, it follows that
f'(x) = ABe** + 12(A + Bx)e™ — qCe™9* + 9De 0%
= ABe™ + 12(A + Bx)e?® — qCe™% + (q + r)De 0%

= ABe™ + 2%(A + Bx)e™ — q (Ce™ % — De™%%) + rDe®
= ABe™ + 2%(A + Bx)e™ — q(f (x) — A(A + Bx)e?*) + rDe%*,

Assuming f(x) = 0 we get, for any x = 0,
f'(x) = ABe™ + 22(A + Bx)e™ + qA(A + Bx)e? + rDe~%% > rDe=* > 0.

This proves that f’'(x) > 0, whenever f(x) = 0, which implies that f(x) vanishes for at most one
value of x. Hence, the lemma follows. [

We proceed by showing that F(u,) is strictly convex at u; = uy + v. Before doing this, we deal
with three relations that will be useful in the proofs below. The first relation is

06 1) 06
qL(v) -6 FK(V) =q (L(V) - ?K(V)) - rFK(V) = qA(v) =01+ q) k(v), (38)

where we used 8 = q + r, the definition of L(v), the definition (16) of g and

or _6(6-q) (86 —-BN)+BA-35q (B+8)g+BA-dq

=1+q.
B~ B B B 1
In a similar way, one can show that
qv 66 ov ov
qR(v)e? — 6 Fk(v)e =qgb—0(A+ qr(v)e"". (39)

Finally, as a consequence of the definition (10) of x(x), formula (48) for its derivative and the fact
that ek (x) = k(x) + D(x), we obtain, for any x > 0,

A(x) — Ok (x)

— (40)

K'(x)+ A+ 0)k(x) =

Lemma 7.4. F(u,) is strictly convex at u; = ug + v.

Proof. Substitution of u; = uy + v into (37) yields
= S
F"(uo +v) = A(b + A(ug +v))er @) + qR(v) e~ 5e0)-alotv) _ g2 FOe—e(uow).

By using (16) and (33) successively, we obtain
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—8o(v) — q(uy +v) = —6o(v) + [—5(/1 +0)+ A](uo +v)
=—5[o(W)+ A +6)(ug + V)] + A(uy +v)
= A(uy +v). (41)

Using this, R(v) = L(v), (35) and (38), we get

F"(ug +v) = A[b + A(ug + v)]e*®ot) + gR(v)ero+V) — 9%6}((1/) eAtotV)

= eAo+v) [A[b + A(ug +v)] +qL(v) — 6 %SK(V)]

= e MI[A[b + A(ug + V)] + qA(W) — 0(A + @)(W)].
We have A(uy + v) = Abuy + A(v) = A(v). We therefore obtain

e AUHIE" (yo +v) > Ab + (A + @)AW) — (A + @)k (V).
So, it suffices for the proof to show g(x) > 0 at x = v, where
gx) =2+ A+ q)[A(x) — Ok (x)].

Recall from Lemma A.1 that k(x) is monotonically decreasing. Since A(x) is nondecreasing, it

follows that g (x) is monotonically increasing. Therefore, since v < v, it suffices to show that g(v) >
0. By definition, v is the (unique) solution of (50). This implies

Abr(@) _ . (42)

M) = 0x(D) = G = < 0

the last inequality holds because b > 0, 5>0,k(x)>0andk'(x) <0, forx > 0, by LemmaA.1.
Hence we get, by using A + g = §(1 + ), once more,

Abk(¥) _ Ab
Sk'(v) k' (V)

g@) =Ab+5(1+6) [K' (D) + (A + D)k(P)].

The first factor is negative or zero. For the second factor, we get, by using (40) with x = v,

L . A@W) —06k)
KW+ @A+ 0)k(V)=—7F—<0,
e’vV—1
due to (42). Thus, we obtain g(v) = 0, which completes the proof. |
Now that we know that F(u,) is convex at u; = uy + v, we may conclude from Lemma 7.3 and
Lemma 7.2 that F (u,) is convex for all u; = u, + v. This holds because otherwise there would exist
at least two points of inflection, which contradicts Lemma 7.3. So, if there exists an inflection point
ii, then & < uy + v and F(u,) is concave for u; < .

Next, we establish that u, + v is also an upper bound for uj.

