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A Mathematical Model for Flood Protection 
 

C. Roos1 
 

Many regions in the world are protected against flooding by a dike, which may be either natural 

or artificial. We deal with a model for finding the optimal heights of such a dike in the future. It 

minimizes the sum of the investments costs for upgrading the dike in the future and the expected 

costs due to flooding. The model is highly nonlinear, nonconvex, and infinite-dimensional. Despite 

this, the model can be solved analytically if there is no backlog in maintenance. If there is a backlog 

in maintenance, then the optimal solution can be found by minimizing a convex function over a 

finite interval. However, if the backlog becomes extremely large we show that the model breaks 

down. Our model has been used in The Netherlands to define legal safety standards for the coming 

decades. 
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1. Introduction 

 

Dike height optimization is of major importance to the Netherlands because a large part of the 

country lies below sea level and high water levels in rivers can also cause floods. After a devastating 

flood in the Netherlands in 1953, Van Dantzig proposed a cost-benefit model to protect The 

Netherlands against new floods [6]. His model is considered to be the first real-life application of 

Operations Research techniques in The Netherlands. 

 

In 2006, Van Dantzig’s model was improved by Eijgenraam [4]. He showed numerically the 

shortcomings of Van Dantzig’s model, which contrary to the new model did not take into account the 

growth of economy in the protected area during time. 

 

The submersible part of The Netherlands is divided in more than 50 so-called dike rings. A dike 

ring is an area that is surrounded by a dike. Most dike rings consist of several segments that are 

characterized by different properties. Eijgenraam’s model focused on a one-segment (or 

homogeneous) dike. He found a nice periodic solution of his model and claimed that this solution is 

optimal. The proof of this claim in [4] has a flaw, however. 

 

Some attempts were made to generalize Eijgenraam’s model to the case of nonhomogeneous 

dikes, i.e., dikes with more than one segment. In such a case, an analytic solutions seems to be out of 

reach. As made clear in [5], also some initial numerical attempts to deal with nonhomogeneous dikes 

failed. 

 

In some recent papers, we dealt with Eijgenraam’s model and its generalization to the 

nonhomogeneous case [1, 2, 3]. In [1, 3], we focussed on a nonhomogeneous extension of 
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Eijgenraam’s model for which we developed a mixed integer nonlinear model that could be solved 

by CPLEX, while using CONOPT to deal with nonlinearity. In [2], we gave a full analysis of the 

homogeneous model of Eijgenraam. The model is a highly nonlinear, nonconvex, and infinite-

dimensional optimization problem. Despite this, we could show that the periodic solution of 

Eijgenraam’s model is optimal, provided that there is no backlog in maintenance. We called a dike 

healthy in that case; otherwise, unhealthy. We also showed that if a dike is unhealthy, then it is optimal 

to upgrade the dike immediately with a specific quantity which makes the dike healthy; after this 

upgrade, the dike behaves as a healthy dike, and the optimal upgrade policy is then again periodic. 

 

In this paper, we only deal with homogeneous dikes. We present a simplified and streamlined 

proof that if the dike is healthy, then the solution of Eijgenraam’s model is periodic, as we showed 

earlier in the (electronic) appendix of [2]. The main focus, however, is on unhealthy dikes. We show 

that if the expected damage is too large, in fact extremely large, then the model breaks down, because 

then it becomes attractive to split an upgrade at some time in two separate upgrades at the same time.  

Since the set-up costs in our model are positive, this is absurd. 

 

It may be clear that our model may also be applicable to other deltas in the world where the ground 

is sinking and/or the water level is rising. 

 

2. Mathematical Model for a Homogeneous Dike 
 

Our model uses the following functions and parameters:  

 

𝐻𝑡: dike height at time 𝑡, 

𝑃𝑡 = 𝑃0 𝑒𝑎𝜂𝑡𝑒−𝑎(𝐻𝑡−𝐻0) : flood probability at time 𝑡, 

𝛼: parameter in exponential distribution for extreme water levels (1/cm), 

𝜂: ground level decrease plus water level increase (cm/year), 

𝑉𝑡 = 𝑉0 𝑒𝛾𝑡𝑒𝜁(𝐻𝑡−𝐻0) : loss by flooding at time 𝑡 (million euros), 

𝛾: rate of growth of wealth in dike ring (per year), 

𝜁:  increase of loss per cm dike heightening (1/cm), 

𝛿: discount rate (1/year). 

 

The expected loss at time 𝑡 is then 

 

𝑆𝑡 = 𝑃𝑡𝑉𝑡 = 𝑃0𝑒𝛼𝜂𝑡𝑒−𝛼 (𝐻𝑡−𝐻0) ⋅ 𝑉0 𝑒𝛾𝑡𝑒𝜁(𝐻𝑡−𝐻0) = 𝑆0 𝑒𝛽1𝑡𝑒−𝜃ℎ𝑡 , 
 

where 

 

𝑆0 = 𝑃0𝑉0, 𝛽1 = 𝛼𝜂 + 𝛾, 𝜃 = 𝛼 − 𝜁, ℎ𝑡 = 𝐻𝑡 − 𝐻0. 
 

We assume that upgrades of the dike take place at moments 𝑡𝑘, 𝑘 = 1, 2, … . The value of the 

upgrade at moment 𝑡𝑘 is denoted as 𝑢𝑘. We require that 

 

𝑢𝑘 > 0, 𝑡𝑘+1 > 𝑡𝑘 ≥ 𝑡0 = 0, 𝑘 ≥ 1. (1) 

 

The height at moment 𝑡𝑘 (including 𝑢𝑘) is denoted as ℎ𝑘. We then have 

 

ℎ0 = 0, ℎ𝑘 =  ℎ𝑘−1 + 𝑢𝑘, 𝑘 ≥  1 . (2) 
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Figure 1. Graph of ℎ𝑡 

 

We define infinite sequences 𝑢, ℎ and 𝜏 as follows: 

 

𝑢 ≔ (𝑢1; 𝑢2; 𝑢3; … ), 
ℎ ≔ (ℎ1; ℎ2; ℎ3; … ), 
𝜏 ≔ (𝑡1; 𝑡2; 𝑡3; … ). 

 

It is clear that if we know 𝑢, then ℎ follows from (2), and vice versa. So, we may consider the total 

costs as a function 𝑓(𝑢, 𝜏) of 𝑢 and 𝜏 alone. One has 

 

𝑓(𝑢, 𝜏) = 𝐼(𝑢, 𝜏) + 𝐴(𝑢, 𝜏), 
 

where 𝐼(𝑢, 𝜏) represents the total investment costs, and 𝐴(𝑢, 𝜏) is the total expected damage. The 

costs for an upgrade of the dike with 𝑢𝑘 at 𝑡 = 𝑡𝑘 are given by 

 

𝐷(𝑢𝑘)𝑒𝜆ℎ𝑘𝑒−𝛿𝑡𝑘 , 𝐷(𝑢𝑘) = 𝑐 + 𝑏𝑢𝑘 , (3) 

 

where the factor 𝑒−𝛿𝑡𝑘 takes care of discounting future costs to present costs. We may now write 

 

𝐼(𝑢, 𝜏) = ∑ 𝐷(𝑢𝑘)𝑒𝜆ℎ𝑘−𝛿𝑡𝑘

∞

𝑘=1

,                                                                

 

𝐴(𝑢, 𝜏) = ∑ ∫ 𝑆𝑡𝑒𝛿𝑡𝑑𝑡
𝑡𝑘

𝑡𝑘−1 

∞

𝑘=1

= ∑ ∫ 𝑆0𝑒𝛽1𝑡𝑒−𝜃(𝐻𝑡−𝐻0)𝑒−𝛿𝑡𝑑𝑡
𝑡𝑘

𝑡𝑘−1 

∞

𝑘=1

 

= ∑
𝑆0

𝛽
[𝑒𝛽𝑡𝑘 − 𝑒𝛽𝑡𝑘−1]𝑒−𝜃ℎ𝑘−1

∞

𝑘=1

,                               

 

where 𝛽 = 𝛽1 − 𝛿 and where we used that the height of the dike in the interval [𝑡𝑘−1, 𝑡𝑘) equals ℎ𝑘−1. 

We call the pair (𝑢, 𝜏) admissible if (1) and (2) are satisfied. Our aim is to find an admissible pair 
(𝑢, 𝜏) that minimizes 𝑓(𝑢, 𝜏). 

 

It will be assumed that  
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𝑆0 > 0, 𝑏 ≥ 0, 𝑐 > 0, 𝜆 ≥ 0, 𝛿 > 0, 𝜃 > 0, 𝛽 ≠ 0, 
 

thereby we may use that 

 

𝛽 + 𝛿 > 0, 𝜃𝛿 − 𝜆𝛽 > 0, 𝜆 + 𝑏 > 0, (4) 

 

because these inequalities are satisfied for all dike rings in The Netherlands. The assumption 𝛽 ≠ 0 

is only made to simplify the presentation; the arguments used below can easily be adapted to the case 

where 𝛽 = 0. 

 

Note that if 𝐾 is any positive constant and we redefine 𝑏, 𝑐 and 𝑆0 according to 𝑏: = 𝐾𝑏, 𝑐 ≔ 𝐾𝑐 

and 𝑆0 ≔ 𝐾𝑆0, then the values of 𝐼(𝑢, 𝜏) and 𝐴(𝑢, 𝜏) are multiplied by 𝐾. So, by taking 𝐾 = 1/𝑐, we 

may normalize the problem such that 𝑐 = 1. 

 

3. First Order Optimality Conditions with Respect to 𝒕𝒌 
 

By computing the partial derivative of 𝑓(𝑢, 𝜏) with respect to 𝑡𝑘, we obtain 

 
𝜕𝑓(𝑢, 𝜏)

𝜕𝑡𝑘
 =  −𝛿𝐷(𝑢𝑘)𝑒𝜆ℎ𝑘−𝛿 𝑡𝑘 + 𝑆0 𝑒𝛽𝑡𝑘−𝜃ℎ𝑘−1 − 𝑆0𝑒𝛽𝑡𝑘−𝜃ℎ𝑘 . 

 

Hence, the pair (𝑢, 𝜏) is stationary with respect to 𝑡𝑘 if and only if 

 

𝛿𝐷(𝑢𝑘)𝑒𝜆ℎ𝑘−𝛿𝑡𝑘  = 𝑆0 𝑒𝛽𝑡𝑘−𝜃ℎ𝑘−1 − 𝑆0𝑒𝛽𝑡𝑘−𝜃ℎ𝑘 , 𝑘 ≥ 1. (5) 

 

Because of (2), this condition can be written as 

 

𝛿𝐷(𝑢𝑘)𝑒(𝜆+𝜃)ℎ𝑘−(𝛽+𝛿)𝑡𝑘 = 𝑆0(𝑒𝜃𝑢𝑘 −  1). (6) 

 

We define 

 

𝜚(𝑥) ≔ ln
𝛿𝐷(𝑥)

𝑆0(𝑒𝜃𝑥 − 1)
, 𝑥 > 0. (7) 

 

By taking logarithms of both sides of (6) the condition for stationarity with respect to 𝑡𝑘 becomes 

 

𝜚(𝑢𝑘) = (𝛽 + 𝛿)𝑡𝑘 − (𝜆 + 𝜃)ℎ𝑘, 𝑘 ≥ 1. (8) 

 

As we already established, if 𝑢 is known, then ℎ can be computed. The above relation reveals that 

then also the sequence 𝜏 can be computed, because since 𝛽 + 𝛿 > 0 we may write 

 

𝑡𝑘 =
𝜚(𝑢𝑘) + (𝜆 + 𝜃) ℎ𝑘

𝛽 + 𝛿
. (9) 

 

Hence, a stationary pair (𝑢, 𝜏) is completely determined by its sequence 𝑢. Therefore, we call the 

sequence 𝑢 a stationary sequence if the corresponding (𝑢, 𝜏) is stationary. Similarly, 𝑢 is said to be 

admissible (optimal) if (𝑢, 𝜏) is admissible (optimal). 
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In the sequel, we also use the function 

 

𝜅(𝑥) ∶=
𝐷(𝑥)

𝑒𝜃𝑥 − 1
, 𝑥 > 0. (10) 

 

It is related to the function 𝜚(𝑥) via 

 

𝑆0 𝑒𝜚(𝑥) =
𝛿𝐷(𝑥)

𝑒𝜃𝑥 − 1
= 𝛿𝜅(𝑥). (11) 

 

This yields a second way to characterize stationarity with respect to 𝑡𝑘, namely, 

 

𝑆0𝑒(𝛽+𝛿)𝑡𝑘 = 𝛿𝜅(𝑢𝑘)𝑒(𝜃+𝜆)ℎ𝑘 . (12) 

 

4. First Order Optimality Conditions with Respect to 𝒖𝒌 

 

Since ℎℓ  = ∑ 𝑢𝑘
ℓ
𝑘=1 , we have 

 
𝜕ℎℓ

𝜕𝑢𝑘
= {

1, if  ℓ ≥ 𝑘,
0, if  ℓ < 𝑘.

 

 

Using this we get, for 𝑘 ≥ 1, 

 
𝜕𝑓(𝑢, 𝜏)

𝜕𝑢𝑘
= 𝑏𝑒𝜆ℎ𝑘−𝛿𝑡𝑘 + ∑ 𝜆𝐷(𝑢ℓ)𝑒𝜆ℎℓ−𝛿𝑡ℓ

ℓ≥𝑘

− ∑
𝜃𝑆0

𝛽
(𝑒𝛽𝑡ℓ − 𝑒𝛽𝑡ℓ−1)𝑒−𝜃ℎℓ−1

ℓ−1≥𝑘

. 

 

It follows that stationarity with respect to 𝑢𝑘 is equivalent to 

 

𝑏𝑒𝜆ℎ𝑘−𝛿𝑡𝑘 +  ∑ 𝜆 𝐷(𝑢ℓ)𝑒𝜆ℎℓ−𝛿𝑡ℓ

∞

ℓ=𝑘

= ∑
𝜃𝑆0

𝛽
(𝑒𝛽𝑡ℓ − 𝑒𝛽𝑡ℓ−1)

∞

ℓ=𝑘+1

𝑒𝜃ℎℓ−1 ,    𝑘 ≥ 1. (13) 

 

This, in turn, can also be written as 

 

𝑏𝑒𝜆 ℎ𝑘+1−𝛿𝑡𝑘+1  + ∑ 𝜆 𝐷(𝑢ℓ)𝑒𝜆ℎℓ−𝛿𝑡ℓ

∞

ℓ=𝑘+1

= ∑
𝜃𝑆0

𝛽
(𝑒𝛽𝑡ℓ − 𝑒𝛽𝑡ℓ−1)

∞

ℓ=𝑘+2

𝑒𝜃ℎℓ−1 ,    𝑘 ≥ 0. 

 

Subtracting these equations from each other, we get 

 

𝑏𝑒𝜆ℎ𝑘−𝛿𝑡𝑘 + 𝜆𝐷(𝑢𝑘)𝑒𝜆ℎℓ−𝛿𝑡𝑘 − 𝑏 𝑒𝜆ℎ𝑘+1−𝛿𝑡𝑘+1 =
𝜃𝑆0

𝛽
(𝑒𝛽𝑡𝑘+1 − 𝑒𝛽𝑡𝑘  )𝑒−𝜃ℎ𝑘 ,    𝑘 ≥ 1. 

 

It will be convenient to introduce the notation 

 

Δ(𝑢𝑘) = 𝑏 + 𝜆𝐷(𝑢𝑘). (14) 
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After rearranging terms, we then obtain 

 

Δ(𝑢𝑘)𝑒𝜆ℎ𝑘−𝛿𝑡𝑘 +
𝜃𝑆0

𝛽
𝑒𝛽𝑡𝑘−𝜃ℎ𝑘 = 𝑏𝑒𝜆ℎ𝑘+1−𝛿𝑡𝑘+1 +

𝜃𝑆0

𝛽
𝑒𝛽𝑡𝑘+1−𝜃ℎ𝑘+1𝑒𝜃𝑢𝑘+1 . 

 

Now, using (12) twice, i.e., stationarity with respect to 𝑡𝑘 and 𝑡𝑘+1, we get 

 

Δ(𝑢𝑘)𝑒𝜆ℎ𝑘−𝛿𝑡𝑘 +
𝜃𝛿

𝛽
𝜅(𝑢𝑘)𝑒𝜆ℎ𝑘−𝛿𝑡𝑘 = 𝑏𝑒𝜆ℎ𝑘+1−𝛿𝑡𝑘+1 +

𝜃𝛿

𝛽
𝜅(𝑢𝑘+1)𝑒𝜆ℎ𝑘+1−𝛿𝑡𝑘+1𝑒𝜃𝑢𝑘+1 . 

 

After multiplying both sides by 𝑒−𝜆ℎ𝑘, we get 

 

(Δ(𝑢𝑘) +
𝜃𝛿

𝛽
𝜅(𝑢𝑘)) 𝑒  −𝛿𝑡𝑘 = (𝑏 +

𝜃𝛿

𝛽
𝜅(𝑢𝑘+1)𝑒𝜃𝑢𝑘+1) 𝑒𝜆𝑢𝑘+1−𝛿𝑡𝑘+1 , 𝑘 ≥ 1. (15) 

 

In order to eliminate 𝑡𝑘 (and 𝑡𝑘+1) we introduce parameters 𝛿̅ and 𝑞 according to 

 

𝛿̅ ≔
𝛿

𝛽 + 𝛿
, 𝑞 ≔ 𝛿̅(𝜆 + 𝜃) − 𝜆. (16) 

 

Then, we may write, by using (12) once more, 

 

𝑒−𝛿𝑡𝑘 = (𝑒(𝛽+𝛿)𝑡𝑘)
−𝛿̅ 

= (
𝛿𝜅(𝑢𝑘)

𝑆0
𝑒(𝜃+𝜆)ℎ𝑘)

−𝛿̅

= (
𝑆0

𝛿
)

𝛿̅

𝜅(𝑢𝑘)−𝛿̅𝑒−(𝑞+𝜆)ℎ𝑘 , 𝑘 ≥ 1. (17) 

 

Hence, we obtain 

 

𝑒−𝛿𝑡𝑘+1

𝑒−𝛿𝑡𝑘
=

(
𝑆0
𝛿

)
𝛿̅

𝜅(𝑢𝑘+1)−𝛿̅𝑒−(𝑞+𝜆)ℎ𝑘+1

(
𝑆0
𝛿

)
𝛿̅

𝜅(𝑢𝑘)−𝛿̅𝑒−(𝑞+𝜆)ℎ𝑘

=
𝜅(𝑢𝑘+1)−𝛿̅𝑒−(𝑞+𝜆)𝑢𝑘+1

𝜅(𝑢𝑘)−𝛿̅
. 

 

Substitution into (15) yields 

 

𝜅(𝑢𝑘)−𝛿̅ [𝛥(𝑢𝑘) +
𝜃𝛿

𝛽
𝜅(𝑢𝑘)] = 𝜅(𝑢𝑘+1)−𝛿̅𝑒−𝑞𝑢𝑘+1 [𝑏 +

𝜃𝛿

𝛿
𝜅(𝑢𝑘+1)𝑒𝜃𝑢𝑘+1] , 𝑘 ≥ 1. (18) 

 

To simplify the notation, we introduce functions 𝐿(𝑥) and 𝑅(𝑥), with 𝑥 > 0, as 

 

𝐿(𝑥) ≔ Δ(𝑥) +
𝜃𝛿

𝛽
𝜅(𝑥), (19) 

𝑅(𝑥): = 𝑒−𝑞𝑥 (𝑏 +
𝜃𝛿

𝛽
𝜅(𝑥)𝑒𝜃𝑥), (20) 

 

as well as functions ℒ(𝑥) and ℛ(𝑥) according to 

 

ℒ(𝑥) ≔ 𝜅(𝑥)−𝛿̅𝐿(𝑥), ℛ(𝑥) ≔ 𝜅(𝑥)−𝛿̅𝑅(𝑥). (21) 
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Then, we may rewrite the condition for stationarity with respect to 𝑢𝑘 in the following compact form: 

 

ℒ(𝑢𝑘) = ℛ(𝑢𝑘+1), 𝑘 ≥ 1. (22) 

 

As will become clear in Section 6, this relation implies that for every entry 𝑢𝑘 in a stationary 

sequence 𝑢 its successor 𝑢𝑘+1 can attain only two values.  Before dealing with this surprising fact, 

we show in the next section another remarkable result, namely that the objective value 𝑓(𝑢, 𝜏) is 

completely determined by the value of the function ℛ in 𝑢1, the first entry of the sequence 𝑢. 

 

5. Objective Value at a Stationary Point 

 

Taking the sum of all stationarity conditions (5) for 𝑡𝑘 (𝑘 ≥ 1), we get 

 

∑ 𝛿𝐷(𝑢𝑘)𝑒𝜆ℎ𝑘−𝛿𝑡𝑘

∞

𝑘=1

= ∑(𝑆0𝑒𝛽𝑡𝑘−𝜃ℎ𝑘−1 −  𝑆0𝑒𝛽𝑡𝑘−𝜃ℎ𝑘).

∞

𝑘=1

 

 

This yields a linear relation between 𝐼(𝑢, 𝜏) and 𝐴(𝑢, 𝜏) at a stationary point as follows: 

 

𝛿𝐼(𝑢, 𝜏) = ∑ 𝑆0 𝑒𝛽𝑡𝑘 −𝜃ℎ𝑘−1

∞

𝑘=1

− ∑ 𝑆0𝑒𝛽𝑡𝑘−1−𝜃ℎ𝑘−1

∞

𝑘=2

  

                      = 𝑆0𝑒𝛽𝑡0−𝜃ℎ0 + ∑ 𝑆0[𝑒𝛽𝑡𝑘 − 𝑒𝛽𝑡𝑘−1]𝑒−𝜃ℎ𝑘−1

∞

𝑘=1

  

= 𝑆0 + 𝛽𝐴(𝑢, 𝜏),                                  (23) 

 

where we used 𝑡0 = ℎ0 = 0. On the other hand, the stationarity condition for 𝑢1 in (13) yields 

 

𝑏𝑒𝜆ℎ1−𝛿𝑡1 + ∑ 𝜆𝐷(𝑢ℓ)𝑒𝜆ℎℓ−𝛿𝑡ℓ

∞

ℓ=1

= ∑
𝜃𝑆0

𝛽
(𝑒𝛽𝑡ℓ − 𝑒𝛽𝑡ℓ−1)𝑒−𝜃ℎℓ−1

∞

ℓ=2

  

                                                                               = 𝜃 (𝐴(𝑢, 𝜏) −
𝑆0

𝛽
𝑒𝛽𝑡1−𝜃ℎ0 +

𝑆0

𝛽
𝑒𝛽𝑡0−𝜃ℎ0)  

                                                                                = 𝜃𝐴(𝑢, 𝜏) −
𝜃𝛿

𝛽
𝜅(𝑢1)𝑒𝜆ℎ1−𝛿𝑡1𝑒𝜃𝑢1 +

𝜃𝑆0

𝛽
,  

 

where we used ℎ0 = 𝑡0 = 0 and ℎ1 = 𝑢1. Thus, we obtain a second linear relation between 𝐼(𝑢, 𝜏) 

and 𝐴(𝑢, 𝜏), namely, 

 

−𝜆𝐼(𝑢, 𝜏) + 𝜃𝐴(𝑢, 𝜏) = 𝑏𝑒𝜆ℎ1−𝛿𝑡1 +
𝜃𝛿

𝛽
𝜅(𝑢1)𝑒𝜆ℎ1−𝛿𝑡1𝑒𝜃𝑢1 −

𝜃𝑆0

𝛽
 

                              = (𝑏 +
𝜃𝛿

𝛽
𝜅(𝑢1)𝑒𝜃𝑢1) 𝑒𝜆ℎ1−𝛿𝑡1 −

𝜃𝑆0

𝛽
 

            = 𝑒𝑞𝑢1𝑅(𝑢1)𝑒𝜆ℎ1−𝛿𝑡1 −
𝜃𝑆0

𝛽
. 
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Using (17), with 𝑘 = 1, and also ℎ1 = 𝑢1, we obtain 

 

𝑒𝜆ℎ1−𝛿𝑡1 = 𝑒𝜆ℎ1 (
𝑆0

𝛿
)

𝛿̅

𝜅(𝑢1)−𝛿̅𝑒−(𝑞+𝜆)𝑢1 = (
𝑆0

𝛿
)

𝛿̅

𝜅(𝑢1)−𝛿̅𝑒−𝑞𝑢1 . 

 

Substituting this, we find 

 

− 𝜆𝐼(𝑢, 𝜏) + 𝜃𝐴(𝑢, 𝜏) = (
𝑆0

𝛿
)

𝛿̅

ℛ(𝑢1) −
𝜃𝑆0

𝛽
. (24) 

 

As a consequence, we now have the following two linear relations between 𝐼(𝑢, 𝜏) and 𝐴(𝑢, 𝜏): 

(23) and (24). The determinant of the coefficient matrix equals 𝛿𝜃 − 𝜆𝛽, which by (4) is positive. 

Hence, the system has a unique solution, namely, 

 

(𝜃𝛿 − 𝛽𝜆)𝐴(𝑢, 𝜏) = 𝜆𝑆0 + 𝛿 (
𝑆0

𝛿
)

𝛿̅

ℛ(𝑢1) −
𝛿𝜃𝑆0

𝛽
. 

(𝜃𝛿 − 𝛽𝜆)𝐼(𝑢, 𝜏) = 𝛽 (
𝑆0

𝛿
)

𝛿̅

ℛ(𝑢1). 

 

By taking the sum at both sides, we obtain 

 

(𝜃𝛿 − 𝛽𝜆)𝑓(𝑢, 𝜏) = (𝛽 + 𝛿) (
𝑆0

𝛿
)

𝛿̅

ℛ(𝑢1) −
(𝛿𝜃 − 𝜆𝛽)𝑆0

𝛽
.  

 

The definition (16) of 𝑞 implies 

 

𝑞 =  𝛿̅(𝜆 + 𝜃) − 𝜆 = 𝛿
(𝜆 + 𝜃)

𝛽 + 𝛿
− 𝜆 =

𝛿(𝜆 + 𝜃) − 𝜆(𝛽 + 𝛿) 

𝛽 + 𝛿
=

𝜃𝛿 − 𝜆𝛽

𝛽 + 𝛿
. 

 

Hence, it follows that at a stationary point the objective value is given by 

 

𝑓(𝑢, 𝜏) =
1

𝑞
(

𝑆0

𝛿
)

𝛿̅

ℛ(𝑢1) −
𝑆0

𝛽
. (25) 

 

It comes as a surprise that the objective value at a stationary point is completely determined by 𝑢1 

and is a positive constant times ℛ(𝑢1) minus a constant.  Hence, it remains to find a stationary point 

for which ℛ(𝑢1) is minimal. As we show in the next section, this is possible thanks to some very nice 

properties of the functions ℒ(𝑥) and ℛ(𝑥). 