Lemma7.5. If Ab > 0, then F'(uy + v) > 0. Otherwise, if Ab = 0, then F'(uy +v) = 0.
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Proof. One has
F'(ug +v) = Aug + v)e2totV) — R(v) e=8eWe=aluotv) | 9%6_9(“0“’).
Using successively (41), (35) and (19), we get

06
F'(ug +v) = A(ug + v)er®otv) — R(v) e ~Awo+v) 4 ?K(v)el(‘”uo)

06
= [A(up +Vv) —L(v) + ?K(v)el(uow)

= [A(up +v) — A(W)]e MotV
= Abuger®o*v),

Since A >0, b > 0, and uy > 0, this proof of the lemma is complete. [

We now have that F(u,) is convex for u; = uy + v and its derivative at u, + v is nonnegative.
This implies that F(u,) is monotonically increasing for u; > u, + v. Therefore, the minimizer uj
satisfies u; < u, + v. Hence, uj € (ug, ug + vI.

Before proceeding, we use Fig. 3 to illustrate the current situation. This figure shows the graph of
F(u,), for u; = ugy, for one of the dikes in The Netherlands. Note that the graph has a point of
inflection 7. As a consequence of Lemma 7.3, there are no more points of inflection. Hence, F(u;)
is concave for all u; < i and therefore also for u; = u,. In this figure, u, is a local minimizer of
F(uy), but nota global minimizer. The question arises whether u, can also be a global minimizer.
In that case, we would get u] = u,, which would be in conflict with (33).

To deal with the above question, let us assume for the moment that u; = u,. Then, we get

oM+ @A+0)h; o)+ (A+)(ug+v)
2= B+6 B B+6 -

0,

Flug)

Flup+v)p-—————————————————

Fluj)pr——————————————

(15

g i ] up +v

Figure 3. Typical graph of F(uq),u; > ug
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where the last equality is due to the definition (33) of u,. But, this means that the upgrades with u,
at t; and with v at t,, take place at the same moment t = 0. According to (3), the corresponding costs
are

D(ug)e? + D(v)ez = (c 4 bug)e™o + (¢ + bv)er®o+V),
The same situation arises by performing one upgrade of size uy, + v at t = 0, whose costs are
D(ug +v)erhtz = (c + b(uy + v))eﬂ(uoH/).

From an engineering point of view, it seems realistic to assume that the ‘one-step’ strategy is
cheaper than the first strategy, which splits the upgrade in two upgrades. One has

D(uy)e*: + D(v)etz — D(uy + v)etz = D(uy)eto — buyer®otv) (43)
= eMo(c + buy) — buge?
= eMto (c - buo(e’w — 1))

The last expression is positive if and only if
¢ >bug(e?” —1) =b(e? —1). (44)

In the sequel, we assume that this condition is satisfied. As the next lemma shows, this assumption
resolves the aforementioned conflict with (33). It guarantees that u, is not a global minimizer of

F(uy).
Lemma 7.6. F(ug) = [D(ug)e*™o — buger@ot] + F(u, + v).

Proof. One has

1 = S
F(ug) = D(ug)e?™o + aR(v)e“sQ(V)‘q“O - EOe—euo’

F(ug +v) = D(ug + v)er®o*) 4 lR(v)e‘&’(")‘q(”O”) - &e‘g(u“").
q
By using (41) and (35), we may therefore write
1 S
F(uo) _ D(uo)e/l(uo) — _R(v)el(u0+v)+qv _ _K(v)e(/'l+6)v+/1u0’
q
and, by also using D (uy + v) = buy + D(v), we have
1 é
F(ug +v) — buge?@*) = p(v)er®o+V) 4 —R(v)ero+V) — /—?K(v)e’l(’”' Uo),
q

The lemma will follow if the right-hand side members in the above equations are equal. After dividing
by the common factor eA?(o*V) this leads to the following equation:
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1 6 1 1)
—R(W)e? ——k()e?” =DW) +=RW) — =k).
q B q B

Since k(v)e® = k(v) + D(v), this further reduces to
~R@)e™ — 2 D) = D) + = R()
— v)e - V)= v — V).
q B q

After multiplication of both sides with g, we get the equivalent equality,

R(v)e?v — 9 +0

D(v) = R(v).

Using the definitions of g and R (x), the left-hand side expression reduces to L(v), as follows:

quR(V) — CI?D(V) = equ(V) _ 06 — A,B

D(v)

=b+ @K(v)eev — H—SD(V) + AD(v)
- B B

=A(v) + 9‘75 [K(v)ee" — D(v)]

66
=A(v) + FK(V) = L(v).