 

Before proceeding to the next section, an important observation is that (25) indicates that if 𝛽 >
0, then ℛ(𝑢1) must also be positive, since otherwise one would get a negative value for the total cost 

𝑓(𝑢, 𝜏), which would be absurd. Indeed, more generally one has 

 

𝛽ℛ(𝑥) >  0, 𝑥 > 0. (26) 

 

For the proof of this inequality we refer to (52) in Appendix A. 
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Figure 2. Typical form of the graphs of ℒ(𝑥) and ℛ(𝑥) 

 

6. Optimality of the Periodic Solution 

 

By way of example, Fig. 2 shows the graphs of ℒ(𝑥) and ℛ(𝑥) for one of the dike rings. One can 

show (cf. Appendix A) that these functions always share the following four properties: 

 

Prop. 1: The equation ℒ(𝑥) = ℛ(𝑥) has exactly one solution, which is denoted as 𝜈. 

Prop. 2: ℒ(𝑥) and ℛ(𝑥) are bounded from below and minimal for the same value  𝜈̅ < 𝜈. 

Prop. 3: ℒ(𝑥) and ℛ(𝑥) are monotonically decreasing for 𝑥 < 𝜈̅ and increasing for 𝑥 > 𝜈̅. 

Prop. 4: One has ℒ(𝑥) < ℛ(𝑥) if 𝑥 < 𝜈 and ℒ(𝑥) > ℛ(𝑥) if 𝑥 > 𝜈. 

 

The equation ℒ(𝑥) = ℛ(𝑥) is equivalent to 𝐿(𝑥) = 𝑅(𝑥). Hence, 𝜈 is defined by  

 

Δ(𝜈) +
𝜃𝛿

𝛽
𝜅(𝜈) = 𝑒−𝑞𝜈 (𝑏  +  

𝜃𝛿

𝛽
𝜅(𝜈)𝑒𝜃𝜈) , 𝜅(𝜈) =

𝐷(𝜈)

𝑒𝜃𝜈 − 1
. 

 

As Prop. 1 above states, this nonlinear equation determines 𝜈 uniquely. 

 

The sequence 𝑢 = (𝑢1; 𝑢2; 𝑢3; … ) is stationary if and only if ℒ(𝑢𝑘) = ℛ(𝑢𝑘+1) for each 𝑘 ≥ 1. 

This certainly holds if 𝑢 = (𝜈; 𝜈; 𝜈; … ). We call this the periodic sequence. It may be understood 

from Fig. 2 that there exist infinitely many other stationary sequences. Recall from (25) that a  

stationary sequence 𝑢 is optimal if and only if ℛ(𝑢1) is minimal. 

 

Lemma 6.1. If  𝑢𝑘 occurs in a stationary sequence, then ℒ(𝑢𝑘) ≥ ℒ(𝜈). 

 

Proof. Let 𝑢𝑘 occur in a stationary sequence. We need to show that ℒ(𝑢𝑘) ≥ ℒ(𝜈). Suppose on the 

contrary that ℒ(𝑢𝑘) < ℒ(𝜈). Since ℒ(𝑥) is monotonically increasing for 𝑥 > 𝜈̅, by Prop. 3, and 𝜈 >
𝜈̅, by Prop. 2, we necessarily have 𝑢𝑘 < 𝜈. Since 𝑢𝑘 occurs in a stationary sequence, and its successor 

𝑢𝑘+1 satisfies ℛ(𝑢𝑘+1) = ℒ(𝑢𝑘) < ℒ(𝜈) = ℛ(𝜈), where we used Prop. 1. So, we have ℛ(𝑢𝑘+1) <
ℛ(𝜈).  For the same reasons as for ℒ, this implies 𝑢𝑘+1 < 𝜈. Since ℒ(𝑥) < ℛ(𝑥), for all 𝑥 < 𝜈, by 
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Prop. 4, it follows that ℒ(𝑢𝑘+1) < ℛ(𝑢𝑘+1) = ℒ(𝑢𝑘). Thus, we have shown that ℒ(𝑢𝑘) < ℒ(𝜈) 

implies ℒ(𝑢𝑘+1) < ℒ(𝑢𝑘), and as a consequence, also ℒ(𝑢𝑘+1) < ℒ(𝜈). This implies that the ℒ-

values of the successors of 𝑢𝑘 in the sequence 𝑢 form a strictly decreasing sequence. This sequence 

is bounded below by ℒ(𝜈̅), by Prop. 2. Hence, the sequence must converge. A similar argument 

applies to the sequence of the values ℛ(𝑢𝑘). Due to ℛ(𝑢𝑘+1) = ℒ(𝑢𝑘), for each 𝑘, the limits of the 

two sequences must be equal. But this is impossible, since the limit occurs in the interval where 

ℒ(𝑥) < ℛ(𝑥). This contradiction proves the lemma.  ∎ 

 

Lemma 6.2. If 𝑢𝑘 occurs in a stationary sequence, then ℛ(𝑢𝑘) ≥ ℛ(𝜈). 

 

Proof. If 𝑢𝑘 ≥ 𝜈, then we have ℛ(𝑢𝑘) ≥ ℛ(𝜈), because ℛ(𝑥) is increasing for 𝑥 ≥ 𝜈. On the other 

hand, if 𝑢𝑘 ≤ 𝜈, then ℛ(𝑢𝑘) ≥ ℒ(𝑢𝑘), by  Prop. 3. By Lemma 6.1, we have ℒ(𝑢𝑘) ≥  ℒ(𝜈). Hence, 

ℛ(𝑢𝑘) ≥ ℒ(𝜈). Since ℒ(𝜈) = ℛ(𝜈), we get ℛ(𝑢𝑘) ≥ ℛ(𝜈), as desired. ∎ 

 

Theorem 6.3. If 𝜚(𝜈) + (𝜆 + 𝜃)𝜈 ≥ 0, then the periodic sequence is optimal. 

 

Proof. Lemma 6.2 implies that ℛ(𝑢1) ≥ ℛ(𝜈) for every stationary sequence 𝑢. According to (25), 

this implies the theorem, provided that 𝑡𝑘 ≥ 0, for 𝑘 ≥ 1. Since  

 

𝑡𝑘 = 𝜚(𝑢1) +
(𝜆 + 𝜃)ℎ𝑘

𝛽 + 𝛿
=

𝜚(𝜈)

(𝛽 + 𝛿)
+ 𝑘 

𝜆 + 𝜃

𝛽 + 𝛿
𝜈, 𝑘 ≥ 1, (27) 

 

for the periodic sequence, this holds only if 𝜚(𝜈) + (𝜆 + 𝜃)𝜈 ≥ 0. Hence, the result follows.  ∎ 

 

It is worth noting that the value of 𝜈 does not depend on 𝑆0; neither does the length of the interval 

between two successive updates. The length of this interval is denoted as 𝑝, and according to (27),  it 

is given by 

 

𝑝 =
𝜆 + 𝜃

𝛽 + 𝛿
𝜈. (28) 

 

In essence only the moment 𝑡1 of the first update depends on 𝑆0, because of its dependence of 

𝜚(𝜈). Since 𝜚(𝑥) is monotonically decreasing with respect to 𝑆0, 𝑡1 decreases when 𝑆0 increases. 

 

One may easily deduce from (7) and (10), the definitions of 𝜚(𝑥) and 𝜅(𝑥), respectively, that the 

condition in Theorem 6.3 holds if and only if 

 

𝑆0 ≤ 𝛿𝜅(𝜈) 𝑒(𝜆+𝜃)𝜈, (29) 

 

i.e., if and only if the expected damage costs at 𝑡 = 0 do not exceed the threshold value 𝛿𝜅 𝑒(𝜆+𝜃)𝜈. 

So, if the value of 𝑡1 is negative, then it suggests that there is a backlog in the maintenance of the 

dike. If this happens, we say that the dike is unhealthy; otherwise healthy. 

It remains to deal with the unhealthy case. In that case, an immediate heightening of the dike is 

desirable. So, we then should have 𝑡1 = 0. It seems natural to expect that to eliminate the backlog in 

maintenance a heightening of at least 𝜈 will be necessary. In the next section, we deal with the 

question of finding the value of 𝑢1 that minimizes 𝑓(𝑢, 𝜏). As we will see, it seems impossible to find 

an analytic solution of this problem. But, we show below that the optimal value of 𝑢1 in the unhealthy 

case can be found by minimizing a strictly convex function on a finite interval. 
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7. The Unhealthy Case 

 

In the unhealthy case the constraint 𝑡1 ≥ 0 in (1) is active. This means that at optimality 𝑓(𝑢, 𝜏) is 

no longer stationary with respect to 𝑡1. But, we still will have stationarity with respect to 𝑡𝑘 if 𝑘 ≥ 2, 

and stationarity with respect to 𝑢𝑘 for all 𝑘 ≥ 1. Using this, it is shown in Appendix B that the 

objective value at a stationary point is given by 

 

𝑓(𝑢, 𝜏) = 𝐷(𝑢1)𝑒𝜆𝑢1 +
𝑒−𝑞𝑢1

𝑞
(

𝑆0

𝛿
)

𝛿̅

ℛ(𝑢2) −
𝑆0

𝛽
𝑒−𝜃𝑢1 . 

 

With 𝑢1 fixed, by using the same arguments as in the healthy case, it follows that 𝑢2 = 𝜈 yields the 

smallest value. Due to (21) and (11), we write 

 

(
𝑆0

𝛿
)

𝛿̅

ℛ(𝜈) = (
𝑆0

𝛿
)

𝛿̅

𝜅(𝜈)− 𝛿̅𝑅(𝜈) = (
𝛿

𝑆0
𝜅(𝜈))

− 𝛿̅

𝑅(𝜈) = 𝑅(𝜈)𝑒−𝛿̅𝜚( 𝜈). (30) 

 

Hence, denoting the resulting function of 𝑢1 as 𝐹(𝑢1), we obtain 

 

𝐹(𝑢1) = 𝐷(𝑢1)𝑒𝜆𝑢1 +
1

𝑞
𝑅(𝜈)𝑒−𝛿̅𝜚(𝜈)−𝑞𝑢1 −

𝑆0

𝛽
𝑒−𝜃𝑢1 . 

 

Remarrk 7.1. If the periodic sequence yields 𝑡1 = 0, then the dike is on the boundary of the healthy 

and unhealthy cases. This happens if and only if 𝜚(𝜈) + (𝜆 + 𝜃)𝜈 = 0. Then, the above value must 

coincide with the objective value of the periodic solution. So, we must have 

 

𝐷(𝜈)𝑒𝜆𝜈 +
𝑒−𝑞𝜈

𝑞
(

𝑆0

𝛿
)

𝛿̅

ℛ(𝜈) −
𝑆0

𝛽
𝑒−𝜃𝜈 =

1

𝑞
(

𝑆0

𝛿
)

𝛿̅

ℛ(𝜈) −
𝑆0

𝛽
. 

 

We leave it to the reader to verify that this equality holds. 

 

It remains to find the value of 𝑢1 that minimizes 𝐹(𝑢1). In considering this minimization problem, 

we should respect the conditions (1) for admissibility of the sequence 𝑢 = (𝑢1; 𝜈; 𝜈; … ). Since the 

solution is periodic from 𝑡 = 𝑡2 on, (1) boils down to the simple condition 𝑡2 > 0. By (9), and since 

𝑢2 = 𝜈 and ℎ2 = 𝑢1 + 𝜈, this holds if and only if 

 

𝜚(𝜈) +  (𝜆 + 𝜃)(𝑢1 + 𝜈) > 0. (31) 

 

On the other hand, the dike is unhealthy if and only if 𝜚(𝜈) + (𝜆 + 𝜃)𝜈 < 0. So, we have 

 

𝜚(𝜈) +  (𝜆 + 𝜃)𝜈 < 0 < 𝜚(𝜈) +  (𝜆 + 𝜃)(𝑢1 + 𝜈). (32) 

 

It will be convenient to introduce the number 𝑢0 defined by the relation 

 

𝜚(𝜈) + (𝜆 + 𝜃)(𝑢0 + 𝜈) = 0. (33) 
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Combining this relation with (32) gives (𝜆 + 𝜃)𝜈 < (𝜆 + 𝜃)(𝑢0 + 𝜈) < (𝜆 + 𝜃)(𝑢1 + 𝜈) , which 

implies 

 

0 < 𝑢0 < 𝑢1. (34) 

 

We derive from (11) and (33) that 𝑢0 is also uniquely defined by 

 

𝑆0𝑒−𝜃(𝑢0+𝜈) = 𝛿𝜅(𝜈)𝑒𝜆(𝑢0+𝜈). (35) 

 

We are now ready to analyze the behavior of 𝐹(𝑢1) and to find its global minimizer, which is 

denoted as 𝑢1
∗. As we just established, we have 𝑢1

∗ ∈ (𝑢0, ∞). We show below that 𝑢1
∗ belongs to the 

finite interval (𝑢0, 𝑢0 + 𝜈] and can be found easily. For this, we need a couple of lemmas, which 

require rather tedious proofs. We also feel free in this section to use some results from Appendix A. 

 

 We start with computing the first two derivatives of 𝐹(𝑢1) with respect to 𝑢1. One has  

 

𝐹′(𝑢1) = Δ(𝑢1)𝑒𝜆𝑢1 − 𝑅(𝜈) 𝑒−𝛿̅𝜚(𝜈)−𝑞𝑢1 + 𝜃
𝑆0

𝛽
𝑒−𝜃𝑢1 ,                   (36) 

𝐹′′(𝑢1) = 𝜆[𝑏 + Δ(𝑢1)]𝑒𝜆𝑢1 + 𝑞𝑅(𝜈) 𝑒−𝛿̅𝜚( 𝜈)− 𝑞𝑢1 − 𝜃2
𝑆0

𝛽
𝑒−𝜃𝑢1 . (37) 

 

Lemma 7.2. 𝐹(𝑢1) is convex for large enough values of 𝑢1. 

 

Proof. Since 𝑞 > 0 and 𝜃 > 0, the last two terms in the expression for 𝐹′′(𝑢1) converge to zero if 𝑢1 

grows to infinity. If 𝜆 > 0, then the first term grows exponentially fast to infinity. So, if 𝜆 > 0, then 

𝐹(𝑢1) is convex for large values of 𝑢1. This also holds if 𝜆 = 0, as we now show. We then have 

 

𝐹′′(𝑢1) = (𝑞𝑒−𝛿̅𝜚( 𝜈)𝑅(𝜈) − 𝜃2
𝑆0

𝛽
𝑒−𝑟𝑢1) 𝑒− 𝑞𝑢1 , 

 

where 𝑟 = 𝜃 − 𝑞. Now, 𝑟 has the same sign as 𝛽, as it follows from 

 

𝑟 = 𝜃 −
𝜃𝛿 − 𝜆𝛽

𝛽 + 𝛿
=

𝜃(𝛽 + 𝛿) − 𝜃𝛿 + 𝜆𝛽

𝛽 + 𝛿
= 𝛽

𝜆 + 𝜃

𝛽 + 𝛿
. 

 

This makes clear that if 𝑢1 grows to infinity, the second term in the bracketed expression converges 

to zero if 𝛽 > 0 and to ∞ if 𝛽 < 0. Hence, the bracketed expression goes to ∞ if 𝛽 < 0. If 𝛽 > 0, 

then we use (52), which implies that 𝛽 and 𝑅(𝜈) have the same sign. Since the bracketed expression 

converges to 𝑞𝑒−𝛿̅𝜚(𝜈)𝑅(𝜈) in that case, and 𝑅(𝜈) > 0, we conclude that 𝐹′′(𝑢1) > 0 for large values 

of 𝑢1. This proves the lemma.  ∎ 

 

Lemma 7.3. 𝐹(𝑢1) has at most one point of inflection on the interval (0, ∞). 

 

Proof. Recall that 𝑅(𝜈), 𝛽 and 𝑟 are nonzero and have the same sign. Therefore, the expression (37) 

for 𝐹′′(𝑢1) has the form of the function 𝑓(𝑥) defined by  

 

𝑓(𝑥) = 𝜆(𝐴 + 𝐵𝑥)𝑒𝜆𝑥 + 𝐶𝑒−𝑞𝑥 − 𝐷𝑒−𝜃𝑥, 
 

 [
 D

O
I:

 1
0.

29
25

2/
io

rs
.8

.2
.6

8 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

30
 ]

 

                            12 / 30

http://dx.doi.org/10.29252/iors.8.2.68
http://iors.ir/journal/article-1-542-en.html


80 Roos 

 

 

where 𝑥 = 𝑢1 and the parameters 𝐴, 𝐵, 𝐶 and 𝐷 have temporary meanings such that 

 

𝐴 ≥ 0, 𝐵 ≥ 0, 𝐶𝐷 > 0, 𝑟𝐷 > 0. 
 

Using 𝜃 = 𝑞 + 𝑟, it follows that 

 

𝑓′(𝑥) = 𝜆𝐵𝑒𝜆𝑥 + 𝜆2(𝐴 + 𝐵𝑥)𝑒𝜆𝑥 − 𝑞𝐶𝑒−𝑞𝑥 + 𝜃𝐷𝑒−𝜃𝑥                         

= 𝜆𝐵𝑒𝜆𝑥 + 𝜆2(𝐴 + 𝐵𝑥)𝑒𝜆𝑥 − 𝑞𝐶𝑒−𝑞𝑥 + (𝑞 + 𝑟)𝐷𝑒−𝜃𝑥 

         = 𝜆𝐵𝑒𝜆𝑥 + 𝜆2(𝐴 + 𝐵𝑥)𝑒𝜆𝑥 − 𝑞 (𝐶𝑒−𝑞𝑥 − 𝐷𝑒−𝜃𝑥) + 𝑟𝐷𝑒𝜃𝑥 

                     = 𝜆𝐵𝑒𝜆𝑥 + 𝜆2(𝐴 + 𝐵𝑥)𝑒𝜆𝑥 − 𝑞(𝑓(𝑥) − 𝜆(𝐴 + 𝐵𝑥)𝑒𝜆𝑥) +  𝑟𝐷𝑒𝜃𝑥 . 
 

Assuming 𝑓(𝑥) = 0 we get, for any 𝑥 ≥ 0, 

 

𝑓′(𝑥) = 𝜆𝐵𝑒𝜆𝑥 + 𝜆2(𝐴 + 𝐵𝑥)𝑒𝜆𝑥 + 𝑞𝜆(𝐴 + 𝐵𝑥)𝑒𝜆𝑥 + 𝑟𝐷𝑒−𝜃𝑥 ≥ 𝑟𝐷𝑒−𝜃𝑥 > 0. 
 

This proves that 𝑓′(𝑥) > 0, whenever 𝑓(𝑥) = 0, which implies that 𝑓(𝑥) vanishes for at most one 

value of 𝑥. Hence, the lemma follows.   ∎ 

 

We proceed by showing that 𝐹(𝑢1) is strictly convex at 𝑢1 = 𝑢0 + 𝜈. Before doing this, we deal 

with three relations that will be useful in the proofs below. The first relation is 

 

𝑞𝐿(𝜈) − 𝜃
𝜃𝛿

𝛽
𝜅(𝜈) = 𝑞 (𝐿(𝜈) −

𝜃𝛿

𝛽
𝜅(𝜈)) − 𝑟

𝜃𝛿

𝛽
𝜅(𝜈) = 𝑞Δ(𝜈) − 𝜃(𝜆 + 𝑞) 𝜅(𝜈), (38) 

 

where we used 𝜃 = 𝑞 + 𝑟, the definition of 𝐿(𝜈), the definition (16) of 𝑞 and 

 
𝛿𝑟

𝛽
=

𝛿(𝜃 − 𝑞)

𝛽
=

(𝛿𝜃 − 𝛽𝜆) + 𝛽𝜆 − 𝛿𝑞

𝛽
=

(𝛽 + 𝛿)𝑞 + 𝛽𝜆 − 𝛿𝑞

𝛽
= 𝜆 + 𝑞. 

 

In a similar way, one can show that 

 

𝑞𝑅(𝜈)𝑒𝑞𝜈 − 𝜃
𝜃𝛿

𝛽
𝜅(𝜈)𝑒𝜃𝜈 = 𝑞𝑏 − 𝜃(𝜆 + 𝑞)𝜅(𝜈)𝑒𝜃𝜈. (39) 

 

Finally, as a consequence of the definition (10) of 𝜅(𝑥), formula (48) for its derivative and the fact 

that 𝑒𝜃𝑥𝜅(𝑥) = 𝜅(𝑥) + 𝐷(𝑥), we obtain, for any 𝑥 > 0,  

 

𝜅′(𝑥) + (𝜆 + 𝜃)𝜅(𝑥) =
Δ(𝑥) − 𝜃𝜅(𝑥)

𝑒𝜃𝑥 − 1
. (40) 

 

Lemma 7.4. 𝐹(𝑢1) is strictly convex at 𝑢1 = 𝑢0 + 𝜈. 

 

Proof. Substitution of 𝑢1 = 𝑢0 + 𝜈 into (37) yields 

 

𝐹′′(𝑢0 + 𝜈) = 𝜆(𝑏 + Δ(𝑢0 + 𝜈))𝑒𝜆(𝑢0+𝜈) + 𝑞𝑅(𝜈) 𝑒− 𝛿̅𝜚(𝜈)−𝑞(𝑢0+𝜈) − 𝜃2
𝑆0

𝛽
𝑒−𝜃(𝑢0+𝜈). 

 

By using (16) and (33) successively, we obtain 
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−𝛿̅𝜚(𝜈) − 𝑞(𝑢0 + 𝜈) = −𝛿̅𝜚(𝜈) + [−𝛿̅(𝜆 + 𝜃) + 𝜆](𝑢0 + 𝜈)             

                                        = −𝛿̅[𝜚(𝜈) + (𝜆 + 𝜃)(𝑢0 + 𝜈)] + 𝜆(𝑢0 + 𝜈)  

= 𝜆(𝑢0 + 𝜈).                   (41) 

 

Using this, 𝑅(𝜈) = 𝐿(𝜈), (35) and (38), we get 

 

𝐹′′(𝑢0 + 𝜈) = 𝜆[𝑏 + Δ(𝑢0 + 𝜈)]𝑒𝜆(𝑢0+𝜈) + 𝑞𝑅(𝜈)𝑒𝜆(𝑢0+𝜈) − 𝜃
𝜃𝛿

𝛽
𝜅(𝜈) 𝑒𝜆(𝑢0+𝜈)  

= 𝑒𝜆(𝑢0+𝜈) [𝜆[𝑏 + Δ(𝑢0 + 𝜈)] + 𝑞𝐿(𝜈) − 𝜃
𝜃𝛿

𝛽
𝜅(𝜈)]        

= 𝑒𝜆(𝑢0+𝜈)[𝜆[𝑏 + Δ(𝑢0 + 𝜈)] + 𝑞Δ(𝜈) − 𝜃(𝜆 + 𝑞)𝜅(𝜈)]. 
 

We have Δ(𝑢0 + 𝜈) = 𝜆𝑏𝑢0 + Δ(𝜈) ≥ Δ(𝜈). We therefore obtain 

 

𝑒−𝜆(𝑢0+𝜈)𝐹′′(𝑢0 + 𝜈) ≥ 𝜆𝑏 + (𝜆 + 𝑞)Δ(𝜈) − 𝜃(𝜆 + 𝑞)𝜅(𝜈). 
 

So, it suffices for the proof to show 𝑔(𝑥) > 0 at 𝑥 = 𝜈, where 

 

𝑔(𝑥) ≔ 𝜆𝑏 + (𝜆 + 𝑞)[Δ(𝑥) − 𝜃𝜅(𝑥)]. 
 

Recall from Lemma A.1 that 𝜅(𝑥) is monotonically decreasing. Since Δ(𝑥) is nondecreasing, it 

follows that 𝑔(𝑥) is monotonically increasing. Therefore, since 𝜈̅ < 𝜈, it suffices to show that 𝑔(𝜈̅) ≥
0. By definition, 𝜈̅ is the (unique) solution of (50). This implies 

 

Δ(𝜈̅) − 𝜃𝜅(𝜈̅) =
𝜆𝑏𝜅(𝜈̅)

𝛿̅𝜅′(𝜈̅)
≤ 0; (42) 

 

the last inequality holds because 𝜆𝑏 ≥ 0, 𝛿̅ > 0, 𝜅(𝑥) > 0 and 𝜅′(𝑥) < 0, for 𝑥 > 0, by Lemma A.1. 

Hence we get, by using 𝜆 + 𝑞 = 𝛿̅(𝜆 + 𝜃), once more, 

 

𝑔(𝜈̅) = 𝜆𝑏 + 𝛿̅ (𝜆 + 𝜃) 
𝜆𝑏𝜅(𝜈̅)

 𝛿̅𝜅′(𝜈̅)
=

𝜆𝑏

𝜅′(𝜈̅)
[𝜅′(𝜈̅) + (𝜆 + 𝜃)𝜅(𝜈̅)]. 

 

The first factor is negative or zero. For the second factor, we get, by using (40) with 𝑥 = 𝜈̅, 

 

𝜅′(𝜈̅) + (𝜆 + 𝜃)𝜅(𝜈̅) =
Δ(𝜈̅) − 𝜃𝜅(𝜈̅) 

𝑒𝜃𝜈̅ − 1
≤ 0, 

 

due to (42). Thus, we obtain 𝑔(𝜈̅) ≥ 0, which completes the proof.   ∎ 

Now that we know that 𝐹(𝑢1) is convex at 𝑢1 = 𝑢0 + 𝜈, we may conclude from Lemma 7.3 and 

Lemma 7.2 that 𝐹(𝑢1) is convex for all 𝑢1 ≥ 𝑢0 + 𝜈. This holds because otherwise there would exist 

at least two points of inflection, which contradicts Lemma 7.3. So, if there exists an inflection point 

𝑢̃, then 𝑢̃ < 𝑢0 + 𝜈 and 𝐹(𝑢1) is concave for 𝑢1 < 𝑢̃. 

 

Next, we establish that 𝑢0 + 𝜈 is also an upper bound for 𝑢1
∗. 

 

Lemma 7.5. If 𝜆𝑏 > 0, then 𝐹′(𝑢0 + 𝜈) > 0. Otherwise, if 𝜆𝑏 = 0, then 𝐹′(𝑢0 + 𝜈) = 0. 
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Proof. One has 

 

𝐹′(𝑢0 + 𝜈) = Δ(𝑢0 + 𝜈)𝑒𝜆(𝑢0+𝜈) − 𝑅(𝜈) 𝑒−𝛿̅𝜚(𝜈)𝑒− 𝑞(𝑢0+𝜈)  + 𝜃
𝑆0

𝛽
𝑒−𝜃(𝑢0+𝜈). 

 

Using successively (41), (35) and (19), we get 

 

𝐹′(𝑢0 + 𝜈) = Δ(𝑢0 + 𝜈)𝑒𝜆(𝑢0+𝜈) − 𝑅(𝜈) 𝑒−𝜆(𝑢0+𝜈) +
𝜃𝛿

𝛽
𝜅(𝜈)𝑒𝜆(𝜈+𝑢0) 

= [Δ(𝑢0 + 𝜈) − 𝐿(𝜈) +
𝜃𝛿

𝛽
𝜅(𝜈)𝑒𝜆(𝑢0+𝜈)             

= [Δ(𝑢0 + 𝜈) − Δ(𝜈)]𝑒𝜆(𝑢0+𝜈)                                

= 𝜆𝑏𝑢0𝑒𝜆(𝑢0+𝜈).                                                          
 

Since 𝜆 ≥ 0, 𝑏 ≥ 0, and 𝑢0 > 0, this proof of the lemma is complete.  ∎ 

 

We now have that 𝐹(𝑢1) is convex for 𝑢1 ≥ 𝑢0 + 𝜈 and its derivative at 𝑢0 + 𝜈 is nonnegative. 