Since L(v) = R(v), by the definition of v, the lemma follows. [ ]

Since the bracketed expression in the lemma is a positive multiple of ¢ — bu, (e'“"1 ) by (43),
we conclude that uj € (ug, uy + v]. So u, can be obtained by minimizing a convex function on the
finite interval (i, uy + v] if there is a point of inflection @ > u, and on the finite interval (uy, uy + V]
if there is no point of inflection.

Thus, we have shown that in the unhealthy case the minimizer uj of f(u, t) = F(u,) can be found
by minimizing a convex function on a finite interval. In cases where Ab = 0, we know at forehand
that uj = uy + v, because then F'(uy + v) = 0, by Lemma 7.5. Moreover, the solution is periodic
from t = t, on, where

o)+ (A +0)(u; +v)
2T B+6

After t = t,, the solution is independent of S,: all subsequent upgrades have the same value v
and occur periodically; the interval between two subsequent upgrades is p, as given by (28).

It may be mentioned that for the 22 dikes for which the data are available (cf. Appendix C), there
is always an inflection point @ > u,. Note that this holds if and only if F"'(uy) < 0. We would have
liked to prove this in the general case, under the condition (44), but we did not succeed. We leave this
as a challenge to the reader.
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8. Computational Results

We applied our results to the 22 dikes whose data are given in Table 2 in Appendix C. The resulting
solutions for these dikes are presented in Table 1.

The first column in this table uses a parameter ¢, which is defined by

So

o= Sk (vV)e o’

(45)

where the denominator is the threshold value for S in (29), that separates healthy dikes (¢ < 1) from
unhealthy dikes (o > 1). As one might expect this separation is also clear from the values of t; and
u, in the table: for the unhealthy dikes, one has t; = 0 and u; > v, whereas for healthy dikes, t; = 0
and u; = v.

The second column in the table serves to show that all dikes satisfy the condition (44). This
condition can be reformulated in terms of an upper & bound for . This will be explained now. First,
we consider the following lemma.

Lemma 8.1. With ¢ as just defined, one has

_logo

=6 (46)
Proof. Due to (45), we may write
14+ 0)v =log S0 = — loga&c(v) = —po(v) —logo.
odk(v) So
Due to the definition (33) of u,, this implies (1 + 8)u, = log g, whence we obtain (46). ]

Due to the above lemma, condition (44) can be written as

logo
A+0

c>b (e’h’ — 1).
Since ¢ > 0, this certainly holds if Ab = 0. If Ab > 0, however, it puts an upper bound on the value
of a, namely,

A+ 6)c

B =D (47)

logo <

The second column in the table shows the resulting upper bound for o, which is denoted as &. The
table not only makes clear that ¢ < &, so that (44) holds for all dikes, but also that & is very large for
some dikes.
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Table 1. Solutions for the 22 dikes as specified in Table 2 in Appendix C.
no. o a v Uy p ty t, fu, )
10  0.2466 1.90e+04 56.96 57.12 56.96 4580 102.92 40.04
11 0.2771 o0 62.42 58.89 62.42 4244  101.33 110.23

15  1.1849 9.35e+03 53.29 51.54 55.96 0.00 51.20 545.18
16  0.8001 1.78e+06 52.59 54.04 52.59 3.50 57.54 1089.68
22 0.4463 2.91e+12 53.70 62.43 53.70 12.72 75.16 309.25
23 0.297 6.36e+05 55.24 48.24 55.24 56.06 104.30 20.07
24 0.5871 1.08e+03 61.81 42.80 61.81 8.01 50.80 297.26
35 1.2344 7.06e+01 59.65 41.73 63.89 0.00 41.08 345.23

38 1.1016 2.24e+01 62.04 51.31 65.27 0.00 50.80 172.07
40  0.0615 4.87e+02 78.80 61.68 78.80 90.90  152.57 3.83
41 21307 3.61le+02 74.66 62.95  100.55 0.00 60.13 325.89
42 0.6144 5.50e+03 72.24 61.43 72.24 15.43 76.86 79.24
43  0.7688 3.58e+02 43.49 64.66 73.49 8.39 73.05 1304.79
44  2.9440 3.71e+01 49.54 55.42 76.91 0.00 50.06 206.50
45 25159 1.70e+01 41.49 50.94 61.80 0.00 45.69 33.72
47  1.3608 9.51e+01 55.60 51.87 65.26 0.00 50.74 64.10
48  1.2888 5.68e+00 50.84 42.47 58.24 0.00 40.57 403.00
49  0.3808 4.41e+01 45.65 52.97 45.65 31.66 84.62 74.04
50 2.6718 o 61.97 58.78 95.87 0.00 58.78 53.47
51  0.3372 1.86e+01 40.49 51.49 40.49 35.48 56.97 54.18
52  0.8966 1.48e+02 45.74 57.79 45.74 3.52 61.31 245.38

53 2.0317 1.12e+04 66.13 68.54 86.57 0.00 66.58 307.48

If (47) does not hold, then we call a dike very unhealthy, because then splitting an upgrade of the
dike at some moment in two steps (at the same time) may become more advantageous than doing it
in one step. For such dikes, the solution of our model may yield t; = t, = 0. As we made it clear,
this is in conflict with the assumptions underlying the model. So, we must conclude that the model

breaks down in such cases.