This implies that 𝐹(𝑢1) is monotonically increasing for 𝑢1 ≥ 𝑢0 + 𝜈. Therefore, the minimizer 𝑢1
∗ 

satisfies 𝑢1
∗ ≤ 𝑢0 + 𝜈. Hence, 𝑢1

∗ ∈ (𝑢0, 𝑢0 + 𝜈]. 
 

Before proceeding, we use Fig. 3 to illustrate the current situation. This figure shows the graph of 

𝐹(𝑢1), for 𝑢1 ≥ 𝑢0, for one of the dikes in The Netherlands. Note that the graph has a point of 

inflection 𝑢̃. As a consequence of Lemma 7.3, there are no more points of inflection. Hence, 𝐹(𝑢1) 

is concave for all 𝑢1 < 𝑢̃ and therefore also for 𝑢1 = 𝑢0. In this figure, 𝑢0 is a local minimizer of 

𝐹(𝑢0), but  not a  global minimizer. The question arises whether 𝑢0 can also be a global minimizer. 

In that case, we would get 𝑢1
∗ = 𝑢0, which would be in conflict with (33). 

 

To deal with the above question, let us assume for the moment that 𝑢1
∗ = 𝑢0. Then, we get 

 

𝑡2 =
𝜚(𝜈) + (𝜆 + 𝜃)ℎ2

𝛽 + 𝛿
=

𝜚(𝜈) + (𝜆 + 𝜃)(𝑢0 + 𝜈)

𝛽 + 𝛿
= 0, 

 

 
Figure 3. Typical graph of 𝐹(𝑢1), 𝑢1 > 𝑢0 
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where the last equality is due to the definition (33) of 𝑢0. But, this means that the upgrades with 𝑢0 

at 𝑡1 and with 𝜈 at 𝑡2 take place at the same moment 𝑡 = 0. According to (3), the corresponding costs 

are 

 

𝐷(𝑢0)𝑒𝜆ℎ1 + 𝐷(𝜈)𝑒𝜆ℎ2 = (𝑐 + 𝑏𝑢0)𝑒𝜆𝑢0 + (𝑐 + 𝑏𝜈)𝑒𝜆(𝑢0+𝜈). 
 

The same situation arises by performing one upgrade of size 𝑢0 + 𝜈 at 𝑡 = 0, whose costs are 

 

𝐷(𝑢0 + 𝜈)𝑒𝜆ℎ2 = (𝑐 + 𝑏(𝑢0 + 𝜈))𝑒𝜆(𝑢0+𝜈). 
 

From an engineering point of view, it seems realistic to assume that the ‘one-step’ strategy is 

cheaper than the first strategy, which splits the upgrade in two upgrades. One has 

 

𝐷(𝑢0)𝑒𝜆ℎ1 + 𝐷(𝜈)𝑒𝜆ℎ2 − 𝐷(𝑢0 + 𝜈)𝑒𝜆ℎ2 = 𝐷(𝑢0)𝑒𝜆𝑢0 − 𝑏𝑢0𝑒𝜆(𝑢0+𝜈)              (43) 

                                                                = 𝑒𝜆𝑢0(𝑐 + 𝑏𝑢0) − 𝑏𝑢0𝑒𝜆𝜈  

                                                                  = 𝑒𝜆𝑢0 (𝑐 − 𝑏𝑢0(𝑒𝜆𝜈 − 1)).  

 

The last expression is positive if and only if 

 

𝑐 > 𝑏 𝑢0(𝑒𝜆𝜈 − 1) = 𝑏(𝑒𝜆𝜈 − 1). (44) 

 

In the sequel, we assume that this condition is satisfied. As the next lemma shows, this assumption 

resolves the aforementioned conflict with (33). It guarantees that 𝑢0 is not a global minimizer of 

𝐹( 𝑢1). 

 

Lemma 7.6. 𝐹(𝑢0) = [𝐷(𝑢0)𝑒𝜆𝑢0 − 𝑏𝑢0𝑒𝜆(𝑢0+𝜈)] + 𝐹(𝑢0 + 𝜈). 

 

Proof. One has 

 

𝐹( 𝑢0) = 𝐷(𝑢0)𝑒𝜆𝑢0 +
1

𝑞
𝑅(𝜈)𝑒−𝛿̅𝜚(𝜈)−𝑞𝑢0 −

𝑆0

𝛽
𝑒−𝜃𝑢0 , 

𝐹(𝑢0 + 𝜈) =  𝐷(𝑢0 + 𝜈)𝑒𝜆(𝑢0+𝜈) +
1

𝑞
𝑅(𝜈)𝑒−𝛿̅𝜚(𝜈)−𝑞(𝑢0+𝜈) −

𝑆0

𝛽
𝑒−𝜃(𝑢0+𝜈). 

 

By using (41) and (35), we may therefore write 

 

𝐹(𝑢0) − 𝐷(𝑢0)𝑒𝜆(𝑢0) =
1

𝑞
𝑅(𝜈)𝑒𝜆(𝑢0+𝜈)+𝑞𝜈 −

𝛿

𝛽
𝜅(𝜈)𝑒(𝜆+𝜃)𝜈+𝜆𝑢0 , 

 

and, by also using 𝐷(𝑢0 + 𝜈) = 𝑏𝑢0 + 𝐷(𝜈), we have 

 

𝐹(𝑢0 + 𝜈) − 𝑏𝑢0𝑒𝜆(𝑢0+𝜈) = 𝐷(𝜈)𝑒𝜆(𝑢0+𝜈) +
1

𝑞
𝑅(𝜈)𝑒𝜆(𝑢0+𝜈)  −

𝛿

𝛽
𝜅(𝜈)𝑒𝜆(𝜈+ 𝑢0). 

 

The lemma will follow if the right-hand side members in the above equations are equal. After dividing 

by the common factor 𝑒𝜆(𝑢0+𝜈), this leads to the following equation: 
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1

𝑞
𝑅(𝜈)𝑒𝑞𝜈 −

𝛿

𝛽
𝜅(𝜈)𝑒𝜃𝜈 = 𝐷(𝜈) +

1

𝑞
𝑅(𝜈) −

𝛿

𝛽
𝜅(𝜈). 

 

Since 𝜅(𝜈)𝑒𝜃𝜈 = 𝜅(𝜈) + 𝐷(𝜈), this further reduces to 

 
1

𝑞
𝑅(𝜈)𝑒𝑞𝜈 −

𝛿

𝛽
𝐷(𝜈) = 𝐷(𝜈) +

1

𝑞
𝑅(𝜈). 

 

After multiplication of both sides with 𝑞, we get the equivalent equality, 

 

𝑅(𝜈)𝑒𝑞𝜈 −
𝑞𝛽 + 𝛿

𝛽
𝐷(𝜈) = 𝑅(𝜈). 

 

Using the definitions of 𝑞 and 𝑅(𝑥), the left-hand side expression reduces to 𝐿(𝜈), as follows: 

 

𝑒𝑞𝜈𝑅(𝜈) − 𝑞
𝛽 + 𝛿

𝛽
𝐷(𝜈) = 𝑒𝑞𝜈𝑅(𝜈) −

𝜃𝛿 − 𝜆𝛽

𝛽
𝐷(𝜈)                 

                                                   = 𝑏 +
𝜃𝛿

𝛽
𝜅(𝜈)𝑒𝜃𝜈 −

𝜃𝛿

𝛽
𝐷(𝜈) + 𝜆𝐷(𝜈) 

                                     = Δ(𝜈) +
𝜃𝛿

𝛽
[𝜅(𝜈)𝑒𝜃𝜈 − 𝐷(𝜈)] 

                           = Δ(𝜈) +
𝜃𝛿

𝛽
𝜅(𝜈) = 𝐿(𝜈). 

 

Since 𝐿(𝜈) = 𝑅(𝜈), by the  definition of 𝜈, the lemma follows.  ∎ 

 

Since the bracketed expression in the lemma is a positive multiple of 𝑐 − 𝑏𝑢0(𝑒𝜆𝜈−1 ), by (43), 

we conclude that 𝑢1
∗ ∈ (𝑢0, 𝑢0 + 𝜈]. So 𝑢1 can be obtained by minimizing a convex function on the 

finite interval (𝑢̃, 𝑢0 + 𝜈] if there is a point of inflection 𝑢̃ > 𝑢0 and on the finite interval (𝑢0, 𝑢0 + 𝜈] 
if there is no point of inflection. 

 

Thus, we have shown that in the unhealthy case the minimizer 𝑢1
∗ of 𝑓(𝑢, 𝜏) = 𝐹(𝑢1) can be found 

by minimizing a convex function on a finite interval. In cases where 𝜆𝑏 = 0, we know at forehand 

that 𝑢1
∗ = 𝑢0 + 𝜈, because then 𝐹′(𝑢0 + 𝜈) = 0, by Lemma 7.5. Moreover, the solution is periodic 

from 𝑡 = 𝑡2 on, where 

 

𝑡2 =
𝜚(𝜈) + (𝜆 + 𝜃)(𝑢1

∗ + 𝜈)

𝛽 + 𝛿 
. 

 

After 𝑡 = 𝑡2, the solution is independent of  𝑆0: all subsequent upgrades have the same value 𝜈 

and occur periodically; the interval between two subsequent upgrades is  𝑝, as given by (28). 

 

It may be mentioned that for the 22 dikes for which the data are available (cf. Appendix C), there 

is always an inflection point 𝑢̃ > 𝑢0. Note that this holds if and only if 𝐹′′(𝑢0) < 0. We would have 

liked to prove this in the general case, under the condition (44), but we did not succeed. We leave this 

as a challenge to the reader. 
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8. Computational Results 

 

We applied our results to the 22 dikes whose data are given in Table 2 in Appendix C. The resulting 

solutions for these dikes are presented in Table 1. 

 

The first column in this table uses a parameter 𝜎, which is defined by 

 

𝜎 =
𝑆0

𝛿𝜅(𝜈)𝑒(𝜆+𝜃)𝜈
, (45) 

 

where the denominator is the threshold value for 𝑆0 in (29), that separates healthy dikes (𝜎 ≤ 1) from 

unhealthy dikes (𝜎 > 1). As one might expect this separation is also clear from the values of 𝑡1 and 

𝑢1 in the table: for the unhealthy dikes, one has 𝑡1 = 0 and 𝑢1 > 𝜈, whereas for healthy dikes, 𝑡1 ≥ 0 

and 𝑢1 = 𝜈.  

 

The second column in the table serves to show that all dikes satisfy the condition (44). This 

condition can be reformulated in terms of an upper 𝜎̅ bound for 𝜎. This will be explained now. First, 

we consider the following lemma. 

 

Lemma 8.1. With 𝜎 as just defined, one has 

 

𝑢0 =
log 𝜎

𝜆 + 𝜃
. (46) 

 

Proof. Due to (45), we may write 

 

(𝜆 + 𝜃)𝜈 = log
𝑆0

𝜎𝛿𝜅(𝜈)
= − log

𝜎𝛿𝜅(𝜈)

𝑆0
= −𝜚(𝜈) − log 𝜎 . 

 

Due to the definition (33) of 𝑢0, this implies (𝜆 + 𝜃)𝑢0 = log 𝜎, whence we obtain (46).  ∎ 

 

Due to the above lemma, condition (44) can be written as 

 

𝑐 > 𝑏
log 𝜎

𝜆 + 𝜃
(𝑒𝜆𝜈 − 1). 

 

Since 𝑐 > 0, this certainly holds if 𝜆𝑏 = 0. If 𝜆𝑏 > 0, however, it puts an upper bound on the value 

of 𝜎, namely, 

 

log 𝜎 <
(𝜆 + 𝜃)𝑐

𝑏(𝑒𝜆𝜈 − 1)
. (47) 

 

The second column in the table shows the resulting upper bound for 𝜎, which is denoted as 𝜎̅. The 

table not only makes clear that 𝜎 < 𝜎̅, so that (44) holds for all dikes, but also that 𝜎̅ is very large for 

some dikes. 
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Table 1. Solutions for the 22 dikes as specified in Table 2 in Appendix C. 

no.  𝜎  𝜎̅  𝜈  𝑢1  𝑝  𝑡1  𝑡2  𝑓(𝑢∗, 𝜏∗) 

10 0.2466 1.90e+04 56.96 57.12 56.96 45.80 102.92 40.04 

11 0.2771 ∞ 62.42 58.89 62.42 42.44 101.33 110.23 

15 1.1849 9.35e+03 53.29 51.54 55.96 0.00 51.20 545.18 

16 0.8001 1.78e+06 52.59 54.04 52.59 3.50 57.54 1089.68 

22 0.4463 2.91e+12 53.70 62.43 53.70 12.72 75.16 309.25 

23 0.297 6.36e+05 55.24 48.24 55.24 56.06 104.30 20.07 

24 0.5871 1.08e+03 61.81 42.80 61.81 8.01 50.80 297.26 

35 1.2344 7.06e+01 59.65 41.73 63.89 0.00 41.08 345.23 

38 1.1016 2.24e+01 62.04 51.31 65.27 0.00 50.80 172.07 

40 0.0615 4.87e+02 78.80 61.68 78.80 90.90 152.57 3.83 

41 2.1307 3.61e+02 74.66 62.95 100.55 0.00 60.13 325.89 

42 0.6144 5.50e+03 72.24 61.43 72.24 15.43 76.86 79.24 

43 0.7688 3.58e+02 43.49 64.66 73.49 8.39 73.05 1304.79 

44 2.9440 3.71e+01 49.54 55.42 76.91 0.00 50.06 206.50 

45 2.5159 1.70e+01 41.49 50.94 61.80 0.00 45.69 33.72 

47 1.3608 9.51e+01 55.60 51.87 65.26 0.00 50.74 64.10 

48 1.2888 5.68e+00 50.84 42.47 58.24 0.00 40.57 403.00 

49 0.3808 4.41e+01 45.65 52.97 45.65 31.66 84.62 74.04 

50 2.6718 ∞ 61.97 58.78 95.87 0.00 58.78 53.47 

51 0.3372 1.86e+01 40.49 51.49 40.49 35.48 56.97 54.18 

52 0.8966 1.48e+02 45.74 57.79 45.74 3.52 61.31 245.38 

53 2.0317 1.12e+04 66.13 68.54 86.57 0.00 66.58 307.48 

 

If (47) does not hold, then we call a dike very unhealthy, because then splitting an upgrade of the 

dike at some moment in two steps (at the same time) may become more advantageous than doing it 

in one step. For such dikes, the solution of our model may yield 𝑡1 = 𝑡2 = 0. As we made it clear, 

this is in conflict with the assumptions underlying the model. So, we must conclude that the model 

breaks down in such cases. 