Finally, it may be worth to emphasize that at the end of Section 6 we gave a ‘physical’ proof for
the inequality u; > v in the unhealthy case. It is clear from Table 1 that this inequality holds indeed.
Unfortunately, we were not able to prove this inequality mathematically. We leave it as a challenge

for the reader.
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Appendix A. Proofs of Properties of £(x) and R(x)

Recall that D(x) = ¢ + bx and that k(x) as defined in (10). Below, we frequently use the first and
second derivatives of x(x), which are given by

_ Ox
() = L oe ), )
96936
K'(x)=— o (GK(x) + 2K’(x)). (49)

Lemma A.L. k(x) is strictly convex and monotonically decreasing to zero.
Proof. From (48) it is clear that k' (x) has the same sign as
b(e%* — 1) — 0 e%*D(x).
The value of this expression at x = 0 is —6c, which is negative, and its derivative is
bOeb* — 62e9*D(x) — 0ef*b = —02%e9*D(x) < 0.

Therefore, k’(x) is negative. Hence k(x) is monotonically decreasing, as stated in the lemma.
Moreover, the definition of k(x) makes clear that if x grows, then the limiting value is zero.

Concerning the second the derivative of x(x), we deduce from (49) that it has the same sign as
—2k'(x) — Ox(x), for which we have

2 (b - 9e9xlc(x)) + (e — 1)k (x) _ 0e%%k(x) + O (x) — 2b

—2K'(x) — Ok(x) = — o0x _ 1 efx — 1

Multiplication with (e®* — 1)2 yields the expression
0e%*D(x) + 8D (x) — 2(69" —1)b.
Since ¢ > 0, this expression is positive if b = 0, whereas its derivative with respect to b equals
Oxeb* + Ox — 2(eb* — 1).

Putting y := 0x, one may easily verify that ye¥ + y — 2(e¥ — 1) = 0, for y = 0. It thus follows that
k''(x) > 0, for all x > 0, which means that x(x) is strictly convex. Hence, the proof is complete. m

We proceed by showing that the derivatives of L(x) and R(x) are closely related.
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Lemma A.2.2 One has
L'(x) =eT*R(x) = K(x)‘g‘l[/lbk(x) + B [0 (x) — ACx)]K (x).
Proof. We start by computing the derivative of £(x):

L'(x) = =8K(x) 0k () L(x) + 1(x) 0L (x) = 1(x) "1 [=8k (X)L (x) + K (x)L' (x)]

- _ 05 05
=k(x) %1 [—5K’(x) <A(x) + FK(X)) + K (x) (Ab + FK'(JC))].

The coefficient of x(x)x’(x) in the bracketed expression equals

66 66 -
ALY

_06 66 1 95_( 8 )ﬁ e

=(1- 513
Thus, we get
L'(x) = rc(x)‘g‘1 [Abrc(x) + 8 k' (x) [6K(x) — A(x)]].

Hence, the expression for the derivative of £(x) in the lemma is correct. The derivative of R(x) is
R'(x) = —81(x) 701k (R (x) + k(x) O R'(x) = k(%) 51 [=8k’ ()R (x) + k(X)R' ()]

= K(x)‘g‘1 [—SK’(x) (be‘qx + @K(x)e”‘> + k(x) (—qbe“’" + 9—6 [x'(x) + rrc(x)]e”C)] .

B B

Hence, the lemma will follow if

Abic(x) + 8’ (x) [0k (x) — A(x)]

= —6k'(x) (b + %K(x)e9x> + Kk (x) (—qb + 0’76 [k’ (x) + rzc(x)]eex>.