 

Finally, it may be worth to emphasize that at the end of Section 6 we gave a ‘physical’ proof for 

the inequality 𝑢1 > 𝜈 in the unhealthy case. It is clear from Table 1 that this inequality holds indeed. 

Unfortunately, we were not able to prove this inequality mathematically. We leave it as a challenge 

for the reader. 
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Appendix A. Proofs of Properties of 𝓛(𝒙) and 𝓡(𝒙) 
 

Recall that 𝐷(𝑥) = 𝑐 + 𝑏𝑥 and that 𝜅(𝑥) as defined in (10). Below, we frequently use the first and 

second derivatives of 𝜅(𝑥), which are given by 

 

𝜅′(𝑥) =
𝑏 − 𝜃𝑒𝜃𝑥𝜅(𝑥)

𝑒𝜃𝑥 − 1
, (48) 

𝜅′′(𝑥) = −
𝜃𝑒𝜃𝑥

𝑒𝜃𝑥 − 1
(𝜃𝜅(𝑥) + 2𝜅′(𝑥)). (49) 

 

Lemma A.1. 𝜅(𝑥) is strictly convex and monotonically decreasing to zero. 

 

Proof. From (48) it is clear that 𝜅′(𝑥) has the same sign as 

 

𝑏(𝑒𝜃𝑥 − 1) − 𝜃 𝑒𝜃𝑥𝐷(𝑥). 
 

The value of this expression at 𝑥 = 0 is −𝜃𝑐, which is negative, and its derivative is  

 

𝑏𝜃𝑒𝜃𝑥 − 𝜃2𝑒𝜃𝑥𝐷(𝑥) − 𝜃𝑒𝜃𝑥𝑏 = −𝜃2𝑒𝜃𝑥𝐷(𝑥) < 0. 
 

Therefore, 𝜅′(𝑥) is negative. Hence 𝜅(𝑥) is monotonically decreasing, as stated in the lemma. 

Moreover, the definition of 𝜅(𝑥) makes clear that if 𝑥 grows, then the limiting value is zero. 

 

Concerning the second the derivative of 𝜅(𝑥), we deduce from (49) that it has the same sign as 

−2𝜅′(𝑥) − 𝜃𝜅(𝑥), for which we have 

 

−2𝜅′(𝑥) − 𝜃𝜅(𝑥) = −
2 (𝑏 − 𝜃𝑒𝜃𝑥𝜅(𝑥)) + (𝑒𝜃𝑥 − 1)𝜃𝜅(𝑥)

𝑒𝜃𝑥 − 1
=

𝜃𝑒𝜃𝑥𝜅(𝑥) + 𝜃𝜅(𝑥) − 2𝑏

𝑒𝜃𝑥 − 1
. 

 

Multiplication with (𝑒𝜃𝑥 − 1)
2
 yields the expression 

 

𝜃𝑒𝜃𝑥𝐷(𝑥) + 𝜃𝐷(𝑥) − 2(𝑒𝜃𝑥 − 1)𝑏. 
 

Since 𝑐 > 0, this expression is positive if 𝑏 = 0, whereas its derivative with respect to 𝑏 equals  

 

𝜃𝑥𝑒𝜃𝑥 + 𝜃𝑥 − 2(𝑒𝜃𝑥 − 1). 
 

Putting 𝑦 ≔ 𝜃𝑥, one may easily verify that 𝑦𝑒𝑦 + 𝑦 − 2(𝑒𝑦 − 1) ≥ 0, for 𝑦 ≥ 0. It thus follows that 

𝜅′′(𝑥) > 0, for all 𝑥 > 0, which means that 𝜅(𝑥) is strictly convex. Hence, the proof is complete.  ∎ 

 

We proceed by showing that the derivatives of ℒ(𝑥) and ℛ(𝑥) are closely related. 
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Lemma A.2.2 One has 

 

ℒ′(𝑥) = 𝑒𝑞𝑥ℛ′(𝑥) = 𝜅(𝑥)−𝛿̅−1[𝜆𝑏𝜅(𝑥) + 𝛽̅ [𝜃𝜅(𝑥) − Δ(𝑥)]𝜅′(𝑥). 
 

Proof. We start by computing the derivative of ℒ(𝑥): 

 

ℒ′(𝑥) = −𝛿̅𝜅(𝑥)−𝛿̅−1𝜅′(𝑥)𝐿(𝑥) + 𝜅(𝑥)−𝛿̅𝐿′(𝑥) = 𝜅(𝑥)−𝛿̅−1[−𝛿̅𝜅′(𝑥)𝐿(𝑥) + 𝜅(𝑥)𝐿′(𝑥)] 
 

= 𝜅(𝑥)−𝛿̅−1 [−𝛿̅𝜅′(𝑥) (Δ(𝑥) +
𝜃𝛿

𝛽
𝜅(𝑥)) + 𝜅(𝑥) (𝜆𝑏 +

𝜃𝛿

𝛽
𝜅′(𝑥))].              

 

The coefficient of 𝜅(𝑥)𝜅′(𝑥) in the bracketed expression equals  

 

−𝛿̅
𝜃𝛿

𝛽
+

𝜃𝛿

𝛽
= (1 − 𝛿̅)

𝜃𝛿

𝛽
= (1 −

𝛿

𝛽 + 𝛿
)

𝜃𝛿

𝛽
 =

𝛽

𝛽 + 𝛿

𝜃𝛿

𝛽
= 𝜃𝛿̅. 

 

Thus, we get 

 

ℒ′(𝑥) = 𝜅(𝑥)−𝛿̅−1 [𝜆𝑏𝜅(𝑥) + 𝛿̅ 𝜅′(𝑥) [𝜃𝜅(𝑥) − Δ(𝑥)]]. 

 

Hence, the expression for the derivative of ℒ(𝑥) in the lemma is correct. The derivative of ℛ(𝑥) is 

 

ℛ′(𝑥) = −𝛿̅𝜅(𝑥)−𝛿̅−1𝜅′(𝑥)𝑅(𝑥) + 𝜅(𝑥)−𝛿̅ 𝑅′(𝑥) = 𝜅(𝑥)−𝛿̅−1[−𝛿̅𝜅′(𝑥)𝑅(𝑥) + 𝜅(𝑥)𝑅′(𝑥)]              

         = 𝜅(𝑥)−𝛿̅−1 [−𝛿̅𝜅′(𝑥) (𝑏𝑒−𝑞𝑥 +
𝜃𝛿

𝛽
𝜅(𝑥)𝑒𝑟𝑥) + 𝜅(𝑥) (−𝑞𝑏𝑒−𝑞𝑥 +

𝜃𝛿

𝛽
[𝜅′(𝑥) + 𝑟𝜅(𝑥)]𝑒𝑟𝑥)] . 

 

Hence, the lemma will follow if 

 

𝜆𝑏𝜅(𝑥) + 𝛿̅𝜅′(𝑥)[𝜃𝜅(𝑥) − Δ(𝑥)]  

= −𝛿̅𝜅′(𝑥) (𝑏 +
𝜃𝛿

𝛽
𝜅(𝑥)𝑒𝜃𝑥) + 𝜅(𝑥) (−𝑞𝑏 +

𝜃𝛿

𝛽
[𝜅′(𝑥) + 𝑟𝜅(𝑥)]𝑒𝜃𝑥). 

 

The coefficient of 𝜅′(𝑥)𝜅(𝑥) in the left-hand side is 𝛿̅𝜃 and the coefficient in the right-hand side: 

 

−𝛿̅
𝜃𝛿

𝛽
𝑒𝜃𝑥 +

𝜃𝛿

𝛽
𝑒𝜃𝑥 = (1 − 𝛿̅)

𝜃𝛿

𝛽
𝑒𝜃𝑥 = 𝛿̅𝜃𝑒𝜃𝑥 , 

where we used (1 − 𝛿̅)𝛿 = 𝛽𝛿̅. Hence, since 
𝜃𝑟

𝛽
= 𝜆 + 𝑞, it remains to show to show that 

 

(𝜆 + 𝑞)𝑏𝜅(𝑥) + 𝛿̅𝜃(1 − 𝑒𝜃𝑥) 𝜅′(𝑥)𝜅(𝑥) − 𝛿̅𝜅′(𝑥)(Δ(𝑥) − 𝑏)  = 𝜃(𝜆 + 𝑞)𝜅(𝑥)2𝑒𝜃𝑥. 
 

Since 𝜆 + 𝑞 = 𝛿̅(𝜆 + 𝜃) and Δ(𝑥) = 𝑏 + 𝜆𝐷(𝑥), after dividing by the common factor 𝛿̅ we get: 

 

(𝜆 + 𝜃)𝑏𝜅(𝑥) + (1 −  𝑒𝜃𝑥)𝜃𝜅′(𝑥)𝜅(𝑥) − 𝜆𝜅′(𝑥)𝐷(𝑥) = 𝜃(𝜆 + 𝜃)𝜅(𝑥)2𝑒𝜃𝑥 . 

                                                      
2 If 𝛽 = 0 then, the derivatives of ℒ(𝑥) and ℛ(𝑥) are also as given by this lemma, with 𝑞 = 𝜃 and 𝛿̅ = 1. 

This implies that all subsequent results are also valid if 𝛽 = 0. 
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Moving the first term at the left to the right and using the expression (48) for 𝜅′(𝑥), we get 

 

(1 −  𝑒𝜃𝑥)𝜃𝜅′(𝑥)𝜅(𝑥) − 𝜆𝜅′(𝑥)𝐷(𝑥)  =  (𝜆 + 𝜃)𝜅(𝑥)(𝜃𝜅(𝑥)𝑒𝜃𝑥 − 𝑏)                  

                                                      = (𝜆 + 𝜃)𝜅(𝑥)(1 − 𝑒𝜃𝑥)𝜅′(𝑥),  
 

which reduces to 

 

−𝜆𝜅′(𝑥)𝐷(𝑥) = 𝜆𝜅(𝑥)(1 − 𝑒𝜃𝑥)𝜅′(𝑥). 
 

Since −𝐷(𝑥) = 𝜅(𝑥)(1 − 𝑒𝜃𝑥), this relation holds true. Hence, the proof is complete.  ∎ 

 

Lemma A.2 implies that ℒ′(𝑥) = 0 holds if and only if ℛ′(𝑥) = 0 and this happens if and only if 

 

𝜆𝑏𝜅(𝑥) + 𝛿̅[𝜃𝜅(𝑥) − Δ(𝑥)]𝜅′(𝑥) = 0. (50) 

 

We claim that this equation has exactly one solution. This is the content of the following lemma. 

 

Lemma A.3. The equation (50) has exactly one solution. 

 

Proof. Multiplying the left-hand side of (50) with 𝑒𝜃𝑥 − 1 > 0, we get the function 𝑘(𝑥) defined by 

 

𝑘(𝑥) ≔ 𝜆𝑏𝐷(𝑥) + 𝛿̅[𝜃𝐷(𝑥) − (𝑒𝜃𝑥 − 1)Δ(𝑥)]𝜅′(𝑥). (51) 

 

Now, it suffices for the proof to show that the equation 𝑘(𝑥) = 0 has exactly one solution. We first 

show that 𝑘(𝑥) approaches −∞ if 𝑥 goes to zero and 𝑘(𝑥) converges either to ∞ or to a positive 

number if 𝑥 goes to ∞. 

 

This implies that 𝑘(𝑥) attains the value zero for some finite value. From this point on, we assume 

that 𝜈̅ > 0 is such that 𝑘(𝜈̅) = 0. Next, we show that 𝑘(𝑥) = 0 implies 𝑘′(𝑥) > 0, which implies that 

𝜈̅ is unique.  

 

One has 

 

lim
𝑥↓0

𝑘(𝑥) = lim
𝑥↓0

𝜆𝑏𝐷(0) + 𝛿̅𝜃𝐷(0)
𝑏 − 𝜃

𝐷(0)
𝜃𝑥  

𝜃𝑥
= lim

𝑥↓0
𝛿̅

𝐷(0)2

𝑥2
= −∞, 

 

where we used 𝐷(0) = 𝑐 > 0. We next consider the behavior of 𝑘(𝑥) if 𝑥 grows to infinity. We first 

consider the case where 𝜆 = 0. Then, using 𝐷(𝑥) = 𝑐 + 𝑏𝑥 and Δ(𝑥) = 𝑏 + 𝜆𝐷(𝑥) > 0, due to (14), 

we have 

 

lim
𝑥→∞

𝑘(𝑥) = lim
𝑥→∞

𝛿̅[𝜃𝑏𝑥 − 𝑒𝜃𝑥𝑏]
𝑏 − 𝜃𝑒𝜃𝑥 𝑏𝑥

𝑒𝜃𝑥

𝑒𝜃𝑥
= lim

𝑥→∞
𝛿̅[− 𝑒𝜃𝑥𝑏]

𝑏 − 𝜃𝑏𝑥

𝑒𝜃𝑥
. 