The coefficient of k' (x)x(x) in the left-hand side is §6 and the coefficient in the right-hand side:

_06 05 05 _
—5—ef* + —e% = (1—-§)—eb = §6e,
B B (1-9) B

where we used (1 — §)8 = B4. Hence, since % = A + q, it remains to show to show that

(A + Qbr(x) +80(1 — %) k' (XK (x) — 5K’ (x)(A(x) — b) = O(A + @)K (x)?e™.
Since 1 + q = §(A1 + 6) and A(x) = b + AD(x), after dividing by the common factor § we get:

A+ 08)br(x) + (1 — eex)HK’(x)K(x) — k' (x)D(x) = 01 + 0)k(x)?e?™.

21f B = 0 then, the derivatives of L(x) and R(x) are also as given by this lemma, with g = 8 and § = 1.
This implies that all subsequent results are also valid if 8 = 0.
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Moving the first term at the left to the right and using the expression (48) for k'(x), we get

(1 - eBX)HK’(x)K(x) —A'(x)D(x) = A+ Q)K(x)(ek(x)eex — b)
=1+ Q)K(x)(l — eex)}c’(x),

which reduces to
—Ak'(x)D(x) = /lk(x)(l — eex)lc’(x).
Since —D(x) = x(x)(1 — %), this relation holds true. Hence, the proof is complete. n
Lemma A.2 implies that £L'(x) = 0 holds if and only if R'(x) = 0 and this happens if and only if
Abic(x) + 85[0k (x) — A(X)]x'(x) = 0. (50)
We claim that this equation has exactly one solution. This is the content of the following lemma.
Lemma A.3. The equation (50) has exactly one solution.
Proof. Multiplying the left-hand side of (50) with e®* — 1 > 0, we get the function k(x) defined by
k(x) = AbD(x) + S[GD(x) — (69" — 1)A(x)];c’(x). (51)
Now, it suffices for the proof to show that the equation k(x) = 0 has exactly one solution. We first
show that k(x) approaches —oo if x goes to zero and k(x) converges either to co or to a positive
number if x goes to oo.
This implies that k(x) attains the value zero for some finite value. From this point on, we assume
thgtv > 0 issuch that k(¥) = 0. Next, we show that k(x) = 0 implies k' (x) > 0, which implies that
v is unique.

One has

b =7
. s & 0X  _ i s - _
1;?3 k(x) = lﬂlg AbD(0) + 66D (0) —ox 11%1 1y 0,

where we used D(0) = ¢ > 0. We next consider the behavior of k(x) if x grows to infinity. We first
consider the case where A = 0. Then, using D(x) = ¢ + bx and A(x) = b + AD(x) > 0, due to (14),
we have

gx bx
0 20 0 b — be
lim k(x) = 11m 6[9bx —e xb]—x = lim 6[— xb]
X—00 X—00
= 11m 5b%(6x — 1) = co.
X—00

Now, let A > 0. We then need to distinguish between b > 0and b = 0. If b > 0, then
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b — fef* bTx
lim k(x) = lim Ab (bx) + § [0bx — €% Abx | ———2—
X—00 X—00 e

p

X—>00 X—00

_ Obx _
= lim Ab*x + §[— e®*2bx] [— W] = lim §A0b*x? = co.
e
Finally, if b = 0, then D(x) = c and A(x) = Ac > 0. Hence, we get

_ o ox —0e%*c o ABefcr
}l_l;l(;lo k(x) = 351_}7’& 5[9(3 — (e — 1)/1C] m = )11_)1’1;)6 W = 6A0c* > 0.

From the above results we conclude that if x runs from 0 to oo, then k(x) grows from —oo to oo
(if b > 0) or to a positive number (if b = 0). We now prove that k(x) = 0 occurs at most once for
x > 0, by showing that the derivative of k(x) is positive if k(x) = 0. Using (51), straightforward
computations yield

k'(x) = Ab? + & [0b — 0e*A(x) — (%% — 1)Ab]k’ (x) + §[0D(x) — (% — 1)A(x)|x" (x)

= Ab% + §[6b — 0e®*A(x) — (%% — 1)Ab]x’ (x) — A}lz,D(g) k" (x),

where the second equality follows from (50). The bracketed expression is negative, because
(e%* — 1)Ab = 0 and, since b — A(x) = —AD(x),

0b — 0e9*A(x) = 8[b — (e%* — 1)A(x) — A(x)] = 0] (%% — 1)A(x) — AD(x)] < 0.

Since k'(x) < 0and k"' (x) > 0, by Lemma A.1, we may conclude that k(x) = 0 implies k' (x) >
0, as desired. Hence the proof is complete. ]

We conclude from Lemma A.2 and Lemma A.3 that £L'(v) = R'(v) = 0, where v is the unique
point where L'(x) and R’(x) vanish. The above proof also reveals that £'(x) and R'(x) change
sign at x = v. Hence, without further proof we may state the next lemma.