= lim
𝑥→∞

𝛿̅𝑏2(𝜃𝑥 − 1) = ∞.                                                   

 

Now, let 𝜆 > 0. We then need to distinguish between 𝑏 > 0 and 𝑏 = 0. If 𝑏 > 0, then 
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lim
𝑥→∞

𝑘(𝑥) = lim
𝑥→∞

𝜆𝑏 (𝑏𝑥) + 𝛿̅ [𝜃𝑏𝑥 − 𝑒𝜃𝑥𝜆𝑏𝑥 ]
𝑏 − 𝜃𝑒𝜃𝑥 𝑏𝑥

𝑒𝜃𝑥

𝑒𝜃𝑥
       

                             = 𝑙𝑖𝑚
𝑥→∞

𝜆𝑏2𝑥 + 𝛿̅[− 𝑒𝜃𝑥𝜆𝑏𝑥] [−
𝜃𝑏𝑥

𝑒𝜃𝑥
] = 𝑙𝑖𝑚

𝑥→∞
𝛿̅𝜆𝜃𝑏2𝑥2 = ∞. 

 

Finally, if 𝑏 = 0, then 𝐷(𝑥) = 𝑐 and Δ(𝑥) = 𝜆𝑐 > 0. Hence, we get 

 

lim
𝑥→∞

𝑘(𝑥) = 𝑙𝑖𝑚
𝑥→∞

𝛿̅[𝜃𝑐 − (𝑒𝜃𝑥 − 1)𝜆𝑐] 
−𝜃𝑒𝜃𝑥𝑐

(𝑒𝜃𝑥 − 1)2
= lim

x→∞
𝛿̅  

𝜆𝜃𝑒𝜃𝑥𝑐2

𝑒𝜃𝑥 − 1
= 𝛿̅𝜆𝜃𝑐2 > 0. 

 

From the above results we conclude that if 𝑥 runs from 0 to ∞, then 𝑘(𝑥) grows from −∞ to ∞ 

(if 𝑏 >  0) or to a positive number (if 𝑏 = 0). We now prove that 𝑘(𝑥) = 0 occurs at most once for 

𝑥 > 0, by showing that the derivative of 𝑘(𝑥) is positive if 𝑘(𝑥) = 0. Using (51), straightforward 

computations yield 

 

𝑘′(𝑥) = 𝜆𝑏2 + 𝛿̅ [𝜃𝑏 − 𝜃𝑒𝜃𝑥Δ(𝑥) − (𝑒𝜃𝑥 − 1)𝜆𝑏]𝜅′(𝑥) + 𝛿̅[𝜃𝐷(𝑥) − (𝑒𝜃𝑥 − 1)Δ(𝑥)]𝜅′′(𝑥) 

= 𝜆𝑏2 + 𝛿̅[𝜃𝑏 − 𝜃𝑒𝜃𝑥Δ(𝑥) − (𝑒𝜃𝑥 − 1)𝜆𝑏]𝜅′(𝑥) −
𝜆𝑏𝐷(𝑥)

𝜅′(𝑥)
𝜅′′(𝑥),                         

 

where the second equality follows from (50). The bracketed expression is negative, because 

(𝑒𝜃𝑥 − 1)𝜆𝑏 ≥ 0 and, since 𝑏 − Δ(𝑥) = −𝜆𝐷(𝑥), 

 

𝜃𝑏 − 𝜃𝑒𝜃𝑥Δ(𝑥) = 𝜃[𝑏 − (𝑒𝜃𝑥 − 1)Δ(𝑥 ) − Δ(𝑥)]  = 𝜃[− (𝑒𝜃𝑥 − 1)Δ(𝑥) − 𝜆𝐷(𝑥)] < 0. 
 

Since 𝜅′(𝑥) < 0 and 𝜅′′(𝑥) > 0, by Lemma A.1, we may conclude that 𝑘(𝑥) = 0 implies 𝑘′(𝑥) >
0, as desired. Hence the proof is complete.   ∎ 

 

We conclude from Lemma A.2 and Lemma A.3 that ℒ′(𝜈̅) = ℛ′(𝜈̅) = 0, where 𝜈̅ is the unique 

point where ℒ′(𝑥) and  ℛ′(𝑥) vanish. The above proof also reveals that  ℒ′(𝑥) and  ℛ′(𝑥) change 

sign at 𝑥 = 𝜈̅. Hence, without further proof we may state the next lemma. 

 

Lemma A.4. ℒ(𝑥) and ℛ(𝑥) are decreasing if 𝑥 < 𝜈̅ and increasing if 𝑥 > 𝜈̅. 

 

In the next lemma, we consider the limits of ℒ(𝑥) and ℛ(𝑥) when 𝑥 approaches zero or infinity. 

 

Lemma A.5.3 One has 

 

lim
𝑥→∞

ℒ(𝑥) = ∞. 

 

Moreover, 

 

𝛽 > 0 ⇒ lim
𝑥↓0

ℒ(𝑥) = lim
𝑥↓0

ℛ(𝑥) = lim
𝑥→∞

ℛ(𝑥) = ∞, 

𝛽 < 0 ⇒ lim
𝑥↓0

ℒ(𝑥) = lim
𝑥↓0

ℛ(𝑥) = lim
𝑥→∞

ℛ(𝑥) = 0. 

 

                                                      
3 It may be mentioned that if 𝛽 = 0 then the limits are the same as the case when 𝛽 > 0. 
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Proof. The proof uses the following facts: 

 

 𝜃 > 0, 𝜆 ≥  0 and 𝛿 > 0; 

 𝛽̅ ≔
𝛽

𝛽+𝛿
; 

 𝛽̅ + 𝛿̅ = 1, 𝛿̅ > 0; 

 𝑞 = 𝜃𝛿̅ − 𝜆𝛽̅; 

 𝛽, 𝛽̅ and 𝑟 have the same sign; 

 𝐷(0) = 𝑐 > 0 and Δ(0) = 𝑏𝜆𝑐 > 0; 

 

Using these properties, the proof becomes more or less straightforward. Using only the sum and 

product rules for taking limits we may write: 

 

lim
𝑥↓0

ℒ(𝑥) = lim
𝑥↓0

(
𝐷(0)

𝜃𝑥
)

−𝛿̅

(Δ(0) +
𝜃𝛿

𝛽

𝐷(0)

𝜃𝑥
 ) = lim

𝑥↓0

𝜃𝛿

𝛽
(

𝐷(0)

𝜃𝑥
)

𝛽̅

,               

lim
𝑥→∞

ℒ(𝑥) = lim
𝑥→∞

(
𝐷(𝑥)

𝑒𝜃𝑥
)

−𝛿̅

(Δ(𝑥) +
𝜃𝛿

𝛽

𝐷(𝑥)

𝑒𝜃𝑥
 ) = lim

𝑥→∞
(

𝑒𝜃𝑥

𝐷(𝑥)
)

𝛿̅

Δ(𝑥),         

lim
𝑥↓0

ℛ(𝑥) = lim
𝑥↓0

(
𝐷(0)

𝜃𝑥
)

−𝛿̅

(𝑏 +
𝜃𝛿

𝛽

𝐷(0)

𝜃𝑥
 ) = lim

𝑥↓0

𝜃𝛿

𝛽
(

𝐷(0)

𝜃𝑥
)

𝛽̅

= lim
𝑥↓0

ℒ(𝑥), 

lim
𝑥→∞

ℛ(𝑥) = lim
𝑥→∞

(
𝐷(𝑥)

𝑒𝜃𝑥
)

−𝛿̅

𝑒−𝑞𝑥 (𝑏 +
𝜃𝛿

𝛽
𝐷(𝑥) ) = lim

𝑥→∞

𝜃𝛿

𝛽
𝐷(𝑥)𝛽̅𝑒𝜆𝛽̅𝑥.       

 

From the above relations one easily deduces the results stated in the lemma. It may be pointed out 

that for the last limit one needs to use that if 𝑏 = 0 then 𝜆 > 0, and if 𝜆 = 0 then 𝑏 > 0, due to (4). 

This completes the proof.  ∎ 

 

Lemma A.6. One has ℒ(𝜈̅) < ℛ(𝜈̅). Moreover, ℒ(𝜈) = ℛ(𝜈) for some unique number 𝜈 > 𝜈̅. 

 

Proof. We have ℒ′(𝑥) = 𝑒𝑞𝑥ℛ′(𝑥) and 𝑞 > 0. Since 𝑒𝑞𝑥 > 1, it follows that if 𝑥 < 𝜈̅, then ℒ(𝑥) 

decreases faster than  ℛ(𝑥) and if 𝑥 > 𝜈̅, then ℒ(𝑥) increases faster than ℛ(𝑥). We first deal with the 

case where 𝑥 < 𝜈̅. In that case, we must distinguish the cases 𝛽 > 0 and 𝛽 < 0. 

 

We start with 𝛽 < 0. From Lemma A.5 we know that the limiting value of ℒ(𝑥) and ℛ(𝑥) is zero 

when 𝑥 approaches zero. Since ℒ(𝑥) decreases faster than ℛ(𝑥) if 𝑥 ∈ (0, 𝜈̅), we conclude that 

ℒ(𝑥) < ℛ(𝑥), for all 𝑥 < 𝜈̅. 

 

If 𝛽 > 0, then ℒ(𝑥) and ℛ(𝑥) become unbounded when 𝑥 approaches zero, as we know from 

Lemma A.5. In order to show that ℒ(𝑥) < ℛ(𝑥), for 𝑥 < 𝜈̅, it suffices to prove that this holds when 

𝑥 approaches zero. We therefore consider the sign of ℛ(𝑥) − ℒ(𝑥) = 𝜅(𝑥)−𝛿̅ [𝑅(𝑥) − 𝐿(𝑥)] when 𝑥 

approaches zero. Since 𝜅(𝑥) is positive by Lemma A.1, this sign is the same as the sign of 

 

𝜀(𝑥) ≔ 𝑏𝑒−𝑞𝑥 +
𝜃𝛿

𝛽
𝜅(𝑥)𝑒𝑟𝑥 − 𝑏 − 𝜆𝐷(𝑥) −

𝜃𝛿

𝛽
𝜅(𝑥)      

= (𝑒−𝑞𝑥 − 1)𝑏 − 𝜆𝐷(𝑥) +
𝜃𝛿

𝛽

𝑒𝑟𝑥 − 1

𝑒𝜃𝑥 −  1
𝐷(𝑥). 
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From this, we derive that 

 

lim
𝑥↓0

𝜀(𝑥) = lim
𝑥↓0

[−𝜆𝐷(𝑥) +
𝜃𝛿

𝛽

𝑟

𝜃
 𝐷(𝑥)] = (−𝜆 +

𝛿𝑟

𝛽
) 𝐷(0) = 𝑞𝐷(0) > 0. 

 

We conclude that if 𝑥 < 𝜈̅, then ℒ(𝑥) < ℛ(𝑥) holds also when 𝛽 > 0. This implies, in particular, 

that ℒ(𝜈̅) < ℛ(𝜈̅). 

 

Finally, we deal with 𝑥 > 𝜈̅. Since ℒ(𝑥) increases exponentially faster than ℛ(𝑥), for 𝑥 ∈ (𝜈̅, ∞), 

and ℒ(𝑥) goes to infinity if 𝑥 grows to infinity, there must exist a number 𝜈 > 𝜈̅ such that ℒ(𝜈) =
ℛ(𝜈). From this point on, ℒ(𝑥) still grows faster than ℛ(𝑥), which gives the uniqueness of 𝜈. This 

completes the proof of the lemma.  ∎ 

 

We conclude this section by pointing out another consequence of Lemma A.5, namely,  

 

𝛽ℛ(𝑥) > 0, ∀𝑥 > 0. (52) 

 

This is obvious if 𝛽 > 0, because then the definition of ℛ implies ℛ(𝑥) >  0, for all 𝑥 > 0. If 𝛽 <
0, then Lemma A.5 gives that ℛ(𝑥) converges to zero both when 𝑥 approaches zero and when 𝑥 

grows to infinity. Due to Lemma A.4, this implies that ℛ(𝑥) < 0, for all 𝑥 > 0. 

 

Appendix B. Objective Value in the Unhealthy Case 

 

Taking the sum of all stationarity conditions (5) for 𝑡𝑘 (𝑘 ≥ 2), we get 

 

∑ 𝛿𝐷(𝑢𝑘)𝑒𝜆ℎ𝑘−𝛿𝑡𝑘

∞

𝑘=2

= ∑(𝑆0𝑒𝛽𝑡𝑘−𝜃ℎ𝑘−1 − 𝑆0𝑒𝛽𝑡_𝑘−𝜃ℎ𝑘).