Lemma A.4. L(x) and R(x) are decreasing if x < v and increasing if x > .
In the next lemma, we consider the limits of £(x) and R(x) when x approaches zero or infinity.

Lemma A.5.3 One has

lim L(x) = oo.

X—00

Moreover,

B>0= lig)lll(x) = li%lR(x) = lim R(x) = oo,
X X X—00

B <0=IlimL(x) =limR(x) = lim R(x) = 0.
xl0 xl0 X—00

3 It may be mentioned that if 5 = 0 then the limits are the same as the case when 5 > 0.


http://dx.doi.org/10.29252/iors.8.2.68
http://iors.ir/journal/article-1-542-en.html

[ Downloaded from iors.ir on 2026-01-30 ]

[ DOI: 10.29252/i0rs.8.2.68 ]

92 Roos

Proof. The proof uses the following facts:

e >0, A= 0andéd > 0;

[ ‘8:%1

e f+65=1,6>0;

o q=05-28;

e f3,p and r have the same sign;

e D(0)=c>0andA(0) = bAc > 0;

Using these properties, the proof becomes more or less straightforward. Using only the sum and
product rules for taking limits we may write:

(0) 95D(0)\ . 65 (D(0) B
th(x)—hm( x) ( ) + ﬁ 0% )—lxﬁ)l?< O > )
S5

Ox
J}I_I;EIO L(x) = llm <D(x)) ( 05D(;?) = )}Lrg (%) A(x),

0) 05D(0)\  65(DO)\
Bx) (b+7 Ox )zlﬂgF( x> =133H)1L(x),

D\ [ 68 88
eex> e 1 (b+FD(x))—;}1_{£10FD(x) e’rx,

llm R(x) = llm(

lim R(x) = lim (

X—>00 X—>00

From the above relations one easily deduces the results stated in the lemma. It may be pointed out
that for the last limit one needs to use that if b = 0 then 4 > 0, and if A = 0 then b > 0, due to (4).
This completes the proof. [ ]

Lemma A.6. One has L(V) < R(V). Moreover, L(v) = R(v) for some unique number v > v.

Proof. We have £L'(x) = e?*R'(x) and g > 0. Since e?* > 1, it follows that if x < v, then £(x)
decreases faster than R(x) and if x > v, then L(x) increases faster than R (x). We first deal with the
case where x < . In that case, we must distinguish the cases § > 0 and § < 0.

We start with § < 0. From Lemma A.5 we know that the limiting value of £(x) and R(x) is zero
when x approaches zero. Since L£(x) decreases faster than R(x) if x € (0, V), we conclude that
L(x) < R(x), forall x < v.

If >0, then L(x) and R(x) become unbounded when x approaches zero, as we know from
Lemma A.5. In order to show that L(x) < R(x), for x < v, it suffices to prove that this holds when
x approaches zero. We therefore consider the sign of R(x) — L(x) = x(x)~% [R(x) — L(x)] when x
approaches zero. Since k(x) is positive by Lemma A.1, this sign is the same as the sign of

C) 06
e(x) =be ¥ + ?}c(x)erx —b—AD(x) — ?K(x)

= (e”% — 1)b — AD(x) +9—6:D(x)
’3 efx — 1 '
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l-lllS X) = l.nl _AD xX)+——= D X | = _A + — D 0 = qD 0 O
10 ( ) 10 ( ) ﬁ 9 ( ) ( lg) ( ) ( ) > 0.

We conclude that if x < v, then £(x) < R(x) holds also when g > 0. This implies, in particular,
that L(V) < R(V).

Finally, we deal with x > v. Since L(x) increases exponentially faster than R(x), for x € (v, ),
and L(x) goes to infinity if x grows to infinity, there must exist a number v > v such that L(v) =
R(v). From this point on, £L(x) still grows faster than R(x), which gives the uniqueness of v. This
completes the proof of the lemma. [ ]

We conclude this section by pointing out another consequence of Lemma A.5, namely,
BR(x) >0, Vx > 0. (52)

This is obvious if 8 > 0, because then the definition of R implies R(x) > 0, forall x > 0. If 8 <
0, then Lemma A.5 gives that R(x) converges to zero both when x approaches zero and when x
grows to infinity. Due to Lemma A.4, this implies that R(x) < 0, for all x > 0.