∞

𝑘=2

 

 

This yields a linear relation between 𝐼(𝑢, 𝜏) and 𝐴(𝑢, 𝜏) at a stationary point as follows: 

 

𝛿(𝐼(𝑢, 𝜏) −  𝐷(𝑢1)𝑒𝜆𝑢1) = ∑ 𝑆0𝑒𝛽𝑡𝑘−𝜃ℎ𝑘−1

∞

𝑘=2

− ∑ 𝑆0𝑒𝛽𝑡𝑘−1−𝜃ℎ𝑘−1

∞

𝑘=3

                            

                                              = ∑ 𝑆0𝑒𝛽𝑡𝑘−𝜃ℎ𝑘−1

∞

𝑘=2

+ 𝑆0𝑒𝛽𝑡1−𝜃ℎ1 − ∑ 𝑆0𝑒𝛽𝑡𝑘−1−𝜃ℎ𝑘−1

∞

𝑘=2

  

                            = 𝑆0𝑒𝛽𝑡1−𝜃ℎ1 + ∑ 𝑆0[𝑒𝛽𝑡𝑘 − 𝑒𝛽𝑡𝑘−1]𝑒−𝜃ℎ𝑘−1

∞

𝑘=2

  

                                 = 𝑆0𝑒−𝜃𝑢1 + 𝛽(𝐴(𝑢, 𝜏) − 𝑆0[𝑒𝛽𝑡1 − 𝑒𝛽𝑡0]𝑒−𝜃ℎ0)  

= 𝑆0𝑒−𝜃𝑢1 + 𝛽𝐴(𝑢, 𝜏),                 (53) 

 

where we used 𝑡0 = 𝑡1 = ℎ0 = 0. The stationarity condition (13) for 𝑢2 yields 

 

𝑏𝑒𝜆ℎ2−𝛿𝑡2 + ∑ 𝜆𝐷(𝑢ℓ)𝑒𝜆ℎℓ−𝛿𝑡ℓ

∞

ℓ=2

= ∑
𝜃𝑆0

𝛽
(𝑒𝛽𝑡ℓ − 𝑒𝛽𝑡ℓ−1  ) 𝑒−𝜃ℎℓ−1

∞

ℓ=3

. (54) 
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This implies 

 

𝑏𝑒𝜆ℎ2−𝛿𝑡2 + 𝜆[𝐼(𝑢, 𝜏) −  𝐷(𝑢1)𝑒𝜆ℎ1−𝛿𝑡1] = 𝜃 [𝐴(𝑢, 𝜏) −
𝑆0

𝛽
(𝑒𝛽𝑡2 − 𝑒𝛽𝑡1)𝑒−𝜃ℎ1], 

 

where we used once more that (𝑒𝛽𝑡1 − 𝑒𝛽𝑡0) 𝑒−𝜃ℎ0 = 0. Since ℎ1 = 𝑢1 and 𝑡1 = 0, this gives a 

second linear relation between 𝐼(𝑢, 𝜏) and 𝐴(𝑢, 𝜏), namely, 

 

𝑏𝑒𝜆ℎ2−𝛿𝑡2 + ∑ 𝜆𝐷(𝑢ℓ)𝑒𝜆ℎℓ−𝛿𝑡ℓ

∞

ℓ=2

= ∑
𝜃𝑆0

𝛽
(𝑒𝛽𝑡ℓ − 𝑒𝛽𝑡ℓ−1  ) 𝑒−𝜃ℎℓ−1

∞

ℓ=3

. (55) 

 

Since 𝛽𝑡2 − 𝜃𝑢1 = 𝛽𝑡2 − 𝜃(ℎ2 − 𝑢2), we may reduce this equality as follows: 

 

−𝜆𝐼(𝑢, 𝜏) + 𝜃𝐴(𝑢, 𝜏) = 𝑏𝑒𝜆ℎ2−𝛿𝑡2 +
𝜃𝑆0

𝛽
𝑒𝛽𝑡2−𝜃ℎ2𝑒𝜃𝑢2 − 𝜆𝐷(𝑢1)𝑒𝜆𝑢1 −

𝜃𝑆0

𝛽
𝑒−𝜃𝑢1                           

                        = 𝑏𝑒𝜆ℎ2−𝛿𝑡2 +
𝜃𝛿

𝛽
𝜅(𝑢2)𝑒𝜆ℎ2−𝛿𝑡2𝑒𝜃𝑢2 − 𝜆𝐷(𝑢1)𝑒𝜆𝑢1 −

𝜃𝑆0

𝛽
𝑒−𝜃𝑢1 

             = (𝑏 +
𝜃𝛿

𝛽
𝜅(𝑢2)𝑒𝜃𝑢2) 𝑒𝜆ℎ2−𝛿𝑡2 − 𝜆𝐷(𝑢1)𝑒𝜆𝑢1 −

𝜃𝑆0

𝛽
𝑒−𝜃𝑢1 

= 𝑒𝑞𝑢2𝑅(𝑢2) 𝑒𝜆ℎ2−𝛿𝑡2 − 𝜆𝐷(𝑢1)𝑒𝜆𝑢1 −
𝜃𝑆0

𝛽
𝑒−𝜃𝑢1 ,      

 

where the second equality is due to (12), i.e., stationarity with respect to 𝑡2. Using stationarity with 

respect to 𝑡2 once more, we get, from (17), 

 

𝑒−𝛿𝑡2 = (
𝑆0

𝛿
)

𝛿̅

𝜅(𝑢2)−𝛿̅𝑒−(𝑞+𝜆)ℎ2 . 

 

Substitution gives 

 

−𝜆𝐼(𝑢, 𝜏) + 𝜃𝐴(𝑢, 𝜏) = 𝑒𝑞𝑢2𝑅(𝑢2) (
𝑆0

𝛿
)

𝛿̅

𝜅(𝑢2)−𝛿̅𝑒−𝑞ℎ2 − 𝜆𝐷(𝑢1)𝑒𝜆𝑢1 −
𝜃𝑆0

𝛽
𝑒−𝜃𝑢1                     

            = (
𝑆0

𝛿
)

𝛿̅

𝜅(𝑢2)−𝛿̅𝑅(𝑢2)𝑒−𝑞𝑢1 − 𝜆𝐷(𝑢1)𝑒𝜆𝑢1 −
𝜃𝑆0

𝛽
𝑒−𝜃𝑢1 

= (
𝑆0

𝛿
)

𝛿̅

ℛ(𝑢2)𝑒−𝑞𝑢1 − 𝜆𝐷(𝑢1)𝑒𝜆𝑢1 −
𝜃𝑆0

𝛽
𝑒−𝜃𝑢1 .    

 

Thus, we have obtained two linear relations between 𝐼(𝑢, 𝜏) and 𝐴(𝑢, 𝜏), namely, 

 

𝛿𝐼(𝑢, 𝜏) − 𝛽𝐴(𝑢, 𝜏) = 𝛿𝐷(𝑢1)𝑒𝜆𝑢1 + 𝑆0𝑒−𝜃𝑢1                                            

−𝜆𝐼(𝑢, 𝜏) + 𝜃𝐴(𝑢, 𝜏) = (
𝑆0

𝛿
)

𝛿̅

ℛ(𝑢2)𝑒−𝑞𝑢1 − 𝜆𝐷(𝑢1)𝑒𝜆𝑢1 − 𝜃
𝑆0

𝛽
𝑒−𝜃𝑢1 . 
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Just as in Section 5 for the healthy case, this system has a unique solution. By solving the system 

for 𝐼(𝑢, 𝜏) and 𝐴(𝑢, 𝜏), we get, in the same way as in Section 5, the following expressions: 

 

(𝜃𝛿 − 𝛽𝜆) 𝐴(𝑢, 𝜏) = 𝛿 (
𝑆0

𝛿
)

𝛿̅

ℛ(𝑢2)𝑒−𝑞𝑢1 −
(𝜃𝛿 − 𝜆𝛽)𝑆0

𝛽
𝑒−𝜃𝑢1 , 

(𝜃𝛿 − 𝛽𝜆)𝐼(𝑢, 𝜏) = (𝜃𝛿 − 𝛽𝜆)𝐷(𝑢1)𝑒𝜆𝑢1  + 𝛽 (
𝑆0

𝛿
)

𝛿̅

ℛ(𝑢2)𝑒−𝑞𝑢1 . 

 

By adding these equations, we obtain the value of 𝑓(𝑢, 𝜏) at a stationary point: 

 

𝑓(𝑢, 𝜏) =
𝑒−𝑞𝑢1

𝑞
(

𝑆0

𝛿
)

𝛿̅

ℛ(𝑢2) + 𝐷(𝑢1)𝑒𝜆𝑢1 −
𝑆0

𝛽
𝑒−𝜃𝑢1 . 

 

Appendix C. Data of 22 Dikes in The Netherlands 

 

Table 2 contains the raw data of the 22 dikes in The Netherlands for which the data are available.  

 

Table 3 contains the values of the parameters that play a role in the theoretical analysis. 

 

It was shown in Section 8 that the 12 dikes numbered 10, 11, 16, 22, 23, 24, 40, 42, 43, 49, 51, 

and 52 were healthy and the other 10 dikes were unhealthy. 
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Table 2. Raw data for the 22 dikes. 

No.  𝑐  𝑏  𝜆  𝜎  𝜂  𝛾  𝜁  𝑃0  𝑉0 

10 16.6939 0.6258 0.0014 0.033027 0.320 0.02 0.003774 1/2270 1564.9 

11 42.6200 1.7068 0.0000 0.032000 0.320 0.02 0.003469 1/855 1700.1 

15 125.6422 1.1268 0.0098 0.050200 0.760 0.02 0.003764 1/729 11810.4 

16 324.6287 2.1304 0.0100 0.057400 0.760 0.02 0.002032 1/906 22656.5 

22 154.4388 0.9325 0.0066 0.070000 0.620 0.02 0.002893 1/1802 9641.1 

23 26.4653 0.5250 0.0034 0.053400 0.800 0.02 0.002031 1/729 61.6 

24 71.6923 1.0750 0.0059 0.043900 1.060 0.02 0.003733 1/531 2706.4 

35 49.7384 0.6888 0.0088 0.036000 1.060 0.02 0.004105 1/509 4534.7 

38 24.3404 0.7000 0.0040 0.025321 0.412 0.02 0.004153 1/585 3062.6 

40 5.8601 0.1000 0.0026 0.025321 0.422 0.02 0.003905 1/855 43.5 

41 58.8110 0.9250 0.0033 0.025321 0.422 0.02 0.002794 1/585 10013.1 

42 21.8254 0.4625 0.0019 0.026194 0.442 0.02 0.001241 1/585 1090.8 

43 340.5081 4.2975 0.0043 0.025321 0.448 0.02 0.002043 1/585 19767.6 

44 24.0977 0.7300 0.0054 0.031651 0.316 0.02 0.003485 1/3050 37596.3 

45 3.4375 0.1375 0.0069 0.033027 0.320 0.02 0.002397 1/6120 10421.2 

47 8.7813 0.3513 0.0026 0.029000 0.358 0.02 0.003257 1/585 1369.0 

48 35.6250 1.4250 0.0063 0.023019 0.496 0.02 0.003076 1/585 7046.4 

49 20.0000 0.8000 0.0046 0.034529 0.304 0.02 0.003744 1/585 823.3 

50 8.1250 0.3250 0.0000 0.033027 0.320 0.02 0.004033 1/585 2118.5 

51 15.0000 0.6000 0.0071 0.036173 0.294 0.02 0.004315 1/585 570.4 

52 49.2200 1.6075 0.0047 0.036173 0.304 0.02 0.001716 1/585 4025.6 

53 69.4565 1.1625 0.0028 0.031651 0.336 0.02 0.002700 1/585 9819.5 

 

  

 [
 D

O
I:

 1
0.

29
25

2/
io

rs
.8

.2
.6

8 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 io

rs
.ir

 o
n 

20
26

-0
1-

30
 ]

 

                            29 / 30

http://dx.doi.org/10.29252/iors.8.2.68
http://iors.ir/journal/article-1-542-en.html


A Mathematical Model for Flood Protection 97 

 

 

Table 3. Data used in the analysis, for the 22 dikes 

no.  𝑐  𝑏  𝜆  𝛽  𝜃  𝛿  𝑞  𝜈 

10 16.6939 0.6258 0.0014 -0.0094 0.0293 0.04 0.0387 56.9610 

11 42.6200 1.7068 0.0000 -0.0098 0.0285 0.04 0.0377 62.4217 

15 125.6422 1.1268 0.0098 0.0182 0.0464 0.04 0.0289 53.2922 

16 324.6287 2.1304 0.0100 0.0236 0.0554 0.04 0.0311 52.5944 

22 154.4388 0.9325 0.0066 0.0234 0.0671 0.04 0.0399 53.7019 

23 26.4653 0.5250 0.0034 0.0227 0.0514 0.04 0.0315 55.2417 

24 71.6923 1.0750 0.0059 0.0265 0.0402 0.04 0.0218 61.8285 

35 49.7338 0.6888 0.0088 0.0182 0.0319 0.04 0.0192 59.6453 

38 24.3404 0.7000 0.0040 -0.0096 0.0212 0.04 0.0291 62.0429 

40 5.8601 0.1000 0.0026 -0.0093 0.0214 0.04 0.0287 78.8044 

41 55.8110 0.9250 0.0033 -0.0093 0.0226 0.04 0.0304 74.6588 

42 21.8254 0.4625 0.0019 -0.0084 0.0250 0.04 0.0321 72.2395 

43 340.5081 4.2975 0.0043 -0.0087 0.0233 0.04 0.0309 73.4901 

44 24.0977 0.7300 0.0054 -0.0100 0.0282 0.04 0.0394 49.5379 

45 3.4375 0.1375 0.0069 -0.0094 0.0306 0.04 0.0422 41.4883 

47 8.7813 0.3513 0.0026 -0.0096 0.0257 0.04 0.0347 55.5986 

48 35.6250 1.4250 0.0063 -0.0086 0.0199 0.04 0.0271 50.8446 

49 20.0000 0.8000 0.0046 -0.0095 0.0308 0.04 0.0418 54.6507 

50 8.1250 0.3250 0.0000 -0.0094 0.0290 0.04 0.0379 61.9738 

51 15.0000 0.6000 0.0071 -0.0094 0.0319 0.04 0.0438 40.4924 

52 49.2200 1.6075 0.0047 -0.0090 0.0345 0.04 0.0458 45.7435 

53 69.4565 1.1625 0.0028 -0.0094 0.0290 0.04 0.0387 66.1279 
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