Appendix B. Objective Value in the Unhealthy Case

Taking the sum of all stationarity conditions (5) for t;, (k = 2), we get

[oe]

Z 5D(uk)e/1hk—5tk = Z(soeﬁtk-th—1 — Soeﬁt—k_ehk),
k=2 k=2

This yields a linear relation between I (u, t) and A(u, 7) at a stationary point as follows:

5(1(11,, T) - D(ul)elul) = Z Soeﬁtk_ehk—l — Z Soeﬁtk—l_ehk—l
k=2 k=3

) o
= z Soeﬁtk_th—1 + SOeBt1—9h1 — Z SOeBtk—1—9hk—1
k=2 k=2

o]

— Soeﬁt1—9h1 + Z So [eﬁtk _ eﬁtk—1]e—9hk—1
k=2
= Spe %% + B(A(u, 1) — S[ePtr — ePlo]e~bho)

= S‘Oe_gu1 + ,BA(U, T)' (53)

where we used t, = t; = hy = 0. The stationarity condition (13) for u, yields

oo

beAhz=8tz 4 Z AD (u,)ethe5te = z% ePte — gPte-a ) e=bhe-1, (54)
=2 7=3 B
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This implies
S
beth2=0t2 + A[I(u,7) — D(uy)et=04] =9 [A(u, 7) — Eo(em2 — eﬁtl)e_ehl],

where we used once more that (eft — efto) e=%" = 0. Since h; = u; and ¢; = 0, this gives a
second linear relation between I'(u, 1) and A(u, ), namely,

(00)

be*h2=6t2 4 Z AD (u,)ethe=5te = Z% ePte — gPte-1) g=0he-1, (55)
= =3 B

Since Bt, — Ou, = Bt, — 6(h, — u,), we may reduce this equality as follows:

6S 6S
—A(u,7) + 0A(u,7) = beth20tz 4 ?Oeﬁtz“g’begu2 — AD(uy )™ — TOe‘eul

— be/’lhz—tStz + %K(uz)elhz—&zéﬁuz _ AD(ul)e’lul _ %e—eul
%K(uz)eeuz) elhz—Stz _ AD(ul)elul _ %e—eul

=(b+

( 5
_ 0So _

= eT2R(u,) e*2=0t2 — D (u,)et*r — Te Ouy

where the second equality is due to (12), i.e., stationarity with respect to t,. Using stationarity with
respect to t, once more, we get, from (17),

So\° 5
e0ts — (F()) k(1) S e~ (@+Dhz,

Substitution gives

5

S - 6S,
—A(u,7) + 0A(u, 1) = e?™2R(u,) (?0) k(uy) %e~"2 — AD(uy)et — 706“9”1
So\® . 0s
= (?0) K (uz) "R (uy)e ™%t — AD (uy)e?r — 706,—9141
So\® 6S
= (§0> R(uz)e 9 — AD (uy)e™r — 709_9“1.

Thus, we have obtained two linear relations between I(u, 7) and A(u, t), namely,

8I(u, ) — BA(u, ) = 6D (uy)e?™r + Sye~%
5

So B 1 So _g
—Al(u,7) + 0A(u,7) = (E) R(uy)e ™1 — AD(uq)e™*r — BEe U1,
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Just as in Section 5 for the healthy case, this system has a unique solution. By solving the system
for I(u, ) and A(u, T), we get, in the same way as in Section 5, the following expressions:

So\°

(05 — B) A(u,7) = & (?) R(uy)e-tts — Q870 _gu,

7 ,
A SO o -
(85 — B, T) = (85 — D (u)e™ + B (E) R(uy)e 0,

By adding these equations, we obtain the value of f (u, ) at a stationary point:

8

Fu, 1) = e_;ul (%) R(uy) + D(uy)e™ —%6‘9”1.

Appendix C. Data of 22 Dikes in The Netherlands
Table 2 contains the raw data of the 22 dikes in The Netherlands for which the data are available.
Table 3 contains the values of the parameters that play a role in the theoretical analysis.

It was shown in Section 8 that the 12 dikes numbered 10, 11, 16, 22, 23, 24, 40, 42, 43, 49, 51,
and 52 were healthy and the other 10 dikes were unhealthy.
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Table 2. Raw data for the 22 dikes.

No. c b A g n y ¢ Py Va
10 16.6939 0.6258 0.0014 0.033027 0.320 0.02 0.003774 1/2270 1564.9
11 42,6200 1.7068 0.0000 0.032000 0.320 0.02 0.003469 1/855 1700.1
15 125.6422 1.1268 0.0098 0.050200 0.760 0.02 0.003764 1/729 118104
16 324.6287 2.1304 0.0100 0.057400 0.760 0.02 0.002032 1/906 22656.5
22 1544388 0.9325 0.0066 0.070000 0.620 0.02 0.002893 1/1802 9641.1
23  26.4653 0.5250 0.0034 0.053400 0.800 0.02 0.002031 1/729 61.6
24 71.6923 1.0750 0.0059 0.043900 1.060 0.02 0.003733 1/531 2706.4
35 49,7384 0.6888 0.0088 0.036000 1.060 0.02 0.004105 1/509 45347
38 243404 0.7000 0.0040 0.025321 0.412 0.02 0.004153 1/585 3062.6
40 5.8601 0.1000 0.0026 0.025321 0.422 0.02 0.003905 1/855 435
41 58.8110 0.9250 0.0033 0.025321 0.422 0.02 0.002794 1/585 10013.1
42  21.8254 0.4625 0.0019 0.026194 0.442 0.02 0.001241 1/585 1090.8
43 3405081 4.2975 0.0043 0.025321 0.448 0.02 0.002043 1/585 19767.6
44  24.0977 0.7300 0.0054 0.031651 0.316 0.02 0.003485 1/3050 37596.3
45 3.4375 0.1375 0.0069 0.033027 0.320 0.02 0.002397 1/6120 10421.2
47 8.7813 0.3513 0.0026 0.029000 0.358 0.02 0.003257 1/585 1369.0
48  35.6250 1.4250 0.0063 0.023019 0.496 0.02 0.003076 1/585 7046.4
49  20.0000 0.8000 0.0046 0.034529 0.304 0.02 0.003744 1/585 823.3
50 8.1250 0.3250 0.0000 0.033027 0.320 0.02 0.004033 1/585 2118.5
51 15.0000 0.6000 0.0071 0.036173 0.294 0.02 0.004315 1/585 570.4
52  49.2200 1.6075 0.0047 0.036173 0.304 0.02 0.001716 1/585 4025.6
53 69.4565 1.1625 0.0028 0.031651 0.336 0.02 0.002700 1/585 9819.5
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Table 3. Data used in the analysis, for the 22 dikes
no. c b A B 0 é q v
10 16.6939  0.6258  0.0014 -0.0094  0.0293 0.04  0.0387 56.9610
11 426200  1.7068 0.0000 -0.0098  0.0285 0.04  0.0377 62.4217
15 125.6422  1.1268 0.0098 0.0182  0.0464 0.04  0.0289 53.2922
16 324.6287  2.1304 0.0100 0.0236  0.0554 0.04 0.0311 52.5944
22 1544388 09325 0.0066 0.0234  0.0671 0.04  0.0399 53.7019
23 26.4653 05250 0.0034 0.0227 0.0514 0.04 0.0315 55.2417
24 716923  1.0750 0.0059  0.0265  0.0402 0.04 0.0218 61.8285
35 49.7338  0.6888 0.0088  0.0182  0.0319 0.04 0.0192 59.6453
38 243404  0.7000 0.0040 -0.0096  0.0212 0.04  0.0291 62.0429
40 58601  0.1000 0.0026 -0.0093 0.0214 0.04  0.0287 78.8044
41 558110  0.9250 0.0033 -0.0093  0.0226 0.04  0.0304 74.6588
42 218254  0.4625 0.0019 -0.0084  0.0250 0.04 0.0321 72.2395
43 3405081  4.2975 0.0043 -0.0087  0.0233 0.04  0.0309 73.4901
44 240977  0.7300 0.0054 -0.0100  0.0282 0.04 0.0394 49.5379
45 34375  0.1375 0.0069 -0.0094  0.0306 0.04  0.0422 41.4883
47  8.7813  0.3513 0.0026 -0.0096  0.0257 0.04  0.0347 55.5986
48 356250  1.4250 0.0063 -0.0086  0.0199 0.04 0.0271 50.8446
49  20.0000  0.8000 0.0046 -0.0095 0.0308 0.04 0.0418 54.6507
50 81250  0.3250 0.0000 -0.0094  0.0290 0.04 0.0379 61.9738
51 15.0000  0.6000 0.0071 -0.0094  0.0319 0.04 0.0438 40.4924
52 49.2200  1.6075 0.0047 -0.0090  0.0345 0.04  0.0458 45.7435
53 69.4565  1.1625 0.0028 -0.0094  0.0290 0.04 0.0387 66.1279
